an algebraic analogue of a formula of Knuth

Size: px
Start display at page:

Download "an algebraic analogue of a formula of Knuth"

Transcription

1 An algebraic analogue of a formula of Knuth (MIT) FPSAC, San Francisco, August 6, 2010

2 Talk Outline Knuth s formula: generalizing n n with weights: generalizing (x x n ) n with group structure: generalizing (Z/nZ) n 1. Recent developments!

3 Starting Point: Cayley s Theorem The number of rooted trees on n labeled vertices is n n 1. Refinement: The number of trees with degree sequence (d 1,...,d n ) is the coefficient of x d x d n n in nx 1...x n (x x n ) n 2. We can break this out by root: n r=1 x i x r (x x n ) n 2 i r outdegrees indegrees

4 Oriented Spanning Trees An oriented spanning tree of K 3,3. Let G = (V,E) be a finite directed graph. An oriented spanning tree of G is a subgraph T = (V,E ) such that one vertex, the root, has outdegree 0; all other vertices have outdegree 1; T has no oriented cycles v 1 v 2 v k v 1.

5 Complexity of A Directed Graph The number κ(g) = # of oriented spanning trees of G is sometimes called the complexity of G. Examples: κ(k n ) = n n 1 κ(k m,n ) = (m + n)m n 1 n m 1 κ(db n ) = 2 2n 1

6 The De Bruijn Graph DB n DB 0 DB 1 DB 2 vertices {0,1} n, edges {0,1} n+1. The endpoints of the edge e = b 1...b n+1 are its prefix and suffix: e b 1...b n b 2...b n+1.

7 Directed Line Graphs G = (V,E) : finite directed graph s,t : E V Edge e is directed like this: s(e) t(e) The directed line graph LG = (E,E 2 ) of G has Vertex set E, the edge set of G. Edge set E 2 = {(e,f ) E E s(f ) = t(e)}. e f e f e e (e,f ) E 2 (e,f ) / E 2 f (e,f ) / E 2

8 A Graph G and Its Directed Line Graph LG a b c a b c

9 Examples of Directed Line Graphs Kn = L(one vertex with n loops). Km,n = L(two vertices {a,b} with m edges a b and n edges b a). DB n = L(DB n 1 ). Iterated line graphs: L n G = (E n,e n+1 ), where E n = {directed paths of n edges in G}.

10 Spanning Tree Enumerators Let (x v ) v V and (x e ) e E be indeterminates, and let κ edge (G,x) = T κ vertex (G,x) = T x e e T x t(e) e T The sums are over all oriented spanning trees T of G. Example: κ vertex (K n,x) = (x x n ) n 1.

11 Knuth s Formula G = (V,E) : finite directed graph with no sources outdegrees a 1,...,a n indegrees b 1,...,b n 1 LG : the directed line graph of G Theorem (Knuth, 1967). For any edge e of G, where κ(lg,e ) = α(g,e ) n i=1 a b i 1 i α(g,e ) = κ(g,t(e )) 1 a and a is the outdegree of t(e ). κ(g,s(e)). t(e)=t(e ) e e

12 Weighted Knuth s Formula G : finite directed graph with no sources LG : its directed line graph b 1,...,b n 1 : the indegrees of G. Theorem (L.) ( ) bi 1 κ vertex (LG,x) = κ edge (G,x) x e. i V s(e)=i Both sides are polynomials in the edge variables x e.

13 Specializing x e = 1 Complexity of a line graph: Examples: κ(lg) = κ(g) n i=1 a b i 1 i. G = one vertex with n loops, LG = K n, get n n 1. G = two vertices, LG = K m,n, get (m + n)m n 1 n m 1. G = DB n 1, LG = DB n : κ(db n ) = κ(db n 1 ) 2 2n 1 = κ(db n 2 ) 2 2n 1 2 2n 2 =... = 2 2n 1.

14 Rooted Version Fix an edge e = (w,v ) of G. Let b be the indegree of v. Theorem (L.) If b i 1 for all i, and b 2, then κ vertex (LG,e,x) = x e κ edge (G,w,x) ( ) bi 1 i V s(e)=i x e. s(e)=v x e

15 Matrix-Tree Theorem κ edge (G,x) = [t]det(t Id edge ). κ vertex (G,x) = [t]det(t Id vertex ). Goal: relate edge G with vertex LG.

16 The Missing Link: Directed Incidence Matrices Consider the K-linear maps Then A : K E K V, B : K V K E e t(e) v s(e)=v x e e. edge G vertex LG = AB D = BA D L where D and D L are the diagonal matrices ( ( D(v) = x e )v, D L (e) = x f )e. s(e)=v s(f )=t(e)

17 Intertwining edge G and vertex LG A vertex LG = A(BA D L ) = ABA DA = (AB D)A = edge G A In particular vertex LG (ker A) ker A. Writing K E = ker A Im(A T ) puts vertex LG in block triangular form.

18 The Proof Falls Into Place Since G has no sources, A : K E K V is onto. So AA T has full rank. So A : Im(A T ) K V is an isomorphism. So det( vertex LG Im(A T ) ) = det edge G = κ(g,x). Eigenvalues of vertex LG ker A are s(e)=i x e, each with multiplicity b i 1.

19 Comparison with Knuth Knuth s formula involved the strange quantity α(g,e ) = κ(g,t(e )) 1 a Why is it missing from our formulas? κ(g,s(e)). t(e)=t(e ) e e

20 The Unicycle Lemma A unicycle of G is an oriented spanning tree together with an outgoing edge from the root. By counting unicycles through v in two ways, we get: Lemma. κ edge (G,v,x) x e = κ edge (G,s(e),x)x e. s(e)=v t(e)=v So Knuth s formula simplifies to κ(lg,e ) = 1 a κ(g,s(e )) n i=1 a b i 1 i.

21 The Sandpile Group of a Graph K(G,v ) Z n 1 / Z n 1, where = D A is the reduced Laplacian of G. Lorenzini 89/ 91 ( group of components ), Dhar 90, Biggs 99 ( critical group ), Baker-Norine 07 ( Jacobian ). Directed graphs: Holroyd et al. 08 Matrix-tree theorem: #K(G,v ) = det = #{spanning trees of G rooted at v }. Choice of sink: K(G,v ) K(G,v ) if G is Eulerian.

22 Maps Between Sandpile Groups Theorem (L.) If G is Eulerian, then the map Z E Z V e t(e) descends to a surjective group homomorphism K(LG,e ) K(G,t(e )).

23 Maps Between Sandpile Groups Theorem (L.) If G is balanced k-regular, then the map Z V Z E v s(e)=v descends to an isomorphism of groups e K(G) k K(LG). Analogous to results of Berget, Manion, Maxwell, Potechin and Reiner on undirected line graphs. arxiv:

24 The Sandpile Group of DB n De Bruijn Graph DB n = L n (a single vertex with 2 loops). Theorem (L.) n 1 K(DB n ) = (Z/2 j Z) 2n 1 j. j=1 Generalized by Bidkhori and Kishore to k-ary De Bruijn graphs for any k.

25 Equating Exponents By counting spanning trees, we know that Now write #K(DB n ) = κ(db n,v ) = 2 2n n 1. K(DB n ) = Z a 1 2 Za 2 4 Za Za m 2 m for some nonnegative integers m and a 1,...,a m satisfying m ja j = 2 n n 1. (1) j=1 By the previous theorem and inductive hypothesis K(DB n 1 ) 2K(DB n ) Z 2n 3 2 Z 2n 4 4 Z 2 n 2 Z a 2 2 Za Za m 2 m 1. So m = n 1 and a j = 2 n j 1.

26 A (Formerly) Open Problem From EC1 In EC1, Stanley asks for a bijection {pairs of binary De Bruijn sequences of order n} {all binary sequences of length 2 n } Both sets have cardinality 2 2n.

27 Recent Developments In arxiv: , Bidkhori and Kishore give a bijective proof of the weighted Knuth formula ( ) bi 1 κ vertex (LG,x) = κ edge (G,x) x e i V s(e)=i and use it to solve Stanley s problem! Perkinson, Salter and Xu give a surjective map even when G is not Eulerian. K(LG,e ) K(G,s(e ))

28 Now What? unweighted weighted enumeration κ(g) κ(g, x) algebra K(G)?

29 Thank You! a b c a b c References: D. E. Knuth, Oriented subtrees of an arc digraph, J. Comb. Theory 3 (1967), L., Sandpile groups and spanning trees of directed line graphs, J. Comb. Theory A, to appear. arxiv:

An Algebraic Analogue of a Formula of Knuth

An Algebraic Analogue of a Formula of Knuth FPSAC 2010, San Francisco, USA DMTCS proc. AN, 2010, 247 258 An Algebraic Analogue of a Formula of Knuth Lionel Levine Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139

More information

2 Eulerian digraphs and oriented trees.

2 Eulerian digraphs and oriented trees. 2 Eulerian digraphs and oriented trees. A famous problem which goes back to Euler asks for what graphs G is there a closed walk which uses every edge exactly once. (There is also a version for non-closed

More information

The Matrix-Tree Theorem and Its Applications to Complete and Complete Bipartite Graphs

The Matrix-Tree Theorem and Its Applications to Complete and Complete Bipartite Graphs The Matrix-Tree Theorem and Its Applications to Complete and Complete Bipartite Graphs Frankie Smith Nebraska Wesleyan University fsmith@nebrwesleyan.edu May 11, 2015 Abstract We will look at how to represent

More information

Graphs (MTAT , 6 EAP) Lectures: Mon 14-16, hall 404 Exercises: Wed 14-16, hall 402

Graphs (MTAT , 6 EAP) Lectures: Mon 14-16, hall 404 Exercises: Wed 14-16, hall 402 Graphs (MTAT.05.080, 6 EAP) Lectures: Mon 14-16, hall 404 Exercises: Wed 14-16, hall 402 homepage: http://courses.cs.ut.ee/2012/graafid (contains slides) For grade: Homework + three tests (during or after

More information

v V Question: How many edges are there in a graph with 10 vertices each of degree 6?

v V Question: How many edges are there in a graph with 10 vertices each of degree 6? ECS20 Handout Graphs and Trees March 4, 2015 (updated 3/9) Notion of a graph 1. A graph G = (V,E) consists of V, a nonempty set of vertices (or nodes) and E, a set of pairs of elements of V called edges.

More information

Trees. 3. (Minimally Connected) G is connected and deleting any of its edges gives rise to a disconnected graph.

Trees. 3. (Minimally Connected) G is connected and deleting any of its edges gives rise to a disconnected graph. Trees 1 Introduction Trees are very special kind of (undirected) graphs. Formally speaking, a tree is a connected graph that is acyclic. 1 This definition has some drawbacks: given a graph it is not trivial

More information

r=1 The Binomial Theorem. 4 MA095/98G Revision

r=1 The Binomial Theorem. 4 MA095/98G Revision Revision Read through the whole course once Make summary sheets of important definitions and results, you can use the following pages as a start and fill in more yourself Do all assignments again Do the

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory Tandy Warnow January 20, 2017 Graphs Tandy Warnow Graphs A graph G = (V, E) is an object that contains a vertex set V and an edge set E. We also write V (G) to denote the vertex

More information

Counting the number of spanning tree. Pied Piper Department of Computer Science and Engineering Shanghai Jiao Tong University

Counting the number of spanning tree. Pied Piper Department of Computer Science and Engineering Shanghai Jiao Tong University Counting the number of spanning tree Pied Piper Department of Computer Science and Engineering Shanghai Jiao Tong University 目录 Contents 1 Complete Graph 2 Proof of the Lemma 3 Arbitrary Graph 4 Proof

More information

UNDIRECTED GRAPH: a set of vertices and a set of undirected edges each of which is associated with a set of one or two of these vertices.

UNDIRECTED GRAPH: a set of vertices and a set of undirected edges each of which is associated with a set of one or two of these vertices. Graphs 1 Graph: A graph G = (V, E) consists of a nonempty set of vertices (or nodes) V and a set of edges E. Each edge has either one or two vertices associated with it, called its endpoints. An edge is

More information

Combinatorics Summary Sheet for Exam 1 Material 2019

Combinatorics Summary Sheet for Exam 1 Material 2019 Combinatorics Summary Sheet for Exam 1 Material 2019 1 Graphs Graph An ordered three-tuple (V, E, F ) where V is a set representing the vertices, E is a set representing the edges, and F is a function

More information

Characterizing Graphs (3) Characterizing Graphs (1) Characterizing Graphs (2) Characterizing Graphs (4)

Characterizing Graphs (3) Characterizing Graphs (1) Characterizing Graphs (2) Characterizing Graphs (4) S-72.2420/T-79.5203 Basic Concepts 1 S-72.2420/T-79.5203 Basic Concepts 3 Characterizing Graphs (1) Characterizing Graphs (3) Characterizing a class G by a condition P means proving the equivalence G G

More information

Foundations of Discrete Mathematics

Foundations of Discrete Mathematics Foundations of Discrete Mathematics Chapter 12 By Dr. Dalia M. Gil, Ph.D. Trees Tree are useful in computer science, where they are employed in a wide range of algorithms. They are used to construct efficient

More information

Characterizations of Trees

Characterizations of Trees Characterizations of Trees Lemma Every tree with at least two vertices has at least two leaves. Proof. 1. A connected graph with at least two vertices has an edge. 2. In an acyclic graph, an end point

More information

CS473-Algorithms I. Lecture 13-A. Graphs. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 13-A. Graphs. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorithms I Lecture 3-A Graphs Graphs A directed graph (or digraph) G is a pair (V, E), where V is a finite set, and E is a binary relation on V The set V: Vertex set of G The set E: Edge set of

More information

Introductory Combinatorics

Introductory Combinatorics Introductory Combinatorics Third Edition KENNETH P. BOGART Dartmouth College,. " A Harcourt Science and Technology Company San Diego San Francisco New York Boston London Toronto Sydney Tokyo xm CONTENTS

More information

BIL694-Lecture 1: Introduction to Graphs

BIL694-Lecture 1: Introduction to Graphs BIL694-Lecture 1: Introduction to Graphs Lecturer: Lale Özkahya Resources for the presentation: http://www.math.ucsd.edu/ gptesler/184a/calendar.html http://www.inf.ed.ac.uk/teaching/courses/dmmr/ Outline

More information

1 Digraphs. Definition 1

1 Digraphs. Definition 1 1 Digraphs Definition 1 Adigraphordirected graphgisatriplecomprisedofavertex set V(G), edge set E(G), and a function assigning each edge an ordered pair of vertices (tail, head); these vertices together

More information

4. (a) Draw the Petersen graph. (b) Use Kuratowski s teorem to prove that the Petersen graph is non-planar.

4. (a) Draw the Petersen graph. (b) Use Kuratowski s teorem to prove that the Petersen graph is non-planar. UPPSALA UNIVERSITET Matematiska institutionen Anders Johansson Graph Theory Frist, KandMa, IT 010 10 1 Problem sheet 4 Exam questions Solve a subset of, say, four questions to the problem session on friday.

More information

Discrete mathematics II. - Graphs

Discrete mathematics II. - Graphs Emil Vatai April 25, 2018 Basic definitions Definition of an undirected graph Definition (Undirected graph) An undirected graph or (just) a graph is a triplet G = (ϕ, E, V ), where V is the set of vertices,

More information

Directed Graph and Binary Trees

Directed Graph and Binary Trees and Dr. Nahid Sultana December 19, 2012 and Degrees Paths and Directed graphs are graphs in which the edges are one-way. This type of graphs are frequently more useful in various dynamic systems such as

More information

The Tutte Polynomial

The Tutte Polynomial The Tutte Polynomial Madeline Brandt October 19, 2015 Introduction The Tutte polynomial is a polynomial T (x, y) in two variables which can be defined for graphs or matroids. Many problems about graphs

More information

The number of spanning trees of plane graphs with reflective symmetry

The number of spanning trees of plane graphs with reflective symmetry Journal of Combinatorial Theory, Series A 112 (2005) 105 116 www.elsevier.com/locate/jcta The number of spanning trees of plane graphs with reflective symmetry Mihai Ciucu a, Weigen Yan b, Fuji Zhang c

More information

Ma/CS 6b Class 13: Counting Spanning Trees

Ma/CS 6b Class 13: Counting Spanning Trees Ma/CS 6b Class 13: Counting Spanning Trees By Adam Sheffer Reminder: Spanning Trees A spanning tree is a tree that contains all of the vertices of the graph. A graph can contain many distinct spanning

More information

Graphs. Introduction To Graphs: Exercises. Definitions:

Graphs. Introduction To Graphs: Exercises. Definitions: Graphs Eng.Jehad Aldahdooh Introduction To Graphs: Definitions: A graph G = (V, E) consists of V, a nonempty set of vertices (or nodes) and E, a set of edges. Each edge has either one or two vertices associated

More information

Chapter 3 Trees. Theorem A graph T is a tree if, and only if, every two distinct vertices of T are joined by a unique path.

Chapter 3 Trees. Theorem A graph T is a tree if, and only if, every two distinct vertices of T are joined by a unique path. Chapter 3 Trees Section 3. Fundamental Properties of Trees Suppose your city is planning to construct a rapid rail system. They want to construct the most economical system possible that will meet the

More information

Simplicial Matrix-Tree Theorems

Simplicial Matrix-Tree Theorems Art Duval (University of Texas at El Paso) Caroline Klivans (University of Chicago) Jeremy Martin (University of Kansas) KUMUNU VIII University of Nebraska, Lincoln September 9, 2007 Graphs and Spanning

More information

Simplicial and Cellular Spanning Trees, I: General Theory

Simplicial and Cellular Spanning Trees, I: General Theory Simplicial and Cellular Spanning Trees, I: General Theory Art Duval (University of Texas at El Paso) Caroline Klivans (Brown University) Jeremy Martin (University of Kansas) University of California, Davis

More information

DIRECTED ROOTED FORESTS IN HIGHER DIMENSION

DIRECTED ROOTED FORESTS IN HIGHER DIMENSION DIRECTED ROOTED FORESTS IN HIGHER DIMENSION OLIVIER BERNARDI AND CAROLINE J. KLIVANS Abstract. For a graph G, the generating function of rooted forests, counted by the number of connected components, can

More information

0.0.1 Network Analysis

0.0.1 Network Analysis Graph Theory 0.0.1 Network Analysis Prototype Example: In Algonquian Park the rangers have set up snowmobile trails with various stops along the way. The system of trails is our Network. The main entrance

More information

Exercise set 2 Solutions

Exercise set 2 Solutions Exercise set 2 Solutions Let H and H be the two components of T e and let F E(T ) consist of the edges of T with one endpoint in V (H), the other in V (H ) Since T is connected, F Furthermore, since T

More information

Basic Properties The Definition of Catalan Numbers

Basic Properties The Definition of Catalan Numbers 1 Basic Properties 1.1. The Definition of Catalan Numbers There are many equivalent ways to define Catalan numbers. In fact, the main focus of this monograph is the myriad combinatorial interpretations

More information

Chapter 1 Graph Theory

Chapter 1 Graph Theory Chapter Graph Theory - Representations of Graphs Graph, G=(V,E): It consists of the set V of vertices and the set E of edges. If each edge has its direction, the graph is called the directed graph (digraph).

More information

Lecture 2 : Counting X-trees

Lecture 2 : Counting X-trees Lecture 2 : Counting X-trees MATH285K - Spring 2010 Lecturer: Sebastien Roch References: [SS03, Chapter 1,2] 1 Trees We begin by recalling basic definitions and properties regarding finite trees. DEF 2.1

More information

Introduction III. Graphs. Motivations I. Introduction IV

Introduction III. Graphs. Motivations I. Introduction IV Introduction I Graphs Computer Science & Engineering 235: Discrete Mathematics Christopher M. Bourke cbourke@cse.unl.edu Graph theory was introduced in the 18th century by Leonhard Euler via the Königsberg

More information

DS UNIT 4. Matoshri College of Engineering and Research Center Nasik Department of Computer Engineering Discrete Structutre UNIT - IV

DS UNIT 4. Matoshri College of Engineering and Research Center Nasik Department of Computer Engineering Discrete Structutre UNIT - IV Sr.No. Question Option A Option B Option C Option D 1 2 3 4 5 6 Class : S.E.Comp Which one of the following is the example of non linear data structure Let A be an adjacency matrix of a graph G. The ij

More information

Solving problems on graph algorithms

Solving problems on graph algorithms Solving problems on graph algorithms Workshop Organized by: ACM Unit, Indian Statistical Institute, Kolkata. Tutorial-3 Date: 06.07.2017 Let G = (V, E) be an undirected graph. For a vertex v V, G {v} is

More information

Notation Index. Probability notation. (there exists) (such that) Fn-4 B n (Bell numbers) CL-27 s t (equivalence relation) GT-5.

Notation Index. Probability notation. (there exists) (such that) Fn-4 B n (Bell numbers) CL-27 s t (equivalence relation) GT-5. Notation Index (there exists) (for all) Fn-4 Fn-4 (such that) Fn-4 B n (Bell numbers) CL-27 s t (equivalence relation) GT-5 ( n ) k (binomial coefficient) CL-15 ( n m 1,m 2,...) (multinomial coefficient)

More information

Dynamically Random Graphs

Dynamically Random Graphs Dynamically Random Graphs Alexis Byers, Wittenberg University Mallory Reed, Earlham College Laura Rucci, Cabrini College Elle VanTilburg, University of Texas-Austin SUMSRI 203 Miami University July 8,

More information

CS7540 Spectral Algorithms, Spring 2017 Lecture #2. Matrix Tree Theorem. Presenter: Richard Peng Jan 12, 2017

CS7540 Spectral Algorithms, Spring 2017 Lecture #2. Matrix Tree Theorem. Presenter: Richard Peng Jan 12, 2017 CS7540 Spectral Algorithms, Spring 2017 Lecture #2 Matrix Tree Theorem Presenter: Richard Peng Jan 12, 2017 DISCLAIMER: These notes are not necessarily an accurate representation of what I said during

More information

CS 311 Discrete Math for Computer Science Dr. William C. Bulko. Graphs

CS 311 Discrete Math for Computer Science Dr. William C. Bulko. Graphs CS 311 Discrete Math for Computer Science Dr. William C. Bulko Graphs 2014 Definitions Definition: A graph G = (V,E) consists of a nonempty set V of vertices (or nodes) and a set E of edges. Each edge

More information

MAT 7003 : Mathematical Foundations. (for Software Engineering) J Paul Gibson, A207.

MAT 7003 : Mathematical Foundations. (for Software Engineering) J Paul Gibson, A207. MAT 7003 : Mathematical Foundations (for Software Engineering) J Paul Gibson, A207 paul.gibson@it-sudparis.eu http://www-public.it-sudparis.eu/~gibson/teaching/mat7003/ Graphs and Trees http://www-public.it-sudparis.eu/~gibson/teaching/mat7003/l2-graphsandtrees.pdf

More information

HW Graph Theory SOLUTIONS (hbovik)

HW Graph Theory SOLUTIONS (hbovik) Diestel 1.3: Let G be a graph containing a cycle C, and assume that G contains a path P of length at least k between two vertices of C. Show that G contains a cycle of length at least k. If C has length

More information

Chip-firing games on Eulerian digraphs and NP-hardness of computing the rank of a divisor on a graph

Chip-firing games on Eulerian digraphs and NP-hardness of computing the rank of a divisor on a graph Chip-firing games on Eulerian digraphs and NP-hardness of computing the rank of a divisor on a graph Viktor Kiss a, Lilla Tóthmérész b arxiv:1407.6958v3 [cs.cc] 6 Sep 2015 a Department of Analysis, Eötvös

More information

9 Connectivity. Contents. 9.1 Vertex Connectivity

9 Connectivity. Contents. 9.1 Vertex Connectivity 9 Connectivity Contents 9.1 Vertex Connectivity.............................. 205 Connectivity and Local Connectivity............... 206 Vertex Cuts and Menger s Theorem................. 207 9.2 The Fan

More information

Graph Theory. Part of Texas Counties.

Graph Theory. Part of Texas Counties. Graph Theory Part of Texas Counties. We would like to visit each of the above counties, crossing each county only once, starting from Harris county. Is this possible? This problem can be modeled as a graph.

More information

Chapter 4. Relations & Graphs. 4.1 Relations. Exercises For each of the relations specified below:

Chapter 4. Relations & Graphs. 4.1 Relations. Exercises For each of the relations specified below: Chapter 4 Relations & Graphs 4.1 Relations Definition: Let A and B be sets. A relation from A to B is a subset of A B. When we have a relation from A to A we often call it a relation on A. When we have

More information

Paths. Path is a sequence of edges that begins at a vertex of a graph and travels from vertex to vertex along edges of the graph.

Paths. Path is a sequence of edges that begins at a vertex of a graph and travels from vertex to vertex along edges of the graph. Paths Path is a sequence of edges that begins at a vertex of a graph and travels from vertex to vertex along edges of the graph. Formal Definition of a Path (Undirected) Let n be a nonnegative integer

More information

Topological Invariance under Line Graph Transformations

Topological Invariance under Line Graph Transformations Symmetry 2012, 4, 329-335; doi:103390/sym4020329 Article OPEN ACCESS symmetry ISSN 2073-8994 wwwmdpicom/journal/symmetry Topological Invariance under Line Graph Transformations Allen D Parks Electromagnetic

More information

BACKGROUND: A BRIEF INTRODUCTION TO GRAPH THEORY

BACKGROUND: A BRIEF INTRODUCTION TO GRAPH THEORY BACKGROUND: A BRIEF INTRODUCTION TO GRAPH THEORY General definitions; Representations; Graph Traversals; Topological sort; Graphs definitions & representations Graph theory is a fundamental tool in sparse

More information

Elements of Graph Theory

Elements of Graph Theory Elements of Graph Theory Quick review of Chapters 9.1 9.5, 9.7 (studied in Mt1348/2008) = all basic concepts must be known New topics we will mostly skip shortest paths (Chapter 9.6), as that was covered

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Chapter 9 Graph Algorithms 2 Introduction graph theory useful in practice represent many real-life problems can be if not careful with data structures 3 Definitions an undirected graph G = (V, E) is a

More information

Infinity and Uncountability. Countable Countably infinite. Enumeration

Infinity and Uncountability. Countable Countably infinite. Enumeration Infinity and Uncountability. Countable Countably infinite. Enumeration How big is the set of reals or the set of integers? Infinite! Is one bigger or smaller? Same size? Same number? Make a function f

More information

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2 Graph Theory S I I S S I I S Graphs Definition A graph G is a pair consisting of a vertex set V (G), and an edge set E(G) ( ) V (G). x and y are the endpoints of edge e = {x, y}. They are called adjacent

More information

CS6702 GRAPH THEORY AND APPLICATIONS QUESTION BANK

CS6702 GRAPH THEORY AND APPLICATIONS QUESTION BANK CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 1 UNIT I INTRODUCTION CS6702 GRAPH THEORY AND APPLICATIONS QUESTION BANK 1. Define Graph. 2. Define Simple graph. 3. Write few problems

More information

Definition: A graph G = (V, E) is called a tree if G is connected and acyclic. The following theorem captures many important facts about trees.

Definition: A graph G = (V, E) is called a tree if G is connected and acyclic. The following theorem captures many important facts about trees. Tree 1. Trees and their Properties. Spanning trees 3. Minimum Spanning Trees 4. Applications of Minimum Spanning Trees 5. Minimum Spanning Tree Algorithms 1.1 Properties of Trees: Definition: A graph G

More information

An Introduction to Graph Theory

An Introduction to Graph Theory An Introduction to Graph Theory CIS008-2 Logic and Foundations of Mathematics David Goodwin david.goodwin@perisic.com 12:00, Friday 17 th February 2012 Outline 1 Graphs 2 Paths and cycles 3 Graphs and

More information

I BSc(Computer Science)[ ] Semester - II Allied:DISCRETE MATHEMATICS - 207D Multiple Choice Questions.

I BSc(Computer Science)[ ] Semester - II Allied:DISCRETE MATHEMATICS - 207D Multiple Choice Questions. 1 of 23 1/20/2018, 2:35 PM Dr.G.R.Damodaran College of Science (Autonomous, affiliated to the Bharathiar University, recognized by the UGC)Reaccredited at the 'A' Grade Level by the NAAC and ISO 9001:2008

More information

Kirchhoff's theorem. Contents. An example using the matrix-tree theorem

Kirchhoff's theorem. Contents. An example using the matrix-tree theorem Kirchhoff's theorem From Wikipedia, the free encyclopedia In the mathematical field of graph theory, Kirchhoff's theorem or Kirchhoff's matrix tree theorem named after Gustav Kirchhoff is a theorem about

More information

To illustrate what is intended the following are three write ups by students. Diagonalization

To illustrate what is intended the following are three write ups by students. Diagonalization General guidelines: You may work with other people, as long as you write up your solution in your own words and understand everything you turn in. Make sure to justify your answers they should be clear

More information

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism CHAPTER 2 Graphs 1. Introduction to Graphs and Graph Isomorphism 1.1. The Graph Menagerie. Definition 1.1.1. A simple graph G = (V, E) consists of a set V of vertices and a set E of edges, represented

More information

Trees. Arash Rafiey. 20 October, 2015

Trees. Arash Rafiey. 20 October, 2015 20 October, 2015 Definition Let G = (V, E) be a loop-free undirected graph. G is called a tree if G is connected and contains no cycle. Definition Let G = (V, E) be a loop-free undirected graph. G is called

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Chapter 9 Graph Algorithms 2 Introduction graph theory useful in practice represent many real-life problems can be slow if not careful with data structures 3 Definitions an undirected graph G = (V, E)

More information

Graphs, Zeta Functions, Diameters, and Cospectrality

Graphs, Zeta Functions, Diameters, and Cospectrality Graphs, Zeta Functions, Diameters, and Cospectrality Sarah Elghraoui University of California, San Diego Undergraduate Mathematics Honors Thesis June 1, 2010 Faculty Mentor: Professor Audrey Terras University

More information

Math Summer 2012

Math Summer 2012 Math 481 - Summer 2012 Final Exam You have one hour and fifty minutes to complete this exam. You are not allowed to use any electronic device. Be sure to give reasonable justification to all your answers.

More information

11/22/2016. Chapter 9 Graph Algorithms. Introduction. Definitions. Definitions. Definitions. Definitions

11/22/2016. Chapter 9 Graph Algorithms. Introduction. Definitions. Definitions. Definitions. Definitions Introduction Chapter 9 Graph Algorithms graph theory useful in practice represent many real-life problems can be slow if not careful with data structures 2 Definitions an undirected graph G = (V, E) is

More information

Graph and Digraph Glossary

Graph and Digraph Glossary 1 of 15 31.1.2004 14:45 Graph and Digraph Glossary A B C D E F G H I-J K L M N O P-Q R S T U V W-Z Acyclic Graph A graph is acyclic if it contains no cycles. Adjacency Matrix A 0-1 square matrix whose

More information

Ordinary Differential Equation (ODE)

Ordinary Differential Equation (ODE) Ordinary Differential Equation (ODE) INTRODUCTION: Ordinary Differential Equations play an important role in different branches of science and technology In the practical field of application problems

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Introduction graph theory useful in practice represent many real-life problems can be if not careful with data structures Chapter 9 Graph s 2 Definitions Definitions an undirected graph is a finite set

More information

Graph Theoretical Cluster Expansion Formulas

Graph Theoretical Cluster Expansion Formulas Graph Theoretical Cluster Expansion Formulas Gregg Musiker MIT December 9, 008 http//math.mit.edu/ musiker/graphtalk.pdf Gregg Musiker (MIT) Graph Theoretical Cluster Expansions December 9, 008 / 9 Outline.

More information

Trees Rooted Trees Spanning trees and Shortest Paths. 12. Graphs and Trees 2. Aaron Tan November 2017

Trees Rooted Trees Spanning trees and Shortest Paths. 12. Graphs and Trees 2. Aaron Tan November 2017 12. Graphs and Trees 2 Aaron Tan 6 10 November 2017 1 10.5 Trees 2 Definition Definition Definition: Tree A graph is said to be circuit-free if, and only if, it has no circuits. A graph is called a tree

More information

CS 441 Discrete Mathematics for CS Lecture 26. Graphs. CS 441 Discrete mathematics for CS. Final exam

CS 441 Discrete Mathematics for CS Lecture 26. Graphs. CS 441 Discrete mathematics for CS. Final exam CS 441 Discrete Mathematics for CS Lecture 26 Graphs Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Final exam Saturday, April 26, 2014 at 10:00-11:50am The same classroom as lectures The exam

More information

CME 305: Discrete Mathematics and Algorithms Instructor: Reza Zadeh HW#3 Due at the beginning of class Thursday 03/02/17

CME 305: Discrete Mathematics and Algorithms Instructor: Reza Zadeh HW#3 Due at the beginning of class Thursday 03/02/17 CME 305: Discrete Mathematics and Algorithms Instructor: Reza Zadeh (rezab@stanford.edu) HW#3 Due at the beginning of class Thursday 03/02/17 1. Consider a model of a nonbipartite undirected graph in which

More information

CS388C: Combinatorics and Graph Theory

CS388C: Combinatorics and Graph Theory CS388C: Combinatorics and Graph Theory David Zuckerman Review Sheet 2003 TA: Ned Dimitrov updated: September 19, 2007 These are some of the concepts we assume in the class. If you have never learned them

More information

Recursion defining an object (or function, algorithm, etc.) in terms of itself. Recursion can be used to define sequences

Recursion defining an object (or function, algorithm, etc.) in terms of itself. Recursion can be used to define sequences Section 5.3 1 Recursion 2 Recursion Recursion defining an object (or function, algorithm, etc.) in terms of itself. Recursion can be used to define sequences Previously sequences were defined using a specific

More information

Final Exam Math 38 Graph Theory Spring 2017 Due on Friday, June 2, at 12:50 pm. Good Luck!!

Final Exam Math 38 Graph Theory Spring 2017 Due on Friday, June 2, at 12:50 pm. Good Luck!! Final Exam Math 38 Graph Theory Spring 2017 Due on Friday, June 2, at 12:50 pm NAME: Instructions: You can use the textbook (Doug West s Introduction to Graph Theory, without solutions), your notes from

More information

Graph Definitions. In a directed graph the edges have directions (ordered pairs). A weighted graph includes a weight function.

Graph Definitions. In a directed graph the edges have directions (ordered pairs). A weighted graph includes a weight function. Graph Definitions Definition 1. (V,E) where An undirected graph G is a pair V is the set of vertices, E V 2 is the set of edges (unordered pairs) E = {(u, v) u, v V }. In a directed graph the edges have

More information

Lecture 22 Tuesday, April 10

Lecture 22 Tuesday, April 10 CIS 160 - Spring 2018 (instructor Val Tannen) Lecture 22 Tuesday, April 10 GRAPH THEORY Directed Graphs Directed graphs (a.k.a. digraphs) are an important mathematical modeling tool in Computer Science,

More information

Varying Applications (examples)

Varying Applications (examples) Graph Theory Varying Applications (examples) Computer networks Distinguish between two chemical compounds with the same molecular formula but different structures Solve shortest path problems between cities

More information

Let G = (V, E) be a graph. If u, v V, then u is adjacent to v if {u, v} E. We also use the notation u v to denote that u is adjacent to v.

Let G = (V, E) be a graph. If u, v V, then u is adjacent to v if {u, v} E. We also use the notation u v to denote that u is adjacent to v. Graph Adjacent Endpoint of an edge Incident Neighbors of a vertex Degree of a vertex Theorem Graph relation Order of a graph Size of a graph Maximum and minimum degree Let G = (V, E) be a graph. If u,

More information

Math 170- Graph Theory Notes

Math 170- Graph Theory Notes 1 Math 170- Graph Theory Notes Michael Levet December 3, 2018 Notation: Let n be a positive integer. Denote [n] to be the set {1, 2,..., n}. So for example, [3] = {1, 2, 3}. To quote Bud Brown, Graph theory

More information

Discrete Mathematics SECOND EDITION OXFORD UNIVERSITY PRESS. Norman L. Biggs. Professor of Mathematics London School of Economics University of London

Discrete Mathematics SECOND EDITION OXFORD UNIVERSITY PRESS. Norman L. Biggs. Professor of Mathematics London School of Economics University of London Discrete Mathematics SECOND EDITION Norman L. Biggs Professor of Mathematics London School of Economics University of London OXFORD UNIVERSITY PRESS Contents PART I FOUNDATIONS Statements and proofs. 1

More information

Proposition 1. The edges of an even graph can be split (partitioned) into cycles, no two of which have an edge in common.

Proposition 1. The edges of an even graph can be split (partitioned) into cycles, no two of which have an edge in common. Math 3116 Dr. Franz Rothe June 5, 2012 08SUM\3116_2012t1.tex Name: Use the back pages for extra space 1 Solution of Test 1.1 Eulerian graphs Proposition 1. The edges of an even graph can be split (partitioned)

More information

Graph Theory. Probabilistic Graphical Models. L. Enrique Sucar, INAOE. Definitions. Types of Graphs. Trajectories and Circuits.

Graph Theory. Probabilistic Graphical Models. L. Enrique Sucar, INAOE. Definitions. Types of Graphs. Trajectories and Circuits. Theory Probabilistic ical Models L. Enrique Sucar, INAOE and (INAOE) 1 / 32 Outline and 1 2 3 4 5 6 7 8 and 9 (INAOE) 2 / 32 A graph provides a compact way to represent binary relations between a set of

More information

Algebraic Graph Theory- Adjacency Matrix and Spectrum

Algebraic Graph Theory- Adjacency Matrix and Spectrum Algebraic Graph Theory- Adjacency Matrix and Spectrum Michael Levet December 24, 2013 Introduction This tutorial will introduce the adjacency matrix, as well as spectral graph theory. For those familiar

More information

MT365 Examination 2007 Part 1. Q1 (a) (b) (c) A

MT365 Examination 2007 Part 1. Q1 (a) (b) (c) A MT6 Examination Part Solutions Q (a) (b) (c) F F F E E E G G G G is both Eulerian and Hamiltonian EF is both an Eulerian trail and a Hamiltonian cycle. G is Hamiltonian but not Eulerian and EF is a Hamiltonian

More information

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge.

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge. 1 Graph Basics What is a graph? Graph: a graph G consists of a set of vertices, denoted V (G), a set of edges, denoted E(G), and a relation called incidence so that each edge is incident with either one

More information

Discrete Mathematics

Discrete Mathematics Discrete Mathematics 311 (011) 48 436 Contents lists available at SciVerse ScienceDirect Discrete Mathematics journal homepage: www.elsevier.com/locate/disc On conservative and supermagic graphs L udmila

More information

Graphs and Network Flows IE411. Lecture 21. Dr. Ted Ralphs

Graphs and Network Flows IE411. Lecture 21. Dr. Ted Ralphs Graphs and Network Flows IE411 Lecture 21 Dr. Ted Ralphs IE411 Lecture 21 1 Combinatorial Optimization and Network Flows In general, most combinatorial optimization and integer programming problems are

More information

CSCI 1820 Notes. Scribes: tl40. February 26 - March 02, Estimating size of graphs used to build the assembly.

CSCI 1820 Notes. Scribes: tl40. February 26 - March 02, Estimating size of graphs used to build the assembly. CSCI 1820 Notes Scribes: tl40 February 26 - March 02, 2018 Chapter 2. Genome Assembly Algorithms 2.1. Statistical Theory 2.2. Algorithmic Theory Idury-Waterman Algorithm Estimating size of graphs used

More information

Minimal Recurrent Configurations of Chip Firing Games and Directed Acyclic Graphs

Minimal Recurrent Configurations of Chip Firing Games and Directed Acyclic Graphs Automata 2010 16 th Intl. Workshop on CA and DCS DMTCS proc. AL, 2010, 111 124 Minimal Recurrent Configurations of Chip Firing Games and Directed Acyclic Graphs Matthias Schulz Karlsruhe Institute for

More information

Computer Science and Mathematics. Part I: Fundamental Mathematical Concepts Winfried Kurth

Computer Science and Mathematics. Part I: Fundamental Mathematical Concepts Winfried Kurth Computer Science and Mathematics Part I: Fundamental Mathematical Concepts Winfried Kurth http://www.uni-forst.gwdg.de/~wkurth/csm17_home.htm 1. Mathematical Logic Propositions - can be either true or

More information

Proper Partitions of a Polygon and k-catalan Numbers

Proper Partitions of a Polygon and k-catalan Numbers Proper Partitions of a Polygon and k-catalan Numbers Bruce E. Sagan Department of Mathematics Michigan State University East Lansing, MI 48824-1027 USA sagan@math.msu.edu July 13, 2005 Abstract Let P be

More information

Lecture 5: Graphs. Rajat Mittal. IIT Kanpur

Lecture 5: Graphs. Rajat Mittal. IIT Kanpur Lecture : Graphs Rajat Mittal IIT Kanpur Combinatorial graphs provide a natural way to model connections between different objects. They are very useful in depicting communication networks, social networks

More information

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 1 UNIT I INTRODUCTION CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 1. Define Graph. A graph G = (V, E) consists

More information

4 Basics of Trees. Petr Hliněný, FI MU Brno 1 FI: MA010: Trees and Forests

4 Basics of Trees. Petr Hliněný, FI MU Brno 1 FI: MA010: Trees and Forests 4 Basics of Trees Trees, actually acyclic connected simple graphs, are among the simplest graph classes. Despite their simplicity, they still have rich structure and many useful application, such as in

More information

Lecture 5: Graphs & their Representation

Lecture 5: Graphs & their Representation Lecture 5: Graphs & their Representation Why Do We Need Graphs Graph Algorithms: Many problems can be formulated as problems on graphs and can be solved with graph algorithms. To learn those graph algorithms,

More information

Connection matrices. Microsoft Research Redmond, WA August Dedicated to Dominic Welsh

Connection matrices. Microsoft Research Redmond, WA August Dedicated to Dominic Welsh Connection matrices László Lovász Microsoft Research Redmond, WA 98052 August 2005 Dedicated to Dominic Welsh 1 Introduction Suppose you want to evaluate a graph parameter on a graph G. There is a cut

More information

Chapter 11: Graphs and Trees. March 23, 2008

Chapter 11: Graphs and Trees. March 23, 2008 Chapter 11: Graphs and Trees March 23, 2008 Outline 1 11.1 Graphs: An Introduction 2 11.2 Paths and Circuits 3 11.3 Matrix Representations of Graphs 4 11.5 Trees Graphs: Basic Definitions Informally, a

More information

Section Summary. Introduction to Trees Rooted Trees Trees as Models Properties of Trees

Section Summary. Introduction to Trees Rooted Trees Trees as Models Properties of Trees Chapter 11 Copyright McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. Chapter Summary Introduction to Trees Applications

More information