Johnson-Lindenstrauss Lemma, Random Projection, and Applications

Size: px
Start display at page:

Download "Johnson-Lindenstrauss Lemma, Random Projection, and Applications"

Transcription

1 Johnson-Lindenstrauss Lemma, Random Projection, and Applications Hu Ding Computer Science and Engineering, Michigan State University

2 JL-Lemma The original version: Given a set P of n points in R d, let k = O(log n/ɛ 2 ), then there exists a Lipshcitz mapping f from R d to R k such that for all u, v P, (1 ɛ) u v 2 f (u) f (v) 2 (1 + ɛ) u v 2.

3 JL-Lemma The original version: Given a set P of n points in R d, let k = O(log n/ɛ 2 ), then there exists a Lipshcitz mapping f from R d to R k such that for all u, v P, (1 ɛ) u v 2 f (u) f (v) 2 (1 + ɛ) u v 2. The algorithmic version using Gaussian: Given a set P of n points in R d, let k = O(log n/ɛ 2 ) and A R k d with each entry independently sampled from N(0, 1), then with high probability for all u, v P, (1 ɛ) u v 2 1 k Au 1 k Av 2 (1 + ɛ) u v 2. An Elementary Proof of a Theorem of Johnson and Lindenstrauss by Dasgupta and Gupta.

4 JL-Lemma Database-friendly JL-Transform: only use ±1 and 0, easy by summations and subtractions. Database-friendly random projections: Johnson-Lindenstrauss with binary coins by Achlioptas.

5 JL-Lemma Database-friendly JL-Transform: only use ±1 and 0, easy by summations and subtractions. Database-friendly random projections: Johnson-Lindenstrauss with binary coins by Achlioptas. Fast JL-Transform: densify x but sparsify S, and speedup JL-Transform. Approximate Nearest Neighbors and the Fast Johnson-Lindenstrauss Transform by Ailon and Chazelle.

6 Lower time complexity. Comparing To PCA

7 Lower time complexity. Data oblivious: Comparing To PCA

8 Comparing To PCA Lower time complexity. Data oblivious: 1 Distributed computing: the data matrix X is divided into multiple parties (column or row partition).

9 Comparing To PCA Lower time complexity. Data oblivious: 1 Distributed computing: the data matrix X is divided into multiple parties (column or row partition). 2 Privacy preserving.

10 Comparing To PCA Lower time complexity. Data oblivious: 1 Distributed computing: the data matrix X is divided into multiple parties (column or row partition). 2 Privacy preserving. 3 Streaming data.

11 Application I: Large Matrix Improved Approximation Algorithms for Large Matrices via Random Projections by Sarlós.

12 Application I: Large Matrix Improved Approximation Algorithms for Large Matrices via Random Projections by Sarlós. Matrix multiplication: A B = AS T SB.

13 Application I: Large Matrix Improved Approximation Algorithms for Large Matrices via Random Projections by Sarlós. Matrix multiplication: A B = AS T SB. Linear regression: b Ax = Sb SAx, find more new results in the tutorial Sketching as a Tool for Numerical Linear Algebra by Woodruff.

14 Application I: Large Matrix Improved Approximation Algorithms for Large Matrices via Random Projections by Sarlós. Matrix multiplication: A B = AS T SB. Linear regression: b Ax = Sb SAx, find more new results in the tutorial Sketching as a Tool for Numerical Linear Algebra by Woodruff. SVD: A = SA, also can speedup PCA.

15 Application II: k-means k-means is equivalent to minimizing the total within-cluster squared pairwise distances, why?

16 Application II: k-means k-means is equivalent to minimizing the total within-cluster squared pairwise distances, why? Use JL-Transform to reduce the dimensionality, and run k-means in the low dimensional space:

17 Application II: k-means k-means is equivalent to minimizing the total within-cluster squared pairwise distances, why? Use JL-Transform to reduce the dimensionality, and run k-means in the low dimensional space: 1 Directly use JL-Lemma, O(log n/ɛ 2 ) for (1 + ɛ)-approximation.

18 Application II: k-means k-means is equivalent to minimizing the total within-cluster squared pairwise distances, why? Use JL-Transform to reduce the dimensionality, and run k-means in the low dimensional space: 1 Directly use JL-Lemma, O(log n/ɛ 2 ) for (1 + ɛ)-approximation. 2 Through SVD and JL-Lemma, O(k/ɛ 2 ) for (2 + ɛ)-approximation Random Projections for k-means Clustering by Boutsidis et al.

19 Application II: k-means k-means is equivalent to minimizing the total within-cluster squared pairwise distances, why? Use JL-Transform to reduce the dimensionality, and run k-means in the low dimensional space: 1 Directly use JL-Lemma, O(log n/ɛ 2 ) for (1 + ɛ)-approximation. 2 Through SVD and JL-Lemma, O(k/ɛ 2 ) for (2 + ɛ)-approximation Random Projections for k-means Clustering by Boutsidis et al. 3 Recently, (1) O(k/ɛ 2 ) for (1 + ɛ)-approximation and (2) O(log k/ɛ 2 ) for (9 + ɛ)-approximation Dimensionality Reduction for k-means Clustering and Low Rank Approximation by Cohen et al.

20 Application III: SVM Support Vector Machine (SVM) actually is equivalent to a high dimensional polytope distance problem (we will particularly talk about it in later lecture).

21 Application III: SVM Support Vector Machine (SVM) actually is equivalent to a high dimensional polytope distance problem (we will particularly talk about it in later lecture). So it is natural to use JL-Transform to reduce the dimensionality and approximately preserve the pairwise distances. Random Projections for Linear Support Vector Machines by Paul et al.

22 Application IV: Compressive Sensing Usually a signal can be represented as a sparse vector (e.g., after Fourier transformation). Define a k-sparse vector x as the vector having at most k non-zero entries, k d. The Johnson-Lindenstrauss Lemma Meets Compressed Sensing by Baraniuk et al.

23 Application V: Wireless Sensor Networks Use JL-Transform to reduce the communication complexity: Compressive data gathering for large-scale wireless sensor networks by Luo et al. Towards Distributed Ensemble Clustering for Networked Sensing Systems: A Novel Geometric Approach by Ding et al.

24 Application VI: Beyond JL-Lemma Actually, random projection can be viewed as a probe to guess a huge object, intuitively similar to x-ray tomography.

25 Application VI: Beyond JL-Lemma Actually, random projection can be viewed as a probe to guess a huge object, intuitively similar to x-ray tomography. High dimensional nearest neighbor search (a very important topic, we will talk about the details in later lecture).

26 Application VI: Beyond JL-Lemma Actually, random projection can be viewed as a probe to guess a huge object, intuitively similar to x-ray tomography. High dimensional nearest neighbor search (a very important topic, we will talk about the details in later lecture). Manifold learning. Random projection trees and low dimensional manifolds by Dasgupta and Freund.

27 Application VI: Beyond JL-Lemma Actually, random projection can be viewed as a probe to guess a huge object, intuitively similar to x-ray tomography. High dimensional nearest neighbor search (a very important topic, we will talk about the details in later lecture). Manifold learning. Random projection trees and low dimensional manifolds by Dasgupta and Freund. Probabilistic Inference. A Hybrid Approach for Probabilistic Inference using Random Projections by Zhu and Ermon.

28 Thank You! Any Question?

Package RandPro. January 10, 2018

Package RandPro. January 10, 2018 Type Package Title Random Projection with Classification Version 0.2.0 Author Aghila G, Siddharth R Package RandPro January 10, 2018 Maintainer Siddharth R Description Performs

More information

Spectral Graph Sparsification: overview of theory and practical methods. Yiannis Koutis. University of Puerto Rico - Rio Piedras

Spectral Graph Sparsification: overview of theory and practical methods. Yiannis Koutis. University of Puerto Rico - Rio Piedras Spectral Graph Sparsification: overview of theory and practical methods Yiannis Koutis University of Puerto Rico - Rio Piedras Graph Sparsification or Sketching Compute a smaller graph that preserves some

More information

MATH 423 Linear Algebra II Lecture 17: Reduced row echelon form (continued). Determinant of a matrix.

MATH 423 Linear Algebra II Lecture 17: Reduced row echelon form (continued). Determinant of a matrix. MATH 423 Linear Algebra II Lecture 17: Reduced row echelon form (continued). Determinant of a matrix. Row echelon form A matrix is said to be in the row echelon form if the leading entries shift to the

More information

Learning from High Dimensional fmri Data using Random Projections

Learning from High Dimensional fmri Data using Random Projections Learning from High Dimensional fmri Data using Random Projections Author: Madhu Advani December 16, 011 Introduction The term the Curse of Dimensionality refers to the difficulty of organizing and applying

More information

Approximate Nearest Neighbors. CS 510 Lecture #24 April 18 th, 2014

Approximate Nearest Neighbors. CS 510 Lecture #24 April 18 th, 2014 Approximate Nearest Neighbors CS 510 Lecture #24 April 18 th, 2014 How is the assignment going? 2 hcp://breckon.eu/toby/demos/videovolumes/ Review: Video as Data Cube Mathematically, the cube can be viewed

More information

Iterative random projections for high-dimensional data clustering

Iterative random projections for high-dimensional data clustering Iterative random projections for high-dimensional data clustering Ângelo Cardoso, Andreas Wichert INESC-ID Lisboa and Instituto Superior Técnico, Technical University of Lisbon Av. Prof. Dr. Aníbal Cavaco

More information

Principal Component Analysis for Distributed Data

Principal Component Analysis for Distributed Data Principal Component Analysis for Distributed Data David Woodruff IBM Almaden Based on works with Ken Clarkson, Ravi Kannan, and Santosh Vempala Outline 1. What is low rank approximation? 2. How do we solve

More information

Technical Report. Title: Manifold learning and Random Projections for multi-view object recognition

Technical Report. Title: Manifold learning and Random Projections for multi-view object recognition Technical Report Title: Manifold learning and Random Projections for multi-view object recognition Authors: Grigorios Tsagkatakis 1 and Andreas Savakis 2 1 Center for Imaging Science, Rochester Institute

More information

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2017

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2017 CPSC 340: Machine Learning and Data Mining Principal Component Analysis Fall 2017 Assignment 3: 2 late days to hand in tonight. Admin Assignment 4: Due Friday of next week. Last Time: MAP Estimation MAP

More information

Compressive Sensing. Part IV: Beyond Sparsity. Mark A. Davenport. Stanford University Department of Statistics

Compressive Sensing. Part IV: Beyond Sparsity. Mark A. Davenport. Stanford University Department of Statistics Compressive Sensing Part IV: Beyond Sparsity Mark A. Davenport Stanford University Department of Statistics Beyond Sparsity Not all signal models fit neatly into the sparse setting The concept of dimension

More information

x = 12 x = 12 1x = 16

x = 12 x = 12 1x = 16 2.2 - The Inverse of a Matrix We've seen how to add matrices, multiply them by scalars, subtract them, and multiply one matrix by another. The question naturally arises: Can we divide one matrix by another?

More information

Multiple-View Object Recognition in Band-Limited Distributed Camera Networks

Multiple-View Object Recognition in Band-Limited Distributed Camera Networks in Band-Limited Distributed Camera Networks Allen Y. Yang, Subhransu Maji, Mario Christoudas, Kirak Hong, Posu Yan Trevor Darrell, Jitendra Malik, and Shankar Sastry Fusion, 2009 Classical Object Recognition

More information

Robust Face Recognition via Sparse Representation Authors: John Wright, Allen Y. Yang, Arvind Ganesh, S. Shankar Sastry, and Yi Ma

Robust Face Recognition via Sparse Representation Authors: John Wright, Allen Y. Yang, Arvind Ganesh, S. Shankar Sastry, and Yi Ma Robust Face Recognition via Sparse Representation Authors: John Wright, Allen Y. Yang, Arvind Ganesh, S. Shankar Sastry, and Yi Ma Presented by Hu Han Jan. 30 2014 For CSE 902 by Prof. Anil K. Jain: Selected

More information

Clustering Data: Does Theory Help?

Clustering Data: Does Theory Help? Clustering Data: Does Theory Help? Ravi Kannan December 10, 2013 Ravi Kannan Clustering Data: Does Theory Help? December 10, 2013 1 / 27 Clustering Given n objects - divide (partition) them into k clusters.

More information

Structurally Random Matrices

Structurally Random Matrices Fast Compressive Sampling Using Structurally Random Matrices Presented by: Thong Do (thongdo@jhu.edu) The Johns Hopkins University A joint work with Prof. Trac Tran, The Johns Hopkins University it Dr.

More information

Day 3 Lecture 1. Unsupervised Learning

Day 3 Lecture 1. Unsupervised Learning Day 3 Lecture 1 Unsupervised Learning Semi-supervised and transfer learning Myth: you can t do deep learning unless you have a million labelled examples for your problem. Reality You can learn useful representations

More information

The Fundamentals of Compressive Sensing

The Fundamentals of Compressive Sensing The Fundamentals of Compressive Sensing Mark A. Davenport Georgia Institute of Technology School of Electrical and Computer Engineering Sensor explosion Data deluge Digital revolution If we sample a signal

More information

Maths for Signals and Systems Linear Algebra in Engineering. Some problems by Gilbert Strang

Maths for Signals and Systems Linear Algebra in Engineering. Some problems by Gilbert Strang Maths for Signals and Systems Linear Algebra in Engineering Some problems by Gilbert Strang Problems. Consider u, v, w to be non-zero vectors in R 7. These vectors span a vector space. What are the possible

More information

A GPU-based Approximate SVD Algorithm Blake Foster, Sridhar Mahadevan, Rui Wang

A GPU-based Approximate SVD Algorithm Blake Foster, Sridhar Mahadevan, Rui Wang A GPU-based Approximate SVD Algorithm Blake Foster, Sridhar Mahadevan, Rui Wang University of Massachusetts Amherst Introduction Singular Value Decomposition (SVD) A: m n matrix (m n) U, V: orthogonal

More information

The Smashed Filter for Compressive Classification and Target Recognition

The Smashed Filter for Compressive Classification and Target Recognition The Smashed Filter for Compressive Classification and Target Recognition Mark A. Davenport Joint work with Marco Duarte, Michael Wakin, Jason Laska, Dharmpal Takhar, Kevin Kelly and Rich Baraniuk dsp.rice.edu/cs

More information

Dimension reduction : PCA and Clustering

Dimension reduction : PCA and Clustering Dimension reduction : PCA and Clustering By Hanne Jarmer Slides by Christopher Workman Center for Biological Sequence Analysis DTU The DNA Array Analysis Pipeline Array design Probe design Question Experimental

More information

Implementing Randomized Matrix Algorithms in Parallel and Distributed Environments

Implementing Randomized Matrix Algorithms in Parallel and Distributed Environments Implementing Randomized Matrix Algorithms in Parallel and Distributed Environments Jiyan Yang ICME, Stanford University Nov 1, 2015 INFORMS 2015, Philadephia Joint work with Xiangrui Meng (Databricks),

More information

Data Mining. Jeff M. Phillips. January 7, 2019 CS 5140 / CS 6140

Data Mining. Jeff M. Phillips. January 7, 2019 CS 5140 / CS 6140 Data Mining CS 5140 / CS 6140 Jeff M. Phillips January 7, 2019 What is Data Mining? What is Data Mining? Finding structure in data? Machine learning on large data? Unsupervised learning? Large scale computational

More information

Machine Learning. B. Unsupervised Learning B.1 Cluster Analysis. Lars Schmidt-Thieme, Nicolas Schilling

Machine Learning. B. Unsupervised Learning B.1 Cluster Analysis. Lars Schmidt-Thieme, Nicolas Schilling Machine Learning B. Unsupervised Learning B.1 Cluster Analysis Lars Schmidt-Thieme, Nicolas Schilling Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim,

More information

Compressive Sensing for High-Dimensional Data

Compressive Sensing for High-Dimensional Data Compressive Sensing for High-Dimensional Data Richard Baraniuk Rice University dsp.rice.edu/cs DIMACS Workshop on Recent Advances in Mathematics and Information Sciences for Analysis and Understanding

More information

STAT 598L Probabilistic Graphical Models. Instructor: Sergey Kirshner. Introduction

STAT 598L Probabilistic Graphical Models. Instructor: Sergey Kirshner. Introduction STAT 598L Probabilistic Graphical Models Instructor: Sergey Kirshner Introduction You = 2 General Reasoning Scheme Data Conclusion 1010..00 0101..00 1010..11... Observations 3 General Reasoning Scheme

More information

Compressive Sensing: Theory and Practice

Compressive Sensing: Theory and Practice Compressive Sensing: Theory and Practice Mark Davenport Rice University ECE Department Sensor Explosion Digital Revolution If we sample a signal at twice its highest frequency, then we can recover it exactly.

More information

Machine Learning / Jan 27, 2010

Machine Learning / Jan 27, 2010 Revisiting Logistic Regression & Naïve Bayes Aarti Singh Machine Learning 10-701/15-781 Jan 27, 2010 Generative and Discriminative Classifiers Training classifiers involves learning a mapping f: X -> Y,

More information

Generalized Principal Component Analysis CVPR 2007

Generalized Principal Component Analysis CVPR 2007 Generalized Principal Component Analysis Tutorial @ CVPR 2007 Yi Ma ECE Department University of Illinois Urbana Champaign René Vidal Center for Imaging Science Institute for Computational Medicine Johns

More information

High Dimensional Clustering

High Dimensional Clustering Distributed Computing High Dimensional Clustering Bachelor Thesis Alain Ryser aryser@ethz.ch Distributed Computing Group Computer Engineering and Networks Laboratory ETH Zürich Supervisors: Zeta Avarikioti,

More information

Randomized Clustered Nyström for Large-Scale Kernel Machines

Randomized Clustered Nyström for Large-Scale Kernel Machines The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18) Randomized Clustered Nyström for Large-Scale Kernel Machines Farhad Pourkamali-Anaraki University of Colorado Boulder farhad.pourkamali@colorado.edu

More information

Compact Data Representations and their Applications. Moses Charikar Princeton University

Compact Data Representations and their Applications. Moses Charikar Princeton University Compact Data Representations and their Applications Moses Charikar Princeton University Lots and lots of data AT&T Information about who calls whom What information can be got from this data? Network router

More information

Lecture 18. What we ve done and what s to come

Lecture 18. What we ve done and what s to come Lecture 18 What we ve done and what s to come Today What just happened? A whirlwind tour of CS161 What s next? A few gems from future algorithms classes It s been a fun ride What have we learned? 17 lectures

More information

Modelling and Visualization of High Dimensional Data. Sample Examination Paper

Modelling and Visualization of High Dimensional Data. Sample Examination Paper Duration not specified UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE Modelling and Visualization of High Dimensional Data Sample Examination Paper Examination date not specified Time: Examination

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Learning without Class Labels (or correct outputs) Density Estimation Learn P(X) given training data for X Clustering Partition data into clusters Dimensionality Reduction Discover

More information

Modern GPUs (Graphics Processing Units)

Modern GPUs (Graphics Processing Units) Modern GPUs (Graphics Processing Units) Powerful data parallel computation platform. High computation density, high memory bandwidth. Relatively low cost. NVIDIA GTX 580 512 cores 1.6 Tera FLOPs 1.5 GB

More information

Iterative Methods for Solving Linear Problems

Iterative Methods for Solving Linear Problems Iterative Methods for Solving Linear Problems When problems become too large (too many data points, too many model parameters), SVD and related approaches become impractical. Iterative Methods for Solving

More information

Reddit Recommendation System Daniel Poon, Yu Wu, David (Qifan) Zhang CS229, Stanford University December 11 th, 2011

Reddit Recommendation System Daniel Poon, Yu Wu, David (Qifan) Zhang CS229, Stanford University December 11 th, 2011 Reddit Recommendation System Daniel Poon, Yu Wu, David (Qifan) Zhang CS229, Stanford University December 11 th, 2011 1. Introduction Reddit is one of the most popular online social news websites with millions

More information

Dimension Reduction CS534

Dimension Reduction CS534 Dimension Reduction CS534 Why dimension reduction? High dimensionality large number of features E.g., documents represented by thousands of words, millions of bigrams Images represented by thousands of

More information

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet.

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. CS 189 Spring 2015 Introduction to Machine Learning Final You have 2 hours 50 minutes for the exam. The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. No calculators or

More information

Robust and Secure Iris Recognition

Robust and Secure Iris Recognition Robust and Secure Iris Recognition Vishal M. Patel University of Maryland, UMIACS pvishalm@umiacs.umd.edu IJCB 2011 Tutorial Sparse Representation and Low-Rank Representation for Biometrics Outline Iris

More information

MATH 567: Mathematical Techniques in Data

MATH 567: Mathematical Techniques in Data Supervised and unsupervised learning Supervised learning problems: MATH 567: Mathematical Techniques in Data (X, Y ) P (X, Y ). Data Science Clustering I is labelled (input/output) with joint density We

More information

CLASSIFICATION AND CHANGE DETECTION

CLASSIFICATION AND CHANGE DETECTION IMAGE ANALYSIS, CLASSIFICATION AND CHANGE DETECTION IN REMOTE SENSING With Algorithms for ENVI/IDL and Python THIRD EDITION Morton J. Canty CRC Press Taylor & Francis Group Boca Raton London NewYork CRC

More information

Hierarchical Clustering: Objectives & Algorithms. École normale supérieure & CNRS

Hierarchical Clustering: Objectives & Algorithms. École normale supérieure & CNRS Hierarchical Clustering: Objectives & Algorithms Vincent Cohen-Addad Paris Sorbonne & CNRS Frederik Mallmann-Trenn MIT Varun Kanade University of Oxford Claire Mathieu École normale supérieure & CNRS Clustering

More information

CSE 6242 A / CS 4803 DVA. Feb 12, Dimension Reduction. Guest Lecturer: Jaegul Choo

CSE 6242 A / CS 4803 DVA. Feb 12, Dimension Reduction. Guest Lecturer: Jaegul Choo CSE 6242 A / CS 4803 DVA Feb 12, 2013 Dimension Reduction Guest Lecturer: Jaegul Choo CSE 6242 A / CS 4803 DVA Feb 12, 2013 Dimension Reduction Guest Lecturer: Jaegul Choo Data is Too Big To Do Something..

More information

Lecture 27: Fast Laplacian Solvers

Lecture 27: Fast Laplacian Solvers Lecture 27: Fast Laplacian Solvers Scribed by Eric Lee, Eston Schweickart, Chengrun Yang November 21, 2017 1 How Fast Laplacian Solvers Work We want to solve Lx = b with L being a Laplacian matrix. Recall

More information

Thomas H. Cormen Charles E. Leiserson Ronald L. Rivest. Introduction to Algorithms

Thomas H. Cormen Charles E. Leiserson Ronald L. Rivest. Introduction to Algorithms Thomas H. Cormen Charles E. Leiserson Ronald L. Rivest Introduction to Algorithms Preface xiii 1 Introduction 1 1.1 Algorithms 1 1.2 Analyzing algorithms 6 1.3 Designing algorithms 1 1 1.4 Summary 1 6

More information

IMAGE ANALYSIS, CLASSIFICATION, and CHANGE DETECTION in REMOTE SENSING

IMAGE ANALYSIS, CLASSIFICATION, and CHANGE DETECTION in REMOTE SENSING SECOND EDITION IMAGE ANALYSIS, CLASSIFICATION, and CHANGE DETECTION in REMOTE SENSING ith Algorithms for ENVI/IDL Morton J. Canty с*' Q\ CRC Press Taylor &. Francis Group Boca Raton London New York CRC

More information

ORIE 6300 Mathematical Programming I September 2, Lecture 3

ORIE 6300 Mathematical Programming I September 2, Lecture 3 ORIE 6300 Mathematical Programming I September 2, 2014 Lecturer: David P. Williamson Lecture 3 Scribe: Divya Singhvi Last time we discussed how to take dual of an LP in two different ways. Today we will

More information

THE RECURSIVE HESSIAN SKETCH FOR ADAPTIVE FILTERING. Robin Scheibler and Martin Vetterli

THE RECURSIVE HESSIAN SKETCH FOR ADAPTIVE FILTERING. Robin Scheibler and Martin Vetterli THE RECURSIVE HESSIAN SKETCH FOR ADAPTIVE FILTERING Robin Scheibler and Martin Vetterli School of Computer and Communication Sciences École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne,

More information

CSE 158. Web Mining and Recommender Systems. Midterm recap

CSE 158. Web Mining and Recommender Systems. Midterm recap CSE 158 Web Mining and Recommender Systems Midterm recap Midterm on Wednesday! 5:10 pm 6:10 pm Closed book but I ll provide a similar level of basic info as in the last page of previous midterms CSE 158

More information

Data Mining. CS57300 Purdue University. Bruno Ribeiro. February 1st, 2018

Data Mining. CS57300 Purdue University. Bruno Ribeiro. February 1st, 2018 Data Mining CS57300 Purdue University Bruno Ribeiro February 1st, 2018 1 Exploratory Data Analysis & Feature Construction How to explore a dataset Understanding the variables (values, ranges, and empirical

More information

Facial Expression Recognition using Principal Component Analysis with Singular Value Decomposition

Facial Expression Recognition using Principal Component Analysis with Singular Value Decomposition ISSN: 2321-7782 (Online) Volume 1, Issue 6, November 2013 International Journal of Advance Research in Computer Science and Management Studies Research Paper Available online at: www.ijarcsms.com Facial

More information

Using Existing Numerical Libraries on Spark

Using Existing Numerical Libraries on Spark Using Existing Numerical Libraries on Spark Brian Spector Chicago Spark Users Meetup June 24 th, 2015 Experts in numerical algorithms and HPC services How to use existing libraries on Spark Call algorithm

More information

Exact Algorithms Lecture 7: FPT Hardness and the ETH

Exact Algorithms Lecture 7: FPT Hardness and the ETH Exact Algorithms Lecture 7: FPT Hardness and the ETH February 12, 2016 Lecturer: Michael Lampis 1 Reminder: FPT algorithms Definition 1. A parameterized problem is a function from (χ, k) {0, 1} N to {0,

More information

Clustering and Dimensionality Reduction. Stony Brook University CSE545, Fall 2017

Clustering and Dimensionality Reduction. Stony Brook University CSE545, Fall 2017 Clustering and Dimensionality Reduction Stony Brook University CSE545, Fall 2017 Goal: Generalize to new data Model New Data? Original Data Does the model accurately reflect new data? Supervised vs. Unsupervised

More information

Visual Representations for Machine Learning

Visual Representations for Machine Learning Visual Representations for Machine Learning Spectral Clustering and Channel Representations Lecture 1 Spectral Clustering: introduction and confusion Michael Felsberg Klas Nordberg The Spectral Clustering

More information

Computational Statistics and Mathematics for Cyber Security

Computational Statistics and Mathematics for Cyber Security and Mathematics for Cyber Security David J. Marchette Sept, 0 Acknowledgment: This work funded in part by the NSWC In-House Laboratory Independent Research (ILIR) program. NSWCDD-PN--00 Topics NSWCDD-PN--00

More information

The exam is closed book, closed notes except your one-page cheat sheet.

The exam is closed book, closed notes except your one-page cheat sheet. CS 189 Fall 2015 Introduction to Machine Learning Final Please do not turn over the page before you are instructed to do so. You have 2 hours and 50 minutes. Please write your initials on the top-right

More information

Combinatorial Selection and Least Absolute Shrinkage via The CLASH Operator

Combinatorial Selection and Least Absolute Shrinkage via The CLASH Operator Combinatorial Selection and Least Absolute Shrinkage via The CLASH Operator Volkan Cevher Laboratory for Information and Inference Systems LIONS / EPFL http://lions.epfl.ch & Idiap Research Institute joint

More information

Enhancing Clustering Quality through Landmark-based Dimensionality Reduction

Enhancing Clustering Quality through Landmark-based Dimensionality Reduction Enhancing Clustering Quality through Landmark-based Dimensionality Reduction PANAGIS MAGDALINOS Athens University of Economics and Business, Greece and CHRISTOS DOULKERIDIS Norwegian University of Science

More information

Data Mining. Jeff M. Phillips. January 12, 2015 CS 5140 / CS 6140

Data Mining. Jeff M. Phillips. January 12, 2015 CS 5140 / CS 6140 Data Mining CS 5140 / CS 6140 Jeff M. Phillips January 12, 2015 Data Mining What is Data Mining? Finding structure in data? Machine learning on large data? Unsupervised learning? Large scale computational

More information

Introduction to Machine Learning Prof. Anirban Santara Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Introduction to Machine Learning Prof. Anirban Santara Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Introduction to Machine Learning Prof. Anirban Santara Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture 14 Python Exercise on knn and PCA Hello everyone,

More information

Algorithms design under a geometric lens Spring 2014, CSE, OSU Lecture 1: Introduction

Algorithms design under a geometric lens Spring 2014, CSE, OSU Lecture 1: Introduction 5339 - Algorithms design under a geometric lens Spring 2014, CSE, OSU Lecture 1: Introduction Instructor: Anastasios Sidiropoulos January 8, 2014 Geometry & algorithms Geometry in algorithm design Computational

More information

Image Analysis, Classification and Change Detection in Remote Sensing

Image Analysis, Classification and Change Detection in Remote Sensing Image Analysis, Classification and Change Detection in Remote Sensing WITH ALGORITHMS FOR ENVI/IDL Morton J. Canty Taylor &. Francis Taylor & Francis Group Boca Raton London New York CRC is an imprint

More information

Dimension Reduction of Image Manifolds

Dimension Reduction of Image Manifolds Dimension Reduction of Image Manifolds Arian Maleki Department of Electrical Engineering Stanford University Stanford, CA, 9435, USA E-mail: arianm@stanford.edu I. INTRODUCTION Dimension reduction of datasets

More information

A Geometric Analysis of Subspace Clustering with Outliers

A Geometric Analysis of Subspace Clustering with Outliers A Geometric Analysis of Subspace Clustering with Outliers Mahdi Soltanolkotabi and Emmanuel Candés Stanford University Fundamental Tool in Data Mining : PCA Fundamental Tool in Data Mining : PCA Subspace

More information

random fourier features for kernel ridge regression: approximation bounds and statistical guarantees

random fourier features for kernel ridge regression: approximation bounds and statistical guarantees random fourier features for kernel ridge regression: approximation bounds and statistical guarantees Haim Avron, Michael Kapralov, Cameron Musco, Christopher Musco, Ameya Velingker, and Amir Zandieh Tel

More information

Math 1B03/1ZC3 - Tutorial 3. Jan. 24th/28th, 2014

Math 1B03/1ZC3 - Tutorial 3. Jan. 24th/28th, 2014 Math 1B03/1ZC3 - Tutorial 3 Jan. 24th/28th, 2014 Tutorial Info: Website: http://ms.mcmaster.ca/ dedieula. Math Help Centre: Wednesdays 2:30-5:30pm. Email: dedieula@math.mcmaster.ca. Elementary Matrices

More information

QUIC-SVD: Fast SVD Using Cosine Trees

QUIC-SVD: Fast SVD Using Cosine Trees QUIC-SVD: Fast SVD Using Cosine Trees Michael P. Holmes, Alexander G. Gray and Charles Lee Isbell, Jr. College of Computing Georgia Tech Atlanta, GA 3327 {mph, agray, isbell}@cc.gatech.edu Abstract The

More information

Database and Knowledge-Base Systems: Data Mining. Martin Ester

Database and Knowledge-Base Systems: Data Mining. Martin Ester Database and Knowledge-Base Systems: Data Mining Martin Ester Simon Fraser University School of Computing Science Graduate Course Spring 2006 CMPT 843, SFU, Martin Ester, 1-06 1 Introduction [Fayyad, Piatetsky-Shapiro

More information

Machine Learning for NLP

Machine Learning for NLP Machine Learning for NLP Readings in unsupervised Learning Aurélie Herbelot 2018 Centre for Mind/Brain Sciences University of Trento 1 Hashing 2 Hashing: definition Hashing is the process of converting

More information

On Order-Constrained Transitive Distance

On Order-Constrained Transitive Distance On Order-Constrained Transitive Distance Author: Zhiding Yu and B. V. K. Vijaya Kumar, et al. Dept of Electrical and Computer Engineering Carnegie Mellon University 1 Clustering Problem Important Issues:

More information

Machine Learning: k-nearest Neighbors. Lecture 08. Razvan C. Bunescu School of Electrical Engineering and Computer Science

Machine Learning: k-nearest Neighbors. Lecture 08. Razvan C. Bunescu School of Electrical Engineering and Computer Science Machine Learning: k-nearest Neighbors Lecture 08 Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu Nonparametric Methods: k-nearest Neighbors Input: A training dataset

More information

CS 229 Midterm Review

CS 229 Midterm Review CS 229 Midterm Review Course Staff Fall 2018 11/2/2018 Outline Today: SVMs Kernels Tree Ensembles EM Algorithm / Mixture Models [ Focus on building intuition, less so on solving specific problems. Ask

More information

Tracking system. Danica Kragic. Object Recognition & Model Based Tracking

Tracking system. Danica Kragic. Object Recognition & Model Based Tracking Tracking system Object Recognition & Model Based Tracking Motivation Manipulating objects in domestic environments Localization / Navigation Object Recognition Servoing Tracking Grasping Pose estimation

More information

Globally and Locally Consistent Unsupervised Projection

Globally and Locally Consistent Unsupervised Projection Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence Globally and Locally Consistent Unsupervised Projection Hua Wang, Feiping Nie, Heng Huang Department of Electrical Engineering

More information

Approximate Line Nearest Neighbor in High Dimensions

Approximate Line Nearest Neighbor in High Dimensions Approximate Line Nearest Neighbor in High Dimensions Alexandr Andoni MIT andoni@mit.edu Piotr Indyk MIT indyk@mit.edu obert Krauthgamer Weizmann Institute of Science robert.krauthgamer@weizmann.ac.il Huy

More information

Content-based image and video analysis. Machine learning

Content-based image and video analysis. Machine learning Content-based image and video analysis Machine learning for multimedia retrieval 04.05.2009 What is machine learning? Some problems are very hard to solve by writing a computer program by hand Almost all

More information

Stable and Multiscale Topological Signatures

Stable and Multiscale Topological Signatures Stable and Multiscale Topological Signatures Mathieu Carrière, Steve Oudot, Maks Ovsjanikov Inria Saclay Geometrica April 21, 2015 1 / 31 Shape = point cloud in R d (d = 3) 2 / 31 Signature = mathematical

More information

Elysium Technologies Private Limited::IEEE Final year Project

Elysium Technologies Private Limited::IEEE Final year Project Elysium Technologies Private Limited::IEEE Final year Project - o n t e n t s Data mining Transactions Rule Representation, Interchange, and Reasoning in Distributed, Heterogeneous Environments Defeasible

More information

Mining for Patterns and Anomalies in Data Streams. Sampath Kannan University of Pennsylvania

Mining for Patterns and Anomalies in Data Streams. Sampath Kannan University of Pennsylvania Mining for Patterns and Anomalies in Data Streams Sampath Kannan University of Pennsylvania The Problem Data sizes too large to fit in primary memory Devices with small memory Access times to secondary

More information

GEOMETRIC TOOLS FOR COMPUTER GRAPHICS

GEOMETRIC TOOLS FOR COMPUTER GRAPHICS GEOMETRIC TOOLS FOR COMPUTER GRAPHICS PHILIP J. SCHNEIDER DAVID H. EBERLY MORGAN KAUFMANN PUBLISHERS A N I M P R I N T O F E L S E V I E R S C I E N C E A M S T E R D A M B O S T O N L O N D O N N E W

More information

CPSC 340: Machine Learning and Data Mining. Multi-Dimensional Scaling Fall 2017

CPSC 340: Machine Learning and Data Mining. Multi-Dimensional Scaling Fall 2017 CPSC 340: Machine Learning and Data Mining Multi-Dimensional Scaling Fall 2017 Assignment 4: Admin 1 late day for tonight, 2 late days for Wednesday. Assignment 5: Due Monday of next week. Final: Details

More information

Tap Position Inference on Smart Phones

Tap Position Inference on Smart Phones Tap Position Inference on Smart Phones Ankush Chauhan 11-29-2017 Outline Introduction Application Architecture Sensor Event Data Sensor Data Collection App Demonstration Scalable Data Collection Pipeline

More information

The Curse of Dimensionality. Panagiotis Parchas Advanced Data Management Spring 2012 CSE HKUST

The Curse of Dimensionality. Panagiotis Parchas Advanced Data Management Spring 2012 CSE HKUST The Curse of Dimensionality Panagiotis Parchas Advanced Data Management Spring 2012 CSE HKUST Multiple Dimensions As we discussed in the lectures, many times it is convenient to transform a signal(time

More information

Unsupervised learning in Vision

Unsupervised learning in Vision Chapter 7 Unsupervised learning in Vision The fields of Computer Vision and Machine Learning complement each other in a very natural way: the aim of the former is to extract useful information from visual

More information

Analyzing Graph Structure via Linear Measurements

Analyzing Graph Structure via Linear Measurements University of Pennsylvania ScholarlyCommons Departmental Papers (CIS) Department of Computer & Information Science 2-29-2012 Analyzing Graph Structure via Linear Measurements KookJin Ahn University of

More information

Integrated Math I. IM1.1.3 Understand and use the distributive, associative, and commutative properties.

Integrated Math I. IM1.1.3 Understand and use the distributive, associative, and commutative properties. Standard 1: Number Sense and Computation Students simplify and compare expressions. They use rational exponents and simplify square roots. IM1.1.1 Compare real number expressions. IM1.1.2 Simplify square

More information

Graph Algorithms Matching

Graph Algorithms Matching Chapter 5 Graph Algorithms Matching Algorithm Theory WS 2012/13 Fabian Kuhn Circulation: Demands and Lower Bounds Given: Directed network, with Edge capacities 0and lower bounds l for Node demands for

More information

Rectangle-Efficient Aggregation in Spatial Data Streams

Rectangle-Efficient Aggregation in Spatial Data Streams Rectangle-Efficient Aggregation in Spatial Data Streams Srikanta Tirthapura Iowa State David Woodruff IBM Almaden The Data Stream Model Stream S of additive updates (i, Δ) to an underlying vector v: v

More information

Parallel Algorithms for (PRAM) Computers & Some Parallel Algorithms. Reference : Horowitz, Sahni and Rajasekaran, Computer Algorithms

Parallel Algorithms for (PRAM) Computers & Some Parallel Algorithms. Reference : Horowitz, Sahni and Rajasekaran, Computer Algorithms Parallel Algorithms for (PRAM) Computers & Some Parallel Algorithms Reference : Horowitz, Sahni and Rajasekaran, Computer Algorithms Part 2 1 3 Maximum Selection Problem : Given n numbers, x 1, x 2,, x

More information

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision Multiple View Geometry in Computer Vision Prasanna Sahoo Department of Mathematics University of Louisville 1 Structure Computation Lecture 18 March 22, 2005 2 3D Reconstruction The goal of 3D reconstruction

More information

15-451/651: Design & Analysis of Algorithms October 11, 2018 Lecture #13: Linear Programming I last changed: October 9, 2018

15-451/651: Design & Analysis of Algorithms October 11, 2018 Lecture #13: Linear Programming I last changed: October 9, 2018 15-451/651: Design & Analysis of Algorithms October 11, 2018 Lecture #13: Linear Programming I last changed: October 9, 2018 In this lecture, we describe a very general problem called linear programming

More information

SPECTRAL SPARSIFICATION IN SPECTRAL CLUSTERING

SPECTRAL SPARSIFICATION IN SPECTRAL CLUSTERING SPECTRAL SPARSIFICATION IN SPECTRAL CLUSTERING Alireza Chakeri, Hamidreza Farhidzadeh, Lawrence O. Hall Department of Computer Science and Engineering College of Engineering University of South Florida

More information

Numerical Linear Algebra

Numerical Linear Algebra Numerical Linear Algebra Probably the simplest kind of problem. Occurs in many contexts, often as part of larger problem. Symbolic manipulation packages can do linear algebra "analytically" (e.g. Mathematica,

More information

Robot Learning. There are generally three types of robot learning: Learning from data. Learning by demonstration. Reinforcement learning

Robot Learning. There are generally three types of robot learning: Learning from data. Learning by demonstration. Reinforcement learning Robot Learning 1 General Pipeline 1. Data acquisition (e.g., from 3D sensors) 2. Feature extraction and representation construction 3. Robot learning: e.g., classification (recognition) or clustering (knowledge

More information

Geometric Modeling Assignment 3: Discrete Differential Quantities

Geometric Modeling Assignment 3: Discrete Differential Quantities Geometric Modeling Assignment : Discrete Differential Quantities Acknowledgements: Julian Panetta, Olga Diamanti Assignment (Optional) Topic: Discrete Differential Quantities with libigl Vertex Normals,

More information

An Introduction to Preparing Data for Analysis with JMP. Full book available for purchase here. About This Book... ix About The Author...

An Introduction to Preparing Data for Analysis with JMP. Full book available for purchase here. About This Book... ix About The Author... An Introduction to Preparing Data for Analysis with JMP. Full book available for purchase here. Contents About This Book... ix About The Author... xiii Chapter 1: Data Management in the Analytics Process...

More information

Large-scale visual recognition Efficient matching

Large-scale visual recognition Efficient matching Large-scale visual recognition Efficient matching Florent Perronnin, XRCE Hervé Jégou, INRIA CVPR tutorial June 16, 2012 Outline!! Preliminary!! Locality Sensitive Hashing: the two modes!! Hashing!! Embedding!!

More information