V.Petridis, S. Kazarlis and A. Papaikonomou

Size: px
Start display at page:

Download "V.Petridis, S. Kazarlis and A. Papaikonomou"

Transcription

1 Proceedings of IJCNN 93, p.p , Oct. 993, Nagoya, Japan. A GENETIC ALGORITHM FOR TRAINING RECURRENT NEURAL NETWORKS V.Petridis, S. Kazarlis and A. Papaikonomou Dept. of Electrical Eng. Faculty of Engineering University of Thessaloniki, Box 438 Thessaloniki 54 6 GREECE Abstract A hybrid genetic algorithm is proposed for training neural networks with recurrent connections. A fully connected recurrent ANN model is employed and tested over a number of various problems. Simulation results are presented for three problems: generation of a stable limit cycle, sequence recognition and storage and reproduction of temporal sequences..introduction Although the recurrent ANN models, seem to be promising, in solving problems associated with time, they suffer from lack of efficient training algorithms. A number of algorithms have been proposed in the past [-4], for different models of ANNs with recurrent connections. The proposed training algorithms seem to have a limited scope. In this paper we present a hybrid genetic algorithm for training ANNs, which is robust and exhibits enhanced training abilities in a range of difficult problems. 2.Network model We assume a fully connected recurrent neural network that consists of sigmoid units. Let W denote the weight matrix of the network. The topology of the ANN is shown in figure. The dimension of weight matrix W is n x (n+m+), where n is the total number of units and m is the number of input lines (the neuron thresholds are trainable). The total number of weights is N = n. (n+m+). If y j (t)is the output of jth unit at time t and x i (t)is the value of ith input line at the same time, then the total input to the kth unit at time t is given by the summation : n n+m+ S k (t) = w kj.y j (t)+ w ki.x in (t) () j= i=n+ where x m+ (t) =, is an extra input that controls the threshold. The output of every unit at time t is y k (t) = f(s k (t)) (2) where f is typical hyperbolic tangent function. Let Y denote the set of units (indexed by k) for which there exists a desired target value d k (t)for every time step. Let J(t) = /2 [ e k (t)] 2 (3) Figure. k denote the overall network error at time t, where e k (t)=d k (t)-y k (t) measures the distance between the output y k and the desired output d k at the same time.

2 We want to ajust the weigths w kj in matrix W so that the total error J T becomes less than a predefined quantity. T J T = J(t) is the total network error calculated over the period T of the desired t= output signal or the presentation time T of a temporal sequence. The training algorithm that has been used is presented in the following section. 3.The training algorithm The training method used, is based on Genetic Algorithms (GAs) first proposed by Holland [7] and more recently reviewed and enhanced by others [8-9]. GAs are conceptually based on natural genetic and evolution mechanisms working on populations of solutions in contrast to other search techniques that work on a single solution. GAs search not on the real parameter solution space but on a bit string encoding of it. In this way they mimic the natural chromosome genetics by applying genetic-like operators in search for the global optimum. In this paper GAs search for the optimum set of real weights for a recurrent ANN in a variety of problems. The training algorithm tries to find the optimum N- dimensional weight vector for the given problem. Every weight is encoded in a 6 bit string (an unsigned 6 bit integer), which gives 2 6 = different values for every weight in the real range ( ), resulting in a resolution of.6 per bit. The N 6-bit integers define an N-dimensional integer coded weight vector, Z = [z,...,z N ] T, which defines what we call the network weight point in the weight space. These N 6-bit strings are concatenated to form a solution bit string of N x 6 bits called genotype. Each genotype is decoded uniquely to an N-dimensional weight vector called the phenotype. The resulting genotype space is vast. For example, for a 35 connection ANN the genotype strings are 35 x 6 = 56 bits long with a search space of 2 56 = 3.77 x 68 different values. According to the GAs' principles a population of genotypes must initially be generated at random. After the production of M such genotypes they are all evaluated with the following procedure: the genotype is decoded to a weight vector and then the performance of ANN is evaluated for the specific problem. J T is taken as the fitness quality of the particular genotype. Genetic evolution takes place by means of three genetic operators : a) Roulette Wheel parent selection. Two genotypes are selected from the parent population with probability proportional to their fitness values. b) Crossover. If a probability test is passed, the two genotypes are combined (exchange bits) to form a new genotype which incorporates characteristics from both parent genotypes. The produced genotype (offspring) is a member of the next generation's population. c) Mutation. With a small probability, random bits of the offspring genotype flip from to and vice versa to give characteristics that don't exist in the parent population. The above procedure is repeated M times to give M new offspring genotypes. In this population we add the best parent genotype (a technique called elitism), to form an M-atom new population which wholly replaces the parents. This elitism mechanism guarantees that a good solution found cannot be lost. The production of an offspring population is called a generation. Many such generations are required for the population to converge to an optimum solution. 2

3 The above algorithm is more or less a classic implementation of GAs. This scheme although proven effective in finding near optimal solutions, needs a very large number of generations to converge. It is capable of finding the "basin" of the global optimum but thereafter it proceeds extremely slowly towards the global optimum [6]. In order to accelerate the search, we introduce a new operator called "phenotype mutation". This operator is applied only to the best genotype of every generation. It performs a local direct search in the neighborhood of the best genotype in an effort to find a better point. It uses the network weight point in the weight space, defined by the best genotype, as a base point of the search (i.e. a point where the search starts from). This operator increases to a great extent the speed of convergence of the GA, especially in case that the error surface does not have many discontinuities. The search procedure is summarized in the sequel: step. Select the best genotype as a base point (denoted by Z ). Define steps s (= ), s 2 (=5 ), s 3 (= ) and s 4 (=-5 ). Set p=. step 2. Sequentially explore the four points Z pi = Z p + î pi where î pi =[ä p,...,ä pn ] T. s i, for i=...4. ä pr is the Kronecker delta : ä pr = if p=r and ä pr = if p r. We move the base point to the first successful point (that is the point that improves the performance of ANN). The new base point is denoted by Z p. If no point is successful the new base point is Z p =Z p. step 3. Increase p by and repeat step 2 until p=n. When p=n the search has gone through all N weights and the current base point is a possible improvement over Z. Z p is the offspring that results from phenotype mutation. It is obvious that for every generation the new operator adds an amount of N x 4 fitness evaluations, at maximum. In return, the new operator accelerates, to a great extent, the search speed towards the global optimum. It is worth mentioning that the two classic genetic operators, crossover and mutation, are competing over the field of convergence. Crossover forces convergence while mutation forces diversity in the population. Therefore a balance between the two operators should be maintained. To this end, we have implemented a method for adaptive on line determination of these probabilities. For every generation we calculate statistic data concerning fitness deviation of the population, from the best genotype fitness. If too many genotypes evaluate to a fitness near the population's best (premature convergence) there is no progress due to genotype similarity. When this happens crossover probability is lowered while mutation probability is strengthened. The opposite happens if too many genotypes have qualities far from the population's best (too much diversity). In a situation like this there is no progress, because only very few (the best) genotypes have good qualities, hence crossover does not effectively produce better solutions. In this way genotype diversity is always kept at a reasonable state avoiding pre-mature convergence and excessive diversity. The training algorithm is terminated when one of two things happens : the algorithm finds a solution equal or better than a pre-estimated satisfactory nearoptimum solution, or population converges so that it does not produce a different solution over a given number of generations. 4.Simulation Results 4.Simulation Results The Previously mentioned ANN model and training algorithm has been tested over three problems : 3

4 Limit Cycle Input=.2 y2,5 y -,5 Input =.7,5 y2 y -,5 Figure 2. Return to Input =.2,5 y2 y -,5 -,5,5 a) The first problem has been the generation of a stable limit cycle, in the form of two sinusoidal functions of different phases. The model chosen has had 6 neurons, two of which have been the output units y and y 2. The input is kept constant at.2. 6 samples per period have been used for training. After approximately 25 generations the outputs have been capable of following the sinusoidal oscillations with a negligible total error of e-3. Concerning stability of the limit cycle, we observed that, small changes to the input level (± 5%) left the output virtually uneffected. Moreover, in cases of excessive input level changes, e.g. input level=.7, the outputs were driven to a certain constant point, but when the input level was restored to the initial value of.2, the outputs quickly returned to the originally trained limit cycle, without any deviation. The whole model behavior is shown in Figure 2. b) The second task has been a sequence recognition problem. The network has had to recognise and classify a number of 5 input sequences which have been chosen to be samples of sinusoidal functions of different frequencies. The number of network units in this case has been increased to 8 with one output unit which had to classify the input oscillation frequency among a set of 5 possible values. The input sinusoid signals were presented one by one for five periods each. It required about 7 generations for the ANN to be trained. During the consulting mode, the ANN has been capable of recognizing the presented input perfectly. c) The ANN has been trained to store and reproduce a temporal sequence consisted of a number of 4 x 4 pixel patterns [5]. The ANN implemented, was an 8- neuron model, four of which have been chosen as output units. Each output unit has had to produce a single line of four pixels, thus each output value has been decoded into a 4-bit word (6 levels). The solution evaluation has been performed over the presentation of the whole sequence continuously for a number of times. After approximately 45 generations the weight configuration found, has been capable of reproducing the temporal sequence with zero hamming distance from the original. It should be emphasized that the temporal sequence has been reproduced starting from any frame without any grey states between frames. The frames of the learned temporal sequence are shown in Figure 3. Figure 3. 4

5 5. Conclusions In all three examples the behaviour of the trained ANN is very robust. This is an indication that the hybrid training algorithm has found a solution near the optimum. Moreover, it has been demonstrated that recurrent ANNs are capable of solving difficult time-series problems. References [] L. B. Almeida, "Backpropagation in Perceptrons with Feedback", Neural Computers (Neuss 987), pp , 987. [2] F. J. Pineda, "Generalization of Backpropagation to Recurrent Neural Networks", Physical Review Letters, 8, pp , Nov [3] R. J. Williams & D. Zipser, "A Learning Algorithm for Continually Running Fully Recurrent Neural Networks", Neural Computation, vol., pp , 989. [4] B. A. Pearlmutter, "Learning State Space Trajectories in Recurrent Neural Networks", Neural Computation vol., pp , 989. [5] M. Reiss & J.G. Taylor, "Storing Temporal Sequences", Neural Networks, vol. 4, pp , 99. [6] V. Petridis, S. Kazarlis, A. Papaikonomou & A. Filelis, "A hybrid genetic algorithm for training neural networks" In: Proceedings of ICANN '92, pp , Sep. 992, Brighton England. [7] J. H. Holland, "Outline for a logical theory of adaptive systems", J. ACM, vol. 3, pp , July 962. [8] D.E. Goldberg, Genenetic Algorithms in Search, Optimization and Machine Learning, Reading, Mass.: Addison-Wesley, 989. [9] L. Davis (ed.) Handbook of genetic algorithms, Van Nostrand N. York, 99. 5

1. Introduction. 2. Motivation and Problem Definition. Volume 8 Issue 2, February Susmita Mohapatra

1. Introduction. 2. Motivation and Problem Definition. Volume 8 Issue 2, February Susmita Mohapatra Pattern Recall Analysis of the Hopfield Neural Network with a Genetic Algorithm Susmita Mohapatra Department of Computer Science, Utkal University, India Abstract: This paper is focused on the implementation

More information

Neural Network Weight Selection Using Genetic Algorithms

Neural Network Weight Selection Using Genetic Algorithms Neural Network Weight Selection Using Genetic Algorithms David Montana presented by: Carl Fink, Hongyi Chen, Jack Cheng, Xinglong Li, Bruce Lin, Chongjie Zhang April 12, 2005 1 Neural Networks Neural networks

More information

Suppose you have a problem You don t know how to solve it What can you do? Can you use a computer to somehow find a solution for you?

Suppose you have a problem You don t know how to solve it What can you do? Can you use a computer to somehow find a solution for you? Gurjit Randhawa Suppose you have a problem You don t know how to solve it What can you do? Can you use a computer to somehow find a solution for you? This would be nice! Can it be done? A blind generate

More information

Learning Adaptive Parameters with Restricted Genetic Optimization Method

Learning Adaptive Parameters with Restricted Genetic Optimization Method Learning Adaptive Parameters with Restricted Genetic Optimization Method Santiago Garrido and Luis Moreno Universidad Carlos III de Madrid, Leganés 28911, Madrid (Spain) Abstract. Mechanisms for adapting

More information

Automata Construct with Genetic Algorithm

Automata Construct with Genetic Algorithm Automata Construct with Genetic Algorithm Vít Fábera Department of Informatics and Telecommunication, Faculty of Transportation Sciences, Czech Technical University, Konviktská 2, Praha, Czech Republic,

More information

Introduction to Genetic Algorithms. Based on Chapter 10 of Marsland Chapter 9 of Mitchell

Introduction to Genetic Algorithms. Based on Chapter 10 of Marsland Chapter 9 of Mitchell Introduction to Genetic Algorithms Based on Chapter 10 of Marsland Chapter 9 of Mitchell Genetic Algorithms - History Pioneered by John Holland in the 1970s Became popular in the late 1980s Based on ideas

More information

The Genetic Algorithm for finding the maxima of single-variable functions

The Genetic Algorithm for finding the maxima of single-variable functions Research Inventy: International Journal Of Engineering And Science Vol.4, Issue 3(March 2014), PP 46-54 Issn (e): 2278-4721, Issn (p):2319-6483, www.researchinventy.com The Genetic Algorithm for finding

More information

Distributed Optimization of Feature Mining Using Evolutionary Techniques

Distributed Optimization of Feature Mining Using Evolutionary Techniques Distributed Optimization of Feature Mining Using Evolutionary Techniques Karthik Ganesan Pillai University of Dayton Computer Science 300 College Park Dayton, OH 45469-2160 Dale Emery Courte University

More information

Genetic Algorithms Variations and Implementation Issues

Genetic Algorithms Variations and Implementation Issues Genetic Algorithms Variations and Implementation Issues CS 431 Advanced Topics in AI Classic Genetic Algorithms GAs as proposed by Holland had the following properties: Randomly generated population Binary

More information

Topological Machining Fixture Layout Synthesis Using Genetic Algorithms

Topological Machining Fixture Layout Synthesis Using Genetic Algorithms Topological Machining Fixture Layout Synthesis Using Genetic Algorithms Necmettin Kaya Uludag University, Mechanical Eng. Department, Bursa, Turkey Ferruh Öztürk Uludag University, Mechanical Eng. Department,

More information

METAHEURISTICS Genetic Algorithm

METAHEURISTICS Genetic Algorithm METAHEURISTICS Genetic Algorithm Jacques A. Ferland Department of Informatique and Recherche Opérationnelle Université de Montréal ferland@iro.umontreal.ca Genetic Algorithm (GA) Population based algorithm

More information

Using Genetic Algorithms in Integer Programming for Decision Support

Using Genetic Algorithms in Integer Programming for Decision Support Doi:10.5901/ajis.2014.v3n6p11 Abstract Using Genetic Algorithms in Integer Programming for Decision Support Dr. Youcef Souar Omar Mouffok Taher Moulay University Saida, Algeria Email:Syoucef12@yahoo.fr

More information

CS5401 FS2015 Exam 1 Key

CS5401 FS2015 Exam 1 Key CS5401 FS2015 Exam 1 Key This is a closed-book, closed-notes exam. The only items you are allowed to use are writing implements. Mark each sheet of paper you use with your name and the string cs5401fs2015

More information

Research Article Path Planning Using a Hybrid Evolutionary Algorithm Based on Tree Structure Encoding

Research Article Path Planning Using a Hybrid Evolutionary Algorithm Based on Tree Structure Encoding e Scientific World Journal, Article ID 746260, 8 pages http://dx.doi.org/10.1155/2014/746260 Research Article Path Planning Using a Hybrid Evolutionary Algorithm Based on Tree Structure Encoding Ming-Yi

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Shape optimal design using GA and BEM Eisuke Kita & Hisashi Tanie Department of Mechano-Informatics and Systems, Nagoya University, Nagoya 464-01, Japan Abstract This paper describes a shape optimization

More information

Evolving Efficient Security Systems Under Budget Constraints Using Genetic Algorithms

Evolving Efficient Security Systems Under Budget Constraints Using Genetic Algorithms Proceedings of Student Research Day, CSIS, Pace University, May 9th, 2003 Evolving Efficient Security Systems Under Budget Constraints Using Genetic Algorithms Michael L. Gargano, William Edelson, Paul

More information

METAHEURISTIC. Jacques A. Ferland Department of Informatique and Recherche Opérationnelle Université de Montréal.

METAHEURISTIC. Jacques A. Ferland Department of Informatique and Recherche Opérationnelle Université de Montréal. METAHEURISTIC Jacques A. Ferland Department of Informatique and Recherche Opérationnelle Université de Montréal ferland@iro.umontreal.ca March 2015 Overview Heuristic Constructive Techniques: Generate

More information

Varying Fitness Functions in Genetic Algorithms : Studying the Rate of Increase of the Dynamic Penalty Terms

Varying Fitness Functions in Genetic Algorithms : Studying the Rate of Increase of the Dynamic Penalty Terms Varying Fitness Functions in Genetic Algorithms : Studying the Rate of Increase of the Dynamic Penalty Terms S. Kazarlis and V. Petridis Department of Electrical and Computer Engineering, Faculty of Engineering,

More information

ISSN: [Keswani* et al., 7(1): January, 2018] Impact Factor: 4.116

ISSN: [Keswani* et al., 7(1): January, 2018] Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY AUTOMATIC TEST CASE GENERATION FOR PERFORMANCE ENHANCEMENT OF SOFTWARE THROUGH GENETIC ALGORITHM AND RANDOM TESTING Bright Keswani,

More information

Probability Control Functions Settings in Continual Evolution Algorithm

Probability Control Functions Settings in Continual Evolution Algorithm Probability Control Functions Settings in Continual Evolution Algorithm Zdeněk Buk, Miroslav Šnorek Dept. of Computer Science and Engineering, Karlovo nám. 3, 2 35 Praha 2, Czech Republic bukz@fel.cvut.cz,

More information

A Genetic Algorithm for Graph Matching using Graph Node Characteristics 1 2

A Genetic Algorithm for Graph Matching using Graph Node Characteristics 1 2 Chapter 5 A Genetic Algorithm for Graph Matching using Graph Node Characteristics 1 2 Graph Matching has attracted the exploration of applying new computing paradigms because of the large number of applications

More information

Information Fusion Dr. B. K. Panigrahi

Information Fusion Dr. B. K. Panigrahi Information Fusion By Dr. B. K. Panigrahi Asst. Professor Department of Electrical Engineering IIT Delhi, New Delhi-110016 01/12/2007 1 Introduction Classification OUTLINE K-fold cross Validation Feature

More information

Coefficient Estimation of IIR Filter by a Multiple Crossover Genetic Algorithm

Coefficient Estimation of IIR Filter by a Multiple Crossover Genetic Algorithm ELSEVIER An Intemational Journal Available online at www.sciencedirect.com computers &.~.~.~o,.~.. mathematics with applications Computers and Mathematics with Applications 51 (2006) 1437-1444 www.elsevier.com/locate/camwa

More information

MINIMAL EDGE-ORDERED SPANNING TREES USING A SELF-ADAPTING GENETIC ALGORITHM WITH MULTIPLE GENOMIC REPRESENTATIONS

MINIMAL EDGE-ORDERED SPANNING TREES USING A SELF-ADAPTING GENETIC ALGORITHM WITH MULTIPLE GENOMIC REPRESENTATIONS Proceedings of Student/Faculty Research Day, CSIS, Pace University, May 5 th, 2006 MINIMAL EDGE-ORDERED SPANNING TREES USING A SELF-ADAPTING GENETIC ALGORITHM WITH MULTIPLE GENOMIC REPRESENTATIONS Richard

More information

AN EVOLUTIONARY APPROACH TO DISTANCE VECTOR ROUTING

AN EVOLUTIONARY APPROACH TO DISTANCE VECTOR ROUTING International Journal of Latest Research in Science and Technology Volume 3, Issue 3: Page No. 201-205, May-June 2014 http://www.mnkjournals.com/ijlrst.htm ISSN (Online):2278-5299 AN EVOLUTIONARY APPROACH

More information

An Application of Genetic Algorithm for Auto-body Panel Die-design Case Library Based on Grid

An Application of Genetic Algorithm for Auto-body Panel Die-design Case Library Based on Grid An Application of Genetic Algorithm for Auto-body Panel Die-design Case Library Based on Grid Demin Wang 2, Hong Zhu 1, and Xin Liu 2 1 College of Computer Science and Technology, Jilin University, Changchun

More information

Genetic Algorithms. Kang Zheng Karl Schober

Genetic Algorithms. Kang Zheng Karl Schober Genetic Algorithms Kang Zheng Karl Schober Genetic algorithm What is Genetic algorithm? A genetic algorithm (or GA) is a search technique used in computing to find true or approximate solutions to optimization

More information

Genetic Algorithms For Vertex. Splitting in DAGs 1

Genetic Algorithms For Vertex. Splitting in DAGs 1 Genetic Algorithms For Vertex Splitting in DAGs 1 Matthias Mayer 2 and Fikret Ercal 3 CSC-93-02 Fri Jan 29 1993 Department of Computer Science University of Missouri-Rolla Rolla, MO 65401, U.S.A. (314)

More information

Preliminary Background Tabu Search Genetic Algorithm

Preliminary Background Tabu Search Genetic Algorithm Preliminary Background Tabu Search Genetic Algorithm Faculty of Information Technology University of Science Vietnam National University of Ho Chi Minh City March 2010 Problem used to illustrate General

More information

Evolutionary form design: the application of genetic algorithmic techniques to computer-aided product design

Evolutionary form design: the application of genetic algorithmic techniques to computer-aided product design Loughborough University Institutional Repository Evolutionary form design: the application of genetic algorithmic techniques to computer-aided product design This item was submitted to Loughborough University's

More information

Evolutionary Computation Algorithms for Cryptanalysis: A Study

Evolutionary Computation Algorithms for Cryptanalysis: A Study Evolutionary Computation Algorithms for Cryptanalysis: A Study Poonam Garg Information Technology and Management Dept. Institute of Management Technology Ghaziabad, India pgarg@imt.edu Abstract The cryptanalysis

More information

A Modified Genetic Algorithm for Task Scheduling in Multiprocessor Systems

A Modified Genetic Algorithm for Task Scheduling in Multiprocessor Systems A Modified Genetic Algorithm for Task Scheduling in Multiprocessor Systems Yi-Hsuan Lee and Cheng Chen Department of Computer Science and Information Engineering National Chiao Tung University, Hsinchu,

More information

Genetic Model Optimization for Hausdorff Distance-Based Face Localization

Genetic Model Optimization for Hausdorff Distance-Based Face Localization c In Proc. International ECCV 2002 Workshop on Biometric Authentication, Springer, Lecture Notes in Computer Science, LNCS-2359, pp. 103 111, Copenhagen, Denmark, June 2002. Genetic Model Optimization

More information

IMPROVING A GREEDY DNA MOTIF SEARCH USING A MULTIPLE GENOMIC SELF-ADAPTATING GENETIC ALGORITHM

IMPROVING A GREEDY DNA MOTIF SEARCH USING A MULTIPLE GENOMIC SELF-ADAPTATING GENETIC ALGORITHM Proceedings of Student/Faculty Research Day, CSIS, Pace University, May 4th, 2007 IMPROVING A GREEDY DNA MOTIF SEARCH USING A MULTIPLE GENOMIC SELF-ADAPTATING GENETIC ALGORITHM Michael L. Gargano, mgargano@pace.edu

More information

Advanced Search Genetic algorithm

Advanced Search Genetic algorithm Advanced Search Genetic algorithm Yingyu Liang yliang@cs.wisc.edu Computer Sciences Department University of Wisconsin, Madison [Based on slides from Jerry Zhu, Andrew Moore http://www.cs.cmu.edu/~awm/tutorials

More information

GENETIC ALGORITHM VERSUS PARTICLE SWARM OPTIMIZATION IN N-QUEEN PROBLEM

GENETIC ALGORITHM VERSUS PARTICLE SWARM OPTIMIZATION IN N-QUEEN PROBLEM Journal of Al-Nahrain University Vol.10(2), December, 2007, pp.172-177 Science GENETIC ALGORITHM VERSUS PARTICLE SWARM OPTIMIZATION IN N-QUEEN PROBLEM * Azhar W. Hammad, ** Dr. Ban N. Thannoon Al-Nahrain

More information

Genetic Programming. Charles Chilaka. Department of Computational Science Memorial University of Newfoundland

Genetic Programming. Charles Chilaka. Department of Computational Science Memorial University of Newfoundland Genetic Programming Charles Chilaka Department of Computational Science Memorial University of Newfoundland Class Project for Bio 4241 March 27, 2014 Charles Chilaka (MUN) Genetic algorithms and programming

More information

Lecture 6: Genetic Algorithm. An Introduction to Meta-Heuristics, Produced by Qiangfu Zhao (Since 2012), All rights reserved

Lecture 6: Genetic Algorithm. An Introduction to Meta-Heuristics, Produced by Qiangfu Zhao (Since 2012), All rights reserved Lecture 6: Genetic Algorithm An Introduction to Meta-Heuristics, Produced by Qiangfu Zhao (Since 2012), All rights reserved Lec06/1 Search and optimization again Given a problem, the set of all possible

More information

Heuristic Optimisation

Heuristic Optimisation Heuristic Optimisation Part 10: Genetic Algorithm Basics Sándor Zoltán Németh http://web.mat.bham.ac.uk/s.z.nemeth s.nemeth@bham.ac.uk University of Birmingham S Z Németh (s.nemeth@bham.ac.uk) Heuristic

More information

Artificial Neural Network based Curve Prediction

Artificial Neural Network based Curve Prediction Artificial Neural Network based Curve Prediction LECTURE COURSE: AUSGEWÄHLTE OPTIMIERUNGSVERFAHREN FÜR INGENIEURE SUPERVISOR: PROF. CHRISTIAN HAFNER STUDENTS: ANTHONY HSIAO, MICHAEL BOESCH Abstract We

More information

Unsupervised Feature Selection Using Multi-Objective Genetic Algorithms for Handwritten Word Recognition

Unsupervised Feature Selection Using Multi-Objective Genetic Algorithms for Handwritten Word Recognition Unsupervised Feature Selection Using Multi-Objective Genetic Algorithms for Handwritten Word Recognition M. Morita,2, R. Sabourin 3, F. Bortolozzi 3 and C. Y. Suen 2 École de Technologie Supérieure, Montreal,

More information

Introduction to Design Optimization: Search Methods

Introduction to Design Optimization: Search Methods Introduction to Design Optimization: Search Methods 1-D Optimization The Search We don t know the curve. Given α, we can calculate f(α). By inspecting some points, we try to find the approximated shape

More information

CHAPTER 6 HYBRID AI BASED IMAGE CLASSIFICATION TECHNIQUES

CHAPTER 6 HYBRID AI BASED IMAGE CLASSIFICATION TECHNIQUES CHAPTER 6 HYBRID AI BASED IMAGE CLASSIFICATION TECHNIQUES 6.1 INTRODUCTION The exploration of applications of ANN for image classification has yielded satisfactory results. But, the scope for improving

More information

A GENETIC ALGORITHM FOR CLUSTERING ON VERY LARGE DATA SETS

A GENETIC ALGORITHM FOR CLUSTERING ON VERY LARGE DATA SETS A GENETIC ALGORITHM FOR CLUSTERING ON VERY LARGE DATA SETS Jim Gasvoda and Qin Ding Department of Computer Science, Pennsylvania State University at Harrisburg, Middletown, PA 17057, USA {jmg289, qding}@psu.edu

More information

11/14/2010 Intelligent Systems and Soft Computing 1

11/14/2010 Intelligent Systems and Soft Computing 1 Lecture 7 Artificial neural networks: Supervised learning Introduction, or how the brain works The neuron as a simple computing element The perceptron Multilayer neural networks Accelerated learning in

More information

DETERMINING MAXIMUM/MINIMUM VALUES FOR TWO- DIMENTIONAL MATHMATICLE FUNCTIONS USING RANDOM CREOSSOVER TECHNIQUES

DETERMINING MAXIMUM/MINIMUM VALUES FOR TWO- DIMENTIONAL MATHMATICLE FUNCTIONS USING RANDOM CREOSSOVER TECHNIQUES DETERMINING MAXIMUM/MINIMUM VALUES FOR TWO- DIMENTIONAL MATHMATICLE FUNCTIONS USING RANDOM CREOSSOVER TECHNIQUES SHIHADEH ALQRAINY. Department of Software Engineering, Albalqa Applied University. E-mail:

More information

Meta- Heuristic based Optimization Algorithms: A Comparative Study of Genetic Algorithm and Particle Swarm Optimization

Meta- Heuristic based Optimization Algorithms: A Comparative Study of Genetic Algorithm and Particle Swarm Optimization 2017 2 nd International Electrical Engineering Conference (IEEC 2017) May. 19 th -20 th, 2017 at IEP Centre, Karachi, Pakistan Meta- Heuristic based Optimization Algorithms: A Comparative Study of Genetic

More information

IMPROVEMENTS TO THE BACKPROPAGATION ALGORITHM

IMPROVEMENTS TO THE BACKPROPAGATION ALGORITHM Annals of the University of Petroşani, Economics, 12(4), 2012, 185-192 185 IMPROVEMENTS TO THE BACKPROPAGATION ALGORITHM MIRCEA PETRINI * ABSTACT: This paper presents some simple techniques to improve

More information

Genetic Algorithm based Fractal Image Compression

Genetic Algorithm based Fractal Image Compression Vol.3, Issue.2, March-April. 2013 pp-1123-1128 ISSN: 2249-6645 Genetic Algorithm based Fractal Image Compression Mahesh G. Huddar Lecturer, Dept. of CSE,Hirasugar Institute of Technology, Nidasoshi, India

More information

CHAPTER 2 CONVENTIONAL AND NON-CONVENTIONAL TECHNIQUES TO SOLVE ORPD PROBLEM

CHAPTER 2 CONVENTIONAL AND NON-CONVENTIONAL TECHNIQUES TO SOLVE ORPD PROBLEM 20 CHAPTER 2 CONVENTIONAL AND NON-CONVENTIONAL TECHNIQUES TO SOLVE ORPD PROBLEM 2.1 CLASSIFICATION OF CONVENTIONAL TECHNIQUES Classical optimization methods can be classified into two distinct groups:

More information

Structural Topology Optimization Using Genetic Algorithms

Structural Topology Optimization Using Genetic Algorithms , July 3-5, 2013, London, U.K. Structural Topology Optimization Using Genetic Algorithms T.Y. Chen and Y.H. Chiou Abstract Topology optimization has been widely used in industrial designs. One problem

More information

CNN Template Design Using Back Propagation Algorithm

CNN Template Design Using Back Propagation Algorithm 2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA) CNN Template Design Using Back Propagation Algorithm Masashi Nakagawa, Takashi Inoue and Yoshifumi Nishio Department

More information

Chapter 5 Components for Evolution of Modular Artificial Neural Networks

Chapter 5 Components for Evolution of Modular Artificial Neural Networks Chapter 5 Components for Evolution of Modular Artificial Neural Networks 5.1 Introduction In this chapter, the methods and components used for modular evolution of Artificial Neural Networks (ANNs) are

More information

Mutation in Compressed Encoding in Estimation of Distribution Algorithm

Mutation in Compressed Encoding in Estimation of Distribution Algorithm Mutation in Compressed Encoding in Estimation of Distribution Algorithm Orawan Watchanupaporn, Worasait Suwannik Department of Computer Science asetsart University Bangkok, Thailand orawan.liu@gmail.com,

More information

A TSK-Type Recurrent Fuzzy Network for Dynamic Systems Processing by Neural Network and Genetic Algorithms

A TSK-Type Recurrent Fuzzy Network for Dynamic Systems Processing by Neural Network and Genetic Algorithms IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 2, APRIL 2002 155 A TSK-Type Recurrent Fuzzy Network for Dynamic Systems Processing by Neural Network and Genetic Algorithms Chia-Feng Juang, Member, IEEE

More information

Genetic Algorithm for Finding Shortest Path in a Network

Genetic Algorithm for Finding Shortest Path in a Network Intern. J. Fuzzy Mathematical Archive Vol. 2, 2013, 43-48 ISSN: 2320 3242 (P), 2320 3250 (online) Published on 26 August 2013 www.researchmathsci.org International Journal of Genetic Algorithm for Finding

More information

Recurrent Neural Network Models for improved (Pseudo) Random Number Generation in computer security applications

Recurrent Neural Network Models for improved (Pseudo) Random Number Generation in computer security applications Recurrent Neural Network Models for improved (Pseudo) Random Number Generation in computer security applications D.A. Karras 1 and V. Zorkadis 2 1 University of Piraeus, Dept. of Business Administration,

More information

Comparative Study on VQ with Simple GA and Ordain GA

Comparative Study on VQ with Simple GA and Ordain GA Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 204 Comparative Study on VQ with Simple GA and Ordain GA SADAF SAJJAD

More information

Malaysian License Plate Recognition Artificial Neural Networks and Evolu Computation. The original publication is availabl

Malaysian License Plate Recognition Artificial Neural Networks and Evolu Computation. The original publication is availabl JAIST Reposi https://dspace.j Title Malaysian License Plate Recognition Artificial Neural Networks and Evolu Computation Stephen, Karungaru; Fukumi, Author(s) Minoru; Norio Citation Issue Date 2005-11

More information

PARALLEL GENETIC ALGORITHMS IMPLEMENTED ON TRANSPUTERS

PARALLEL GENETIC ALGORITHMS IMPLEMENTED ON TRANSPUTERS PARALLEL GENETIC ALGORITHMS IMPLEMENTED ON TRANSPUTERS Viktor Nìmec, Josef Schwarz Technical University of Brno Faculty of Engineering and Computer Science Department of Computer Science and Engineering

More information

GENETIC LOCAL SEARCH ALGORITHMS FOR SINGLE MACHINE SCHEDULING PROBLEMS WITH RELEASE TIME

GENETIC LOCAL SEARCH ALGORITHMS FOR SINGLE MACHINE SCHEDULING PROBLEMS WITH RELEASE TIME GENETIC LOCAL SEARCH ALGORITHMS FOR SINGLE MACHINE SCHEDULING PROBLEMS WITH RELEASE TIME Jihchang Hsieh^, Peichann Chang^, Shihhsin Chen^ Department of Industrial Management, Vanung University, Chung-Li

More information

Image Processing algorithm for matching horizons across faults in seismic data

Image Processing algorithm for matching horizons across faults in seismic data Image Processing algorithm for matching horizons across faults in seismic data Melanie Aurnhammer and Klaus Tönnies Computer Vision Group, Otto-von-Guericke University, Postfach 410, 39016 Magdeburg, Germany

More information

An Introduction to Evolutionary Algorithms

An Introduction to Evolutionary Algorithms An Introduction to Evolutionary Algorithms Karthik Sindhya, PhD Postdoctoral Researcher Industrial Optimization Group Department of Mathematical Information Technology Karthik.sindhya@jyu.fi http://users.jyu.fi/~kasindhy/

More information

A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery

A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery Monika Sharma 1, Deepak Sharma 2 1 Research Scholar Department of Computer Science and Engineering, NNSS SGI Samalkha,

More information

ANTICIPATORY VERSUS TRADITIONAL GENETIC ALGORITHM

ANTICIPATORY VERSUS TRADITIONAL GENETIC ALGORITHM Anticipatory Versus Traditional Genetic Algorithm ANTICIPATORY VERSUS TRADITIONAL GENETIC ALGORITHM ABSTRACT Irina Mocanu 1 Eugenia Kalisz 2 This paper evaluates the performances of a new type of genetic

More information

Towards Automatic Recognition of Fonts using Genetic Approach

Towards Automatic Recognition of Fonts using Genetic Approach Towards Automatic Recognition of Fonts using Genetic Approach M. SARFRAZ Department of Information and Computer Science King Fahd University of Petroleum and Minerals KFUPM # 1510, Dhahran 31261, Saudi

More information

Supply Chain Management and Genetic Algorithm: introducing a new hybrid genetic crossover operator

Supply Chain Management and Genetic Algorithm: introducing a new hybrid genetic crossover operator Supply Chain Management and Genetic Algorithm: introducing a new hybrid genetic crossover operator Felipe G. S. Teodoro 1, Clodoaldo A. M. Lima 1, Sarajane M. Peres 1 1 Escola de Artes, Ciências e Humanidades

More information

Selection of Optimal Path in Routing Using Genetic Algorithm

Selection of Optimal Path in Routing Using Genetic Algorithm Selection of Optimal Path in Routing Using Genetic Algorithm Sachin Kumar Department of Computer Science and Applications CH. Devi Lal University, Sirsa, Haryana Avninder Singh Department of Computer Science

More information

Using Simple Ancestry to Deter Inbreeding for Persistent Genetic Algorithm Search

Using Simple Ancestry to Deter Inbreeding for Persistent Genetic Algorithm Search Using Simple Ancestry to Deter Inbreeding for Persistent Genetic Algorithm Search Aditya Wibowo and Peter Jamieson Dept. of Electrical and Computer Engineering Miami University Abstract In this work, we

More information

Character Recognition Using Convolutional Neural Networks

Character Recognition Using Convolutional Neural Networks Character Recognition Using Convolutional Neural Networks David Bouchain Seminar Statistical Learning Theory University of Ulm, Germany Institute for Neural Information Processing Winter 2006/2007 Abstract

More information

Introduction to Genetic Algorithms

Introduction to Genetic Algorithms Advanced Topics in Image Analysis and Machine Learning Introduction to Genetic Algorithms Week 3 Faculty of Information Science and Engineering Ritsumeikan University Today s class outline Genetic Algorithms

More information

Monika Maharishi Dayanand University Rohtak

Monika Maharishi Dayanand University Rohtak Performance enhancement for Text Data Mining using k means clustering based genetic optimization (KMGO) Monika Maharishi Dayanand University Rohtak ABSTRACT For discovering hidden patterns and structures

More information

Solving A Nonlinear Side Constrained Transportation Problem. by Using Spanning Tree-based Genetic Algorithm. with Fuzzy Logic Controller

Solving A Nonlinear Side Constrained Transportation Problem. by Using Spanning Tree-based Genetic Algorithm. with Fuzzy Logic Controller Solving A Nonlinear Side Constrained Transportation Problem by Using Spanning Tree-based Genetic Algorithm with Fuzzy Logic Controller Yasuhiro Tsujimura *, Mitsuo Gen ** and Admi Syarif **,*** * Department

More information

Binary Representations of Integers and the Performance of Selectorecombinative Genetic Algorithms

Binary Representations of Integers and the Performance of Selectorecombinative Genetic Algorithms Binary Representations of Integers and the Performance of Selectorecombinative Genetic Algorithms Franz Rothlauf Department of Information Systems University of Bayreuth, Germany franz.rothlauf@uni-bayreuth.de

More information

Genetic algorithms and finite element coupling for mechanical optimization

Genetic algorithms and finite element coupling for mechanical optimization Computer Aided Optimum Design in Engineering X 87 Genetic algorithms and finite element coupling for mechanical optimization G. Corriveau, R. Guilbault & A. Tahan Department of Mechanical Engineering,

More information

International Journal of Digital Application & Contemporary research Website: (Volume 1, Issue 7, February 2013)

International Journal of Digital Application & Contemporary research Website:   (Volume 1, Issue 7, February 2013) Performance Analysis of GA and PSO over Economic Load Dispatch Problem Sakshi Rajpoot sakshirajpoot1988@gmail.com Dr. Sandeep Bhongade sandeepbhongade@rediffmail.com Abstract Economic Load dispatch problem

More information

Computational Financial Modeling

Computational Financial Modeling Computational Financial Modeling Enhancing Technical Analysis With Genetic Algorithm SAIKIRAN DEEPAK SHARMA PRANJAL JAIN 23 RD NOV. 2012 How Genetic Algorithm can be used to improve the performance of

More information

Computational Intelligence

Computational Intelligence Computational Intelligence Module 6 Evolutionary Computation Ajith Abraham Ph.D. Q What is the most powerful problem solver in the Universe? ΑThe (human) brain that created the wheel, New York, wars and

More information

Genetic Algorithm Performance with Different Selection Methods in Solving Multi-Objective Network Design Problem

Genetic Algorithm Performance with Different Selection Methods in Solving Multi-Objective Network Design Problem etic Algorithm Performance with Different Selection Methods in Solving Multi-Objective Network Design Problem R. O. Oladele Department of Computer Science University of Ilorin P.M.B. 1515, Ilorin, NIGERIA

More information

A Web-Based Evolutionary Algorithm Demonstration using the Traveling Salesman Problem

A Web-Based Evolutionary Algorithm Demonstration using the Traveling Salesman Problem A Web-Based Evolutionary Algorithm Demonstration using the Traveling Salesman Problem Richard E. Mowe Department of Statistics St. Cloud State University mowe@stcloudstate.edu Bryant A. Julstrom Department

More information

A Genetic Algorithm-Based Approach for Energy- Efficient Clustering of Wireless Sensor Networks

A Genetic Algorithm-Based Approach for Energy- Efficient Clustering of Wireless Sensor Networks A Genetic Algorithm-Based Approach for Energy- Efficient Clustering of Wireless Sensor Networks A. Zahmatkesh and M. H. Yaghmaee Abstract In this paper, we propose a Genetic Algorithm (GA) to optimize

More information

Job Shop Scheduling Problem (JSSP) Genetic Algorithms Critical Block and DG distance Neighbourhood Search

Job Shop Scheduling Problem (JSSP) Genetic Algorithms Critical Block and DG distance Neighbourhood Search A JOB-SHOP SCHEDULING PROBLEM (JSSP) USING GENETIC ALGORITHM (GA) Mahanim Omar, Adam Baharum, Yahya Abu Hasan School of Mathematical Sciences, Universiti Sains Malaysia 11800 Penang, Malaysia Tel: (+)

More information

Genetic Algorithms for Real Parameter Optimization

Genetic Algorithms for Real Parameter Optimization Genetic Algorithms for Real Parameter Optimization Alden H. Wright Department of Computer Science University of Montana Missoula, Montana 59812 Abstract This paper is concerned with the application of

More information

CHAPTER 5. CHE BASED SoPC FOR EVOLVABLE HARDWARE

CHAPTER 5. CHE BASED SoPC FOR EVOLVABLE HARDWARE 90 CHAPTER 5 CHE BASED SoPC FOR EVOLVABLE HARDWARE A hardware architecture that implements the GA for EHW is presented in this chapter. This SoPC (System on Programmable Chip) architecture is also designed

More information

Introduction to Evolutionary Computation

Introduction to Evolutionary Computation Introduction to Evolutionary Computation The Brought to you by (insert your name) The EvoNet Training Committee Some of the Slides for this lecture were taken from the Found at: www.cs.uh.edu/~ceick/ai/ec.ppt

More information

Network Routing Protocol using Genetic Algorithms

Network Routing Protocol using Genetic Algorithms International Journal of Electrical & Computer Sciences IJECS-IJENS Vol:0 No:02 40 Network Routing Protocol using Genetic Algorithms Gihan Nagib and Wahied G. Ali Abstract This paper aims to develop a

More information

Improved Multiprocessor Task Scheduling Using Genetic Algorithms

Improved Multiprocessor Task Scheduling Using Genetic Algorithms From:MAICS-99 Proceedings. Copyright 1999, AAAI (www.aaai.org). All rights reserved. Improved Multiprocessor Task Scheduling Using Genetic Algorithms Michael Bohler Sensors Directorate Air Force Research

More information

Using Genetic Algorithm with Triple Crossover to Solve Travelling Salesman Problem

Using Genetic Algorithm with Triple Crossover to Solve Travelling Salesman Problem Proc. 1 st International Conference on Machine Learning and Data Engineering (icmlde2017) 20-22 Nov 2017, Sydney, Australia ISBN: 978-0-6480147-3-7 Using Genetic Algorithm with Triple Crossover to Solve

More information

Inducing Parameters of a Decision Tree for Expert System Shell McESE by Genetic Algorithm

Inducing Parameters of a Decision Tree for Expert System Shell McESE by Genetic Algorithm Inducing Parameters of a Decision Tree for Expert System Shell McESE by Genetic Algorithm I. Bruha and F. Franek Dept of Computing & Software, McMaster University Hamilton, Ont., Canada, L8S4K1 Email:

More information

Analysis of the impact of parameters values on the Genetic Algorithm for TSP

Analysis of the impact of parameters values on the Genetic Algorithm for TSP www.ijcsi.org 158 Analysis of the impact of parameters values on the Genetic Algorithm for TSP Avni Rexhepi 1, Adnan Maxhuni 2, Agni Dika 3 1,2,3 Faculty of Electrical and Computer Engineering, University

More information

Study on GA-based matching method of railway vehicle wheels

Study on GA-based matching method of railway vehicle wheels Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2014, 6(4):536-542 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Study on GA-based matching method of railway vehicle

More information

The k-means Algorithm and Genetic Algorithm

The k-means Algorithm and Genetic Algorithm The k-means Algorithm and Genetic Algorithm k-means algorithm Genetic algorithm Rough set approach Fuzzy set approaches Chapter 8 2 The K-Means Algorithm The K-Means algorithm is a simple yet effective

More information

Solving Single Machine Scheduling Problem with Maximum Lateness Using a Genetic Algorithm

Solving Single Machine Scheduling Problem with Maximum Lateness Using a Genetic Algorithm Solving Single Machine Scheduling Problem with Maximum Lateness Using a Genetic Algorithm Habibeh NAZIF (Corresponding author) Department of Mathematics, Faculty of Science Universiti Putra Malaysia, 43400

More information

Planning and Search. Genetic algorithms. Genetic algorithms 1

Planning and Search. Genetic algorithms. Genetic algorithms 1 Planning and Search Genetic algorithms Genetic algorithms 1 Outline Genetic algorithms Representing states (individuals, or chromosomes) Genetic operations (mutation, crossover) Example Genetic algorithms

More information

Algorithm Design Paradigms

Algorithm Design Paradigms CmSc250 Intro to Algorithms Algorithm Design Paradigms Algorithm Design Paradigms: General approaches to the construction of efficient solutions to problems. Such methods are of interest because: They

More information

Argha Roy* Dept. of CSE Netaji Subhash Engg. College West Bengal, India.

Argha Roy* Dept. of CSE Netaji Subhash Engg. College West Bengal, India. Volume 3, Issue 3, March 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Training Artificial

More information

Genetic Algorithms: Setting Parmeters and Incorporating Constraints OUTLINE OF TOPICS: 1. Setting GA parameters. 2. Constraint Handling (two methods)

Genetic Algorithms: Setting Parmeters and Incorporating Constraints OUTLINE OF TOPICS: 1. Setting GA parameters. 2. Constraint Handling (two methods) Genetic Algorithms: Setting Parmeters and Incorporating Constraints OUTLINE OF TOPICS: 1. Setting GA parameters general guidelines for binary coded GA (some can be extended to real valued GA) estimating

More information

A New Selection Operator - CSM in Genetic Algorithms for Solving the TSP

A New Selection Operator - CSM in Genetic Algorithms for Solving the TSP A New Selection Operator - CSM in Genetic Algorithms for Solving the TSP Wael Raef Alkhayri Fahed Al duwairi High School Aljabereyah, Kuwait Suhail Sami Owais Applied Science Private University Amman,

More information

Role of Genetic Algorithm in Routing for Large Network

Role of Genetic Algorithm in Routing for Large Network Role of Genetic Algorithm in Routing for Large Network *Mr. Kuldeep Kumar, Computer Programmer, Krishi Vigyan Kendra, CCS Haryana Agriculture University, Hisar. Haryana, India verma1.kuldeep@gmail.com

More information

A hierarchical network model for network topology design using genetic algorithm

A hierarchical network model for network topology design using genetic algorithm A hierarchical network model for network topology design using genetic algorithm Chunlin Wang 1, Ning Huang 1,a, Shuo Zhang 2, Yue Zhang 1 and Weiqiang Wu 1 1 School of Reliability and Systems Engineering,

More information