Para-catadioptric Camera Auto Calibration from Epipolar Geometry

Size: px
Start display at page:

Download "Para-catadioptric Camera Auto Calibration from Epipolar Geometry"

Transcription

1 Para-catadioptric Camera Auto Calibration from Epipolar Geometry Branislav Mičušík and Tomáš Pajdla Center for Machine Perception Department of Cybernetics Faculty of Electrical Engeneering Czech Technical University in Prague

2 Motivation automatic 3D metric reconstruction from two uncalibrated para-catadioptric images 2/15 PCD camera

3 Motivation automatic 3D metric reconstruction from two uncalibrated para-catadioptric images 2/15 PCD camera

4 Contribution Para-catadioptric (PCD) camera auto calibration from epipolar geometry 3/15

5 Contribution Para-catadioptric (PCD) camera auto calibration from epipolar geometry 3/15 Solution for F and the mirror parameter a by solving Polynomial Eigenvalue Problem (D 1 + ad a 4 D 5 ) f = 0

6 Contribution Para-catadioptric (PCD) camera auto calibration from epipolar geometry 3/15 Solution for F and the mirror parameter a by solving Polynomial Eigenvalue Problem (D 1 + ad a 4 D 5 ) f = 0 ransac with 9-point correspondences possible WBS RANSAC 9 pts (Matas et al BMVC 2002)

7 Contribution Para-catadioptric (PCD) camera auto calibration from epipolar geometry 3/15 Solution for F and the mirror parameter a by solving Polynomial Eigenvalue Problem (D 1 + ad a 4 D 5 ) f = 0 ransac with 9-point correspondences possible WBS RANSAC 9 pts (Matas et al BMVC 2002) linearization of projection model avoided

8 Previous work 4/15 Geyer&Daniilidis ICCV 2003 Encoding a PCD camera model in a bilinear form by lifting coordinates to 4 dimensional space 15 pts ransac Micusik&Pajdla CVPR 2003 Estimation of omnidirectional camera model from EG linearization of projection model (no linearization for PCD) Fitzgibbon CVPR 2001 Polynomial Eigenvalue Problem for simultaneous estimation of small radial distortion & EG Kang CVPR 2000 Catadioptric camera self-calibration calibration by bundle adjustment on good correspondences

9 Para-catadioptric camera Para-catadioptric camera = parabolic mirror + orthographic camera 5/15 optical axis PSfrag replacements π r θ u p Assumption: camera projection is orthographic & parallel to opt. axis central camera

10 Para-catadioptric camera model 6/15 y F z x p u, v, p expressed in Cartesian coordinate system g replacements π u v u p = u v a 2 r 2 2a 2 au 2 a v a 2 r 2 Coordinate system of the PCD camera. r = u 2 + v 2 ag replacements u π v The coordinate system in the pre-calibrated image.

11 u PCD camera auto-calibration y x u : (u = A u + t ) 7/15 Digitization Pre calibration u : (u = 1 ρ R 1 u ) Calibration from EG p = ( u, v, a2 r 2 2a )

12 Epipolar Geometry 8/15 PSfrag replacements F 1 F 2 p 1 X p 2 π u 1 π u 2 central omnidirectional cameras possess EG (Svoboda et al ECCV 1998) p 2 F p 1 = 0

13 Theory of PCD camera calibration 9/15 3D vector p = ( u v a 2 r 2 2a ) PSfrag replacements F y z x p π u v u

14 Theory of PCD camera calibration 9/15 3D vector p = ( u v a 2 r 2 2a ) PSfrag replacements F y z x p Epipolar constraint for rays π u v u ag replacements F 1 F 2 p 1 X p 2 p 2 Fp 1 = 0 π u 1 π u 2 ( u 2 v 2 a 2 r 2 2 2a ) ( F u 1 v 1 a 2 r 2 1 2a ) = 0

15 Theory of PCD camera calibration 9/15 3D vector p = ( u v a 2 r 2 2a ) PSfrag replacements F y z x p Epipolar constraint for rays π u v u ag replacements F 1 F 2 p 1 X p 2 p 2 Fp 1 = 0 π u 1 π u 2 ( u 2 v 2 a 2 r 2 2 2a ) ( F u 1 v 1 a 2 r 2 1 2a ) = 0 leads to the Polynomial Eigenvalue Problem (PEP) (D 1 + ad a 4 D 5 )f = 0, where D i R 9 9 are known and f = [ F 11 F 12 F 13 F F 33 ]. - PEP can be solved by Matlab using polyeig details 1

16 Results of PCD camera auto-calibration the calibrated camera, i.e. the parameters of a PCD camera model: a, A, t p = ( u v a 2 r 2 2a ), 10/15

17 Results of PCD camera auto-calibration the calibrated camera, i.e. the parameters of a PCD camera model: a, A, t p = ( u v a 2 r 2 2a ), 10/15 the essential matrix E = [t] R,

18 Results of PCD camera auto-calibration the calibrated camera, i.e. the parameters of a PCD camera model: a, A, t p = ( u v a 2 r 2 2a ), 10/15 the essential matrix E = [t] R, correct point correspondences (inliers)

19 Finding correspondences 11/15 Pair of images with regions detected by Matas & Chum & Urban & Pajdla BMVC 2002 Tentative correspondences using Inliers satisfying epipolar geometry similarity (Matas et al BMVC 2002) (Micusik & Pajdla ACCV 2004) (many outliers) (inliers/outliers selected)

20 EXPERIMENTS

21 Trajectory estimation PCD camera mounted on a turntable and rotated along a circle 13/15 correctly recovered positions and orientations of cameras details 1 2

22 3D reconstruction 14/15

23 Main contribution: Conclusion 15/15 Epipolar geometry estimation and para-catadioptric camera calibration and correspondences validation by the autocalibration method based on ransac estimation technique. Good initial estimate for a bundle adjustment. Experiments show: The method designed for central PCD cameras can be used for real (slightly non-central) PCD cameras to solve the correspondence problem and obtain initial estimate of camera positions. Stable 3D metric reconstruction just from two images.

24 Solution of the PEP (back) (D 1 + ad a 4 D 5 )f = 0 36 (9 4) solutions of a, f many of them are zero, infinite or complex cements usually 1-3 solutions remain choose the pair which has smallest angular error (Oliensis PAMI 2002) τ X p 1 φ1 n ˆp 1 ˆp 2 ( p 2 ɛ(p 1, p 2, F) = min sin 2 φ 1 + sin 2 ) φ 2 n φ 2 C 2 = min n ( n.p1 2 + n.p 2 2) C 1 PEP can be easily incorporated in 9-point ransac

25 Real non-central PCD camera (back) pi pi F F u u p p ideal real

26 Non-central vs. Central model (back) Central model (angles are wrong) Non-central model (angles are correct)

27

28

29

30

31

32

33

34

35

36

37

38

39 optical axis π r u p ents θ

40 F x y z p rag replacements π u v u

41 ts u v π

42 x y Digitization Pre calibration Calibration from EG

43

44 F 1 F 2 p 1 X p 2 π u 1 π u 2

45

46

47 F x y z p rag replacements π u v u

48 F 1 F 2 p 1 X p 2 π u 1 π u 2

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65 X n τ p 2 ˆp 1 ˆp 2 φ 2 p 1 φ1 C 2 C 1

66

67 F p pi u

68 F p pi u

69

70

71

72

Using RANSAC for Omnidirectional Camera Model Fitting

Using RANSAC for Omnidirectional Camera Model Fitting CENTER FOR MACHINE PERCEPTION CZECH TECHNICAL UNIVERSITY Using RANSAC for Omnidirectional Camera Model Fitting Branislav Mičušík and Tomáš Pajdla {micusb,pajdla}@cmp.felk.cvut.cz REPRINT Branislav Mičušík

More information

3D Metric Reconstruction from Uncalibrated Omnidirectional Images

3D Metric Reconstruction from Uncalibrated Omnidirectional Images CENTER FOR MACHINE PERCEPTION CZECH TECHNICAL UNIVERSITY 3D Metric Reconstruction from Uncalibrated Omnidirectional Images Branislav Mičušík, Daniel Martinec and Tomáš Pajdla micusb1@cmp.felk.cvut.cz,

More information

3D Metric Reconstruction from Uncalibrated Omnidirectional Images

3D Metric Reconstruction from Uncalibrated Omnidirectional Images CENTER FOR MACHINE PERCEPTION CZECH TECHNICAL UNIVERSITY 3D Metric Reconstruction from Uncalibrated Omnidirectional Images Branislav Mičušík, Daniel Martinec and Tomáš Pajdla {micusb1, martid1, pajdla}@cmp.felk.cvut.cz

More information

Constraints on perspective images and circular panoramas

Constraints on perspective images and circular panoramas Constraints on perspective images and circular panoramas Marc Menem Tomáš Pajdla!!"# $ &% '(# $ ) Center for Machine Perception, Department of Cybernetics, Czech Technical University in Prague, Karlovo

More information

Structure from Small Baseline Motion with Central Panoramic Cameras

Structure from Small Baseline Motion with Central Panoramic Cameras Structure from Small Baseline Motion with Central Panoramic Cameras Omid Shakernia René Vidal Shankar Sastry Department of Electrical Engineering & Computer Sciences, UC Berkeley {omids,rvidal,sastry}@eecs.berkeley.edu

More information

Para-catadioptric camera auto-calibration from epipolar geometry

Para-catadioptric camera auto-calibration from epipolar geometry CENTER FOR MACHINE PERCEPTION CZECH TECHNICAL UNIVERSITY Para-catadioptric camera ato-calibration from epipolar geometry Branislav Mičšík and Tomáš Pajdla micsb1@cmp.felk.cvt.cz, pajdla@cmp.felk.cvt.cz

More information

SELF-CALIBRATION OF CENTRAL CAMERAS BY MINIMIZING ANGULAR ERROR

SELF-CALIBRATION OF CENTRAL CAMERAS BY MINIMIZING ANGULAR ERROR SELF-CALIBRATION OF CENTRAL CAMERAS BY MINIMIZING ANGULAR ERROR Juho Kannala, Sami S. Brandt and Janne Heikkilä Machine Vision Group, University of Oulu, Finland {jkannala, sbrandt, jth}@ee.oulu.fi Keywords:

More information

Omnivergent Stereo-panoramas with a Fish-eye Lens

Omnivergent Stereo-panoramas with a Fish-eye Lens CENTER FOR MACHINE PERCEPTION CZECH TECHNICAL UNIVERSITY Omnivergent Stereo-panoramas with a Fish-eye Lens (Version 1.) Hynek Bakstein and Tomáš Pajdla bakstein@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz

More information

Two-View Geometry of Omnidirectional Cameras

Two-View Geometry of Omnidirectional Cameras CENTER FOR MACHINE PERCEPTION CZECH TECHNICAL UNIVERSITY Two-View Geometry of Omnidirectional Cameras PhD Thesis Branislav Mičušík micusb1@cmp.felk.cvut.cz CTU CMP 2004 07 June 21, 2004 Available at ftp://cmp.felk.cvut.cz/pub/cmp/articles/micusik/micusik-thesis-reprint.pdf

More information

Catadioptric camera model with conic mirror

Catadioptric camera model with conic mirror LÓPEZ-NICOLÁS, SAGÜÉS: CATADIOPTRIC CAMERA MODEL WITH CONIC MIRROR Catadioptric camera model with conic mirror G. López-Nicolás gonlopez@unizar.es C. Sagüés csagues@unizar.es Instituto de Investigación

More information

Matching of omnidirectional and perspective images using the hybrid fundamental matrix

Matching of omnidirectional and perspective images using the hybrid fundamental matrix Matching of omnidirectional and perspective images using the hybrid fundamental matrix Luis Puig 1, J.J. Guerrero 1 and Peter Sturm 2 lpuig@unizar.es, jguerrer@unizar.es, Peter.Sturm@inrialpes.fr 1 DIIS-I3A,

More information

Structure from Motion. Introduction to Computer Vision CSE 152 Lecture 10

Structure from Motion. Introduction to Computer Vision CSE 152 Lecture 10 Structure from Motion CSE 152 Lecture 10 Announcements Homework 3 is due May 9, 11:59 PM Reading: Chapter 8: Structure from Motion Optional: Multiple View Geometry in Computer Vision, 2nd edition, Hartley

More information

Calibration of a fish eye lens with field of view larger than 180

Calibration of a fish eye lens with field of view larger than 180 CENTER FOR MACHINE PERCEPTION CZECH TECHNICAL UNIVERSITY Calibration of a fish eye lens with field of view larger than 18 Hynek Bakstein and Tomáš Pajdla {bakstein, pajdla}@cmp.felk.cvut.cz REPRINT Hynek

More information

Partial Calibration and Mirror Shape Recovery for Non-Central Catadioptric Systems

Partial Calibration and Mirror Shape Recovery for Non-Central Catadioptric Systems Partial Calibration and Mirror Shape Recovery for Non-Central Catadioptric Systems Abstract In this paper we present a method for mirror shape recovery and partial calibration for non-central catadioptric

More information

Generic and Real-Time Structure from Motion

Generic and Real-Time Structure from Motion Generic and Real-Time Structure from Motion E. Mouragnon 1,2, M. Lhuillier 1, M. Dhome 1, F. Dekeyser 2 and P. Sayd 2 1 LASMEA UMR 6602, Université Blaise Pascal/CNRS, 63177 Aubière Cedex, France 2 CEA,

More information

Mathematics of a Multiple Omni-Directional System

Mathematics of a Multiple Omni-Directional System Mathematics of a Multiple Omni-Directional System A. Torii A. Sugimoto A. Imiya, School of Science and National Institute of Institute of Media and Technology, Informatics, Information Technology, Chiba

More information

Precise Omnidirectional Camera Calibration

Precise Omnidirectional Camera Calibration Precise Omnidirectional Camera Calibration Dennis Strelow, Jeffrey Mishler, David Koes, and Sanjiv Singh Carnegie Mellon University {dstrelow, jmishler, dkoes, ssingh}@cs.cmu.edu Abstract Recent omnidirectional

More information

A Theory of Multi-Layer Flat Refractive Geometry

A Theory of Multi-Layer Flat Refractive Geometry A Theory of Multi-Layer Flat Refractive Geometry Axis Amit Agrawal Srikumar Ramalingam Yuichi Taguchi Visesh Chari Mitsubishi Electric Research Labs (MERL) INRIA Imaging with Refractions Source: Shortis

More information

Fast and stable algebraic solution to L 2 three-view triangulation

Fast and stable algebraic solution to L 2 three-view triangulation Fast and stable algebraic solution to L 2 three-view triangulation Zuzana Kukelova, Tomas Pajdla Czech Technical University, Faculty of Electrical Engineering, Karlovo namesti 13, Prague, Czech Republic

More information

Radial Multi-focal Tensors

Radial Multi-focal Tensors International Journal of Computer Vision manuscript No. (will be inserted by the editor) Radial Multi-focal Tensors Applications to Omnidirectional camera calibration SriRam Thirthala Marc Pollefeys Received:

More information

Partial Calibration and Mirror Shape Recovery for Non-Central Catadioptric Systems

Partial Calibration and Mirror Shape Recovery for Non-Central Catadioptric Systems Partial Calibration and Mirror Shape Recovery for Non-Central Catadioptric Systems Nuno Gonçalves and Helder Araújo Institute of Systems and Robotics - Coimbra University of Coimbra Polo II - Pinhal de

More information

Maximally Stable Extremal Regions and Local Geometry for Visual Correspondences

Maximally Stable Extremal Regions and Local Geometry for Visual Correspondences Maximally Stable Extremal Regions and Local Geometry for Visual Correspondences Michal Perďoch Supervisor: Jiří Matas Center for Machine Perception, Department of Cb Cybernetics Faculty of Electrical Engineering

More information

Generic Self-Calibration of Central Cameras

Generic Self-Calibration of Central Cameras MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Generic Self-Calibration of Central Cameras Srikumar Ramalingam TR2009-078 December 2009 Abstract We consider the self-calibration problem

More information

arxiv: v1 [cs.cv] 28 Sep 2018

arxiv: v1 [cs.cv] 28 Sep 2018 Camera Pose Estimation from Sequence of Calibrated Images arxiv:1809.11066v1 [cs.cv] 28 Sep 2018 Jacek Komorowski 1 and Przemyslaw Rokita 2 1 Maria Curie-Sklodowska University, Institute of Computer Science,

More information

ROBUST ESTIMATION TECHNIQUES IN COMPUTER VISION

ROBUST ESTIMATION TECHNIQUES IN COMPUTER VISION ROBUST ESTIMATION TECHNIQUES IN COMPUTER VISION Half-day tutorial at ECCV 14, September 7 Olof Enqvist! Fredrik Kahl! Richard Hartley! Robust Optimization Techniques in Computer Vision! Olof Enqvist! Chalmers

More information

Towards Generic Self-Calibration of Central Cameras

Towards Generic Self-Calibration of Central Cameras Towards Generic Self-Calibration of Central Cameras Srikumar Ramalingam 1&2, Peter Sturm 1, and Suresh K. Lodha 2 1 INRIA Rhône-Alpes, GRAVIR-CNRS, 38330 Montbonnot, France 2 Dept. of Computer Science,

More information

RANSAC RANdom SAmple Consensus

RANSAC RANdom SAmple Consensus Talk Outline importance for computer vision principle line fitting epipolar geometry estimation RANSAC RANdom SAmple Consensus Tomáš Svoboda, svoboda@cmp.felk.cvut.cz courtesy of Ondřej Chum, Jiří Matas

More information

Region matching for omnidirectional images using virtual camera planes

Region matching for omnidirectional images using virtual camera planes Computer Vision Winter Workshop 2006, Ondřej Chum, Vojtěch Franc (eds.) Telč, Czech Republic, February 6 8 Czech Pattern Recognition Society Region matching for omnidirectional images using virtual camera

More information

calibrated coordinates Linear transformation pixel coordinates

calibrated coordinates Linear transformation pixel coordinates 1 calibrated coordinates Linear transformation pixel coordinates 2 Calibration with a rig Uncalibrated epipolar geometry Ambiguities in image formation Stratified reconstruction Autocalibration with partial

More information

Multiple View Geometry. Frank Dellaert

Multiple View Geometry. Frank Dellaert Multiple View Geometry Frank Dellaert Outline Intro Camera Review Stereo triangulation Geometry of 2 views Essential Matrix Fundamental Matrix Estimating E/F from point-matches Why Consider Multiple Views?

More information

Image Formation. Antonino Furnari. Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania

Image Formation. Antonino Furnari. Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania Image Formation Antonino Furnari Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania furnari@dmi.unict.it 18/03/2014 Outline Introduction; Geometric Primitives

More information

Toward Flexible 3D Modeling using a Catadioptric Camera

Toward Flexible 3D Modeling using a Catadioptric Camera Toward Flexible 3D Modeling using a Catadioptric Camera Maxime Lhuillier LASMEA UMR 6602 CNRS, Université Blaise Pascal 24 avenue des Landais, 63177 Aubiere Cedex, France. maxime.lhuillier.free.fr Abstract

More information

Measuring camera translation by the dominant apical angle

Measuring camera translation by the dominant apical angle Measuring camera translation by the dominant apical angle Akihiko Torii 1 Michal Havlena 1 Tomáš Pajdla 1 1 CMP, Czech Technical University Prague, Czech Republic {torii,havlem1,pajdla}@cmp.felk.cvut.cz

More information

Instance-level recognition part 2

Instance-level recognition part 2 Visual Recognition and Machine Learning Summer School Paris 2011 Instance-level recognition part 2 Josef Sivic http://www.di.ens.fr/~josef INRIA, WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d Informatique,

More information

Instance-level recognition II.

Instance-level recognition II. Reconnaissance d objets et vision artificielle 2010 Instance-level recognition II. Josef Sivic http://www.di.ens.fr/~josef INRIA, WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d Informatique, Ecole Normale

More information

Multi-View 3D Reconstruction from Uncalibrated Radially-Symmetric Cameras

Multi-View 3D Reconstruction from Uncalibrated Radially-Symmetric Cameras Multi-View 3D Reconstruction from Uncalibrated Radially-Symmetric Cameras Jae-Hak Kim 1 Yuchao Dai 1 Hongdong Li 1, Xin Du 3 Jonghyuk Kim 1 1 Australian National University and NICTA, Australia 3 Zhejiang

More information

Efficient Generic Calibration Method for General Cameras with Single Centre of Projection

Efficient Generic Calibration Method for General Cameras with Single Centre of Projection Efficient Generic Calibration Method for General Cameras with Single Centre of Projection Aubrey K. Dunne John Mallon Vision Systems Group Dublin City University aubrey.dunne@eeng.dcu.ie Paul F. Whelan

More information

Critical Configurations For Radial Distortion Self-Calibration

Critical Configurations For Radial Distortion Self-Calibration Critical Configurations For Radial Distortion Self-Calibration Changchang Wu Google Inc. Abstract In this paper, we study the configurations of motion and structure that lead to inherent ambiguities in

More information

Omni Flow. Libor Spacek Department of Computer Science University of Essex, Colchester, CO4 3SQ, UK. Abstract. 1. Introduction

Omni Flow. Libor Spacek Department of Computer Science University of Essex, Colchester, CO4 3SQ, UK. Abstract. 1. Introduction Omni Flow Libor Spacek Department of Computer Science University of Essex, Colchester, CO4 3SQ, UK. Abstract Catadioptric omnidirectional sensors (catadioptric cameras) capture instantaneous images with

More information

Stereo and Epipolar geometry

Stereo and Epipolar geometry Previously Image Primitives (feature points, lines, contours) Today: Stereo and Epipolar geometry How to match primitives between two (multiple) views) Goals: 3D reconstruction, recognition Jana Kosecka

More information

Vision par ordinateur

Vision par ordinateur Epipolar geometry π Vision par ordinateur Underlying structure in set of matches for rigid scenes l T 1 l 2 C1 m1 l1 e1 M L2 L1 e2 Géométrie épipolaire Fundamental matrix (x rank 2 matrix) m2 C2 l2 Frédéric

More information

CS201 Computer Vision Camera Geometry

CS201 Computer Vision Camera Geometry CS201 Computer Vision Camera Geometry John Magee 25 November, 2014 Slides Courtesy of: Diane H. Theriault (deht@bu.edu) Question of the Day: How can we represent the relationships between cameras and the

More information

Closed-form solutions to the minimal absolute pose problems with known vertical direction

Closed-form solutions to the minimal absolute pose problems with known vertical direction Closed-form solutions to the minimal absolute pose problems with known vertical direction Zuzana Kukelova, Martin Bujnak, Tomas Pajdla Center for Machine Perception, Czech Technical University in Prague

More information

Geometry for Computer Vision

Geometry for Computer Vision Geometry for Computer Vision Lecture 5b Calibrated Multi View Geometry Per-Erik Forssén 1 Overview The 5-point Algorithm Structure from Motion Bundle Adjustment 2 Planar degeneracy In the uncalibrated

More information

arxiv: v1 [cs.cv] 18 Sep 2017

arxiv: v1 [cs.cv] 18 Sep 2017 Direct Pose Estimation with a Monocular Camera Darius Burschka and Elmar Mair arxiv:1709.05815v1 [cs.cv] 18 Sep 2017 Department of Informatics Technische Universität München, Germany {burschka elmar.mair}@mytum.de

More information

The Radial Trifocal Tensor: A tool for calibrating the radial distortion of wide-angle cameras

The Radial Trifocal Tensor: A tool for calibrating the radial distortion of wide-angle cameras The Radial Trifocal Tensor: A tool for calibrating the radial distortion of wide-angle cameras SriRam Thirthala Marc Pollefeys Abstract We present a technique to linearly estimate the radial distortion

More information

Optical flow and depth from motion for omnidirectional images using a TV-L1 variational framework on graphs

Optical flow and depth from motion for omnidirectional images using a TV-L1 variational framework on graphs ICIP 2009 - Monday, November 9 Optical flow and depth from motion for omnidirectional images using a TV-L1 variational framework on graphs Luigi Bagnato Signal Processing Laboratory - EPFL Advisors: Prof.

More information

arxiv: v1 [cs.cv] 20 Jun 2015

arxiv: v1 [cs.cv] 20 Jun 2015 arxiv:1506.06273v1 [cs.cv] 20 Jun 2015 3-D Reconstruction from Full-view Fisheye Camera Chuiwen Ma Liang Shi Hanlu Huang chuiwenm@stanford.edu liangs@stanford.edu hanluh@stanford.edu Mengyuan Yan mengyuan@stanford.edu

More information

Radial Multi-focal Tensors

Radial Multi-focal Tensors International Journal of Computer Vision manuscript No. (will be inserted by the editor) Radial Multi-focal Tensors Applications to Omnidirectional Camera Calibration SriRam Thirthala Marc Pollefeys Received:

More information

STRUCTURE FROM OMNIDIRECTIONAL STEREO RIG MOTION FOR CITY MODELING

STRUCTURE FROM OMNIDIRECTIONAL STEREO RIG MOTION FOR CITY MODELING STRUCTURE FROM OMNIDIRECTIONAL STEREO RIG MOTION FOR CITY MODELING Michal Havlena, Tomáš Pajdla CMP, Department of Cybernetics, CTU in Prague, Czech Republic havlem1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz

More information

Camera calibration for miniature, low-cost, wide-angle imaging systems

Camera calibration for miniature, low-cost, wide-angle imaging systems Camera calibration for miniature, low-cost, wide-angle imaging systems Oliver Frank, Roman Katz, Christel-Loic Tisse and Hugh Durrant-Whyte ARC Centre of Excellence for Autonomous Systems University of

More information

A New Method and Toolbox for Easily Calibrating Omnidirectional Cameras

A New Method and Toolbox for Easily Calibrating Omnidirectional Cameras A ew Method and Toolbox for Easily Calibrating Omnidirectional Cameras Davide Scaramuzza 1 and Roland Siegwart 1 1 Swiss Federal Institute of Technology Zurich (ETHZ) Autonomous Systems Lab, CLA-E, Tannenstrasse

More information

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Structured Light II Johannes Köhler Johannes.koehler@dfki.de Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Introduction Previous lecture: Structured Light I Active Scanning Camera/emitter

More information

How to Compute the Pose of an Object without a Direct View?

How to Compute the Pose of an Object without a Direct View? How to Compute the Pose of an Object without a Direct View? Peter Sturm and Thomas Bonfort INRIA Rhône-Alpes, 38330 Montbonnot St Martin, France {Peter.Sturm, Thomas.Bonfort}@inrialpes.fr Abstract. We

More information

Visual Tracking of Planes with an Uncalibrated Central Catadioptric Camera

Visual Tracking of Planes with an Uncalibrated Central Catadioptric Camera The 29 IEEE/RSJ International Conference on Intelligent Robots and Systems October 11-15, 29 St. Louis, USA Visual Tracking of Planes with an Uncalibrated Central Catadioptric Camera A. Salazar-Garibay,

More information

C280, Computer Vision

C280, Computer Vision C280, Computer Vision Prof. Trevor Darrell trevor@eecs.berkeley.edu Lecture 11: Structure from Motion Roadmap Previous: Image formation, filtering, local features, (Texture) Tues: Feature-based Alignment

More information

Agenda. Rotations. Camera models. Camera calibration. Homographies

Agenda. Rotations. Camera models. Camera calibration. Homographies Agenda Rotations Camera models Camera calibration Homographies D Rotations R Y = Z r r r r r r r r r Y Z Think of as change of basis where ri = r(i,:) are orthonormal basis vectors r rotated coordinate

More information

Calibration Methodology for Distant Surveillance Cameras

Calibration Methodology for Distant Surveillance Cameras Calibration Methodology for Distant Surveillance Cameras Peter Gemeiner, Branislav Micusik, Roman Pflugfelder AIT Austrian Institute of Technology GmbH Vienna, Austria peter.gemeiner@ait.ac.at Abstract.

More information

Step-by-Step Model Buidling

Step-by-Step Model Buidling Step-by-Step Model Buidling Review Feature selection Feature selection Feature correspondence Camera Calibration Euclidean Reconstruction Landing Augmented Reality Vision Based Control Sparse Structure

More information

Homogeneous Coordinates. Lecture18: Camera Models. Representation of Line and Point in 2D. Cross Product. Overall scaling is NOT important.

Homogeneous Coordinates. Lecture18: Camera Models. Representation of Line and Point in 2D. Cross Product. Overall scaling is NOT important. Homogeneous Coordinates Overall scaling is NOT important. CSED44:Introduction to Computer Vision (207F) Lecture8: Camera Models Bohyung Han CSE, POSTECH bhhan@postech.ac.kr (",, ) ()", ), )) ) 0 It is

More information

Minimal Solutions for Generic Imaging Models

Minimal Solutions for Generic Imaging Models Minimal Solutions for Generic Imaging Models Srikumar Ramalingam Peter Sturm Oxford Brookes University, UK INRIA Grenoble Rhône-Alpes, France Abstract A generic imaging model refers to a non-parametric

More information

Real-time solution to the absolute pose problem with unknown radial distortion and focal length

Real-time solution to the absolute pose problem with unknown radial distortion and focal length Real-time solution to the absolute pose problem with unknown radial distortion and focal length Zuzana Kukelova Czech Technical University, Faculty of Electrical Engineering, Karlovo namesti 3, Prague,

More information

Uncalibrated Video Compass for Mobile Robots from Paracatadioptric Line Images

Uncalibrated Video Compass for Mobile Robots from Paracatadioptric Line Images Uncalibrated Video Compass for Mobile Robots from Paracatadioptric Line Images Gian Luca Mariottini and Domenico Prattichizzo Dipartimento di Ingegneria dell Informazione Università di Siena Via Roma 56,

More information

Multi-View 3D Reconstruction for Scenes under the Refractive Plane with Known Vertical Direction

Multi-View 3D Reconstruction for Scenes under the Refractive Plane with Known Vertical Direction Multi-View 3D Reconstruction for Scenes under the Refractive Plane with Known Vertical Direction Yao-Jen Chang, Tsuhan Chen Cornell University {ychang, tsuhan}@cornell.edu Abstract Images taken from scenes

More information

Closing the Loop in Appearance-Guided Structure-from-Motion for Omnidirectional Cameras

Closing the Loop in Appearance-Guided Structure-from-Motion for Omnidirectional Cameras Closing the Loop in Appearance-Guided Structure-from-Motion for Omnidirectional Cameras Davide Scaramuzza 1, Friedrich Fraundorfer 2, Marc Pollefeys 2, and Roland Siegwart 1 1 Autonomous Systems Lab, ETH

More information

Unit 3 Multiple View Geometry

Unit 3 Multiple View Geometry Unit 3 Multiple View Geometry Relations between images of a scene Recovering the cameras Recovering the scene structure http://www.robots.ox.ac.uk/~vgg/hzbook/hzbook1.html 3D structure from images Recover

More information

Last lecture. Passive Stereo Spacetime Stereo

Last lecture. Passive Stereo Spacetime Stereo Last lecture Passive Stereo Spacetime Stereo Today Structure from Motion: Given pixel correspondences, how to compute 3D structure and camera motion? Slides stolen from Prof Yungyu Chuang Epipolar geometry

More information

1D camera geometry and Its application to circular motion estimation. Creative Commons: Attribution 3.0 Hong Kong License

1D camera geometry and Its application to circular motion estimation. Creative Commons: Attribution 3.0 Hong Kong License Title D camera geometry and Its application to circular motion estimation Author(s Zhang, G; Zhang, H; Wong, KKY Citation The 7th British Machine Vision Conference (BMVC, Edinburgh, U.K., 4-7 September

More information

Degeneracy of the Linear Seventeen-Point Algorithm for Generalized Essential Matrix

Degeneracy of the Linear Seventeen-Point Algorithm for Generalized Essential Matrix J Math Imaging Vis 00 37: 40-48 DOI 0007/s085-00-09-9 Authors s version The final publication is available at wwwspringerlinkcom Degeneracy of the Linear Seventeen-Point Algorithm for Generalized Essential

More information

A Robust Uncalibrated Visual Compass Algorithm from Paracatadioptric Line Images

A Robust Uncalibrated Visual Compass Algorithm from Paracatadioptric Line Images A Robust Uncalibrated Visual Compass Algorithm from Paracatadioptric Line Images Gian Luca Mariottini 1 and Stefano Scheggi, Fabio Morbidi, Domenico Prattichizzo 2 1 Dept. of Computer Science and Engineering

More information

A Minimal Solution to Relative Pose with Unknown Focal Length and Radial Distortion

A Minimal Solution to Relative Pose with Unknown Focal Length and Radial Distortion A Minimal Solution to Relative Pose with Unknown Focal Length and Radial Distortion Fangyuan Jiang 1 Yubin Kuang Jan Erik Solem 1, Kalle Åström 1 1 Centre for Mathematical Sciences, Lund University, Sweden

More information

Multiple-View Structure and Motion From Line Correspondences

Multiple-View Structure and Motion From Line Correspondences ICCV 03 IN PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, NICE, FRANCE, OCTOBER 003. Multiple-View Structure and Motion From Line Correspondences Adrien Bartoli Peter Sturm INRIA

More information

Surface Normal Aided Dense Reconstruction from Images

Surface Normal Aided Dense Reconstruction from Images Computer Vision Winter Workshop 26, Ondřej Chum, Vojtěch Franc (eds.) Telč, Czech Republic, February 6 8 Czech Pattern Recognition Society Surface Normal Aided Dense Reconstruction from Images Zoltán Megyesi,

More information

Feature Based Registration - Image Alignment

Feature Based Registration - Image Alignment Feature Based Registration - Image Alignment Image Registration Image registration is the process of estimating an optimal transformation between two or more images. Many slides from Alexei Efros http://graphics.cs.cmu.edu/courses/15-463/2007_fall/463.html

More information

Structure from motion

Structure from motion Structure from motion Structure from motion Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates?? R 1,t 1 R 2,t 2 R 3,t 3 Camera 1 Camera

More information

A Factorization Based Self-Calibration for Radially Symmetric Cameras

A Factorization Based Self-Calibration for Radially Symmetric Cameras A Factorization Based Self-Calibration for Radially Symmetric Cameras Srikumar Ramalingam, Peter Sturm, Edmond Boyer To cite this version: Srikumar Ramalingam, Peter Sturm, Edmond Boyer. A Factorization

More information

Wide Baseline Matching using Triplet Vector Descriptor

Wide Baseline Matching using Triplet Vector Descriptor 1 Wide Baseline Matching using Triplet Vector Descriptor Yasushi Kanazawa Koki Uemura Department of Knowledge-based Information Engineering Toyohashi University of Technology, Toyohashi 441-8580, JAPAN

More information

Jump Stitch Metadata & Depth Maps Version 1.1

Jump Stitch Metadata & Depth Maps Version 1.1 Jump Stitch Metadata & Depth Maps Version 1.1 jump-help@google.com Contents 1. Introduction 1 2. Stitch Metadata File Format 2 3. Coverage Near the Poles 4 4. Coordinate Systems 6 5. Camera Model 6 6.

More information

An Iterative 5-pt Algorithm for Fast and Robust Essential Matrix Estimation

An Iterative 5-pt Algorithm for Fast and Robust Essential Matrix Estimation LUI, DRUMMOND: ITERATIVE 5-PT ALGORITHM 1 An Iterative 5-pt Algorithm for Fast and Robust Essential Matrix Estimation Vincent Lui Tom Drummond Department of Electrical & Computer Systems Engineering Monash

More information

Automatic Calibration of a Single-Projector Catadioptric Display System

Automatic Calibration of a Single-Projector Catadioptric Display System Automatic Calibration of a Single-Projector Catadioptric Display System Benjamin Astre, Laurent Sarry ERIM, Univ. Auvergne BP 38, 63001 Clermont-Fd France [astre,sarry]@u-clermont1.fr Christophe Lohou,

More information

3D Computer Vision. Structured Light II. Prof. Didier Stricker. Kaiserlautern University.

3D Computer Vision. Structured Light II. Prof. Didier Stricker. Kaiserlautern University. 3D Computer Vision Structured Light II Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de 1 Introduction

More information

Circular Motion Geometry Using Minimal Data. Abstract

Circular Motion Geometry Using Minimal Data. Abstract Circular Motion Geometry Using Minimal Data Guang JIANG, Long QUAN, and Hung-tat TSUI Dept. of Electronic Engineering, The Chinese University of Hong Kong Dept. of Computer Science, The Hong Kong University

More information

Surround Structured Lighting for Full Object Scanning

Surround Structured Lighting for Full Object Scanning Surround Structured Lighting for Full Object Scanning Douglas Lanman, Daniel Crispell, and Gabriel Taubin Brown University, Dept. of Engineering August 21, 2007 1 Outline Introduction and Related Work

More information

Camera Calibration with a Simulated Three Dimensional Calibration Object

Camera Calibration with a Simulated Three Dimensional Calibration Object Czech Pattern Recognition Workshop, Tomáš Svoboda (Ed.) Peršlák, Czech Republic, February 4, Czech Pattern Recognition Society Camera Calibration with a Simulated Three Dimensional Calibration Object Hynek

More information

Feature Trajectory Retrieval with Application to Accurate Structure and Motion Recovery

Feature Trajectory Retrieval with Application to Accurate Structure and Motion Recovery Feature Trajectory Retrieval with Application to Accurate Structure and Motion Recovery Kai Cordes, Oliver M uller, Bodo Rosenhahn, J orn Ostermann Institut f ur Informationsverarbeitung Leibniz Universit

More information

From Google Street View to 3D City Models

From Google Street View to 3D City Models From Google Street View to 3D City Models Akihiko Torii Michal Havlena Tomáš Pajdla Center for Machine Perception, Department of Cybernetics Faculty of Elec. Eng., Czech Technical University in Prague

More information

Structure from motion

Structure from motion Structure from motion Structure from motion Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates?? R 1,t 1 R 2,t R 2 3,t 3 Camera 1 Camera

More information

Hand-Eye Calibration without Hand Orientation Measurement Using Minimal Solution

Hand-Eye Calibration without Hand Orientation Measurement Using Minimal Solution Hand-Eye Calibration without Hand Orientation Measurement Using Minimal Solution Zuzana Kukelova 1 Jan Heller 1 Tomas Pajdla 2 1 Center for Machine Perception, Department of Cybernetics Faculty of Elec.

More information

Robust Multiview Reconstruction

Robust Multiview Reconstruction CENTER FOR MACHINE PERCEPTION Robust Multiview Reconstruction CZECH TECHNICAL UNIVERSITY IN PRAGUE Daniel Martinec martid1@cmp.felk.cvut.cz CTU CMP 2008 01 July 2, 2008 PhD THESIS ISSN 1213-2365 Available

More information

A Framework for 3D Pushbroom Imaging CUCS

A Framework for 3D Pushbroom Imaging CUCS A Framework for 3D Pushbroom Imaging CUCS-002-03 Naoyuki Ichimura and Shree K. Nayar Information Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba,

More information

Analytical Forward Projection for Axial Non-Central Dioptric & Catadioptric Cameras

Analytical Forward Projection for Axial Non-Central Dioptric & Catadioptric Cameras Analytical Forward Projection for Axial Non-Central Dioptric & Catadioptric Cameras Amit Agrawal, Yuichi Taguchi, and Srikumar Ramalingam Mitsubishi Electric Research Labs (MERL), Cambridge, MA, USA Abstract.

More information

Optimal Essential Matrix Estimation via Inlier-Set Maximization

Optimal Essential Matrix Estimation via Inlier-Set Maximization Optimal Essential Matrix Estimation via Inlier-Set Maximization Jiaolong Yang 1,2, Hongdong Li 2, and Yunde Jia 1 1 Beijing Laboratory of Intelligent Information Technology, Beijing Institute of Technology,

More information

Announcements. Motion. Structure-from-Motion (SFM) Motion. Discrete Motion: Some Counting

Announcements. Motion. Structure-from-Motion (SFM) Motion. Discrete Motion: Some Counting Announcements Motion HW 4 due Friday Final Exam: Tuesday, 6/7 at 8:00-11:00 Fill out your CAPES Introduction to Computer Vision CSE 152 Lecture 20 Motion Some problems of motion 1. Correspondence: Where

More information

Computer Vision I - Appearance-based Matching and Projective Geometry

Computer Vision I - Appearance-based Matching and Projective Geometry Computer Vision I - Appearance-based Matching and Projective Geometry Carsten Rother 01/11/2016 Computer Vision I: Image Formation Process Roadmap for next four lectures Computer Vision I: Image Formation

More information

Multiview 3D tracking with an Incrementally. Constructed 3D model

Multiview 3D tracking with an Incrementally. Constructed 3D model Multiview 3D tracking with an Incrementally Tomáš Svoboda with Karel Zimmermann and Petr Doubek svoboda@cmp.felk.cvut.cz Czech Technical University Prague, Center for Machine Perception http://cmp.felk.cvut.cz

More information

3D Sensing and Reconstruction Readings: Ch 12: , Ch 13: ,

3D Sensing and Reconstruction Readings: Ch 12: , Ch 13: , 3D Sensing and Reconstruction Readings: Ch 12: 12.5-6, Ch 13: 13.1-3, 13.9.4 Perspective Geometry Camera Model Stereo Triangulation 3D Reconstruction by Space Carving 3D Shape from X means getting 3D coordinates

More information

Calibration of a Different Field-of-view Stereo Camera System using an Embedded Checkerboard Pattern

Calibration of a Different Field-of-view Stereo Camera System using an Embedded Checkerboard Pattern Calibration of a Different Field-of-view Stereo Camera System using an Embedded Checkerboard Pattern Pathum Rathnayaka, Seung-Hae Baek and Soon-Yong Park School of Computer Science and Engineering, Kyungpook

More information

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry 55:148 Digital Image Processing Chapter 11 3D Vision, Geometry Topics: Basics of projective geometry Points and hyperplanes in projective space Homography Estimating homography from point correspondence

More information

3D object recognition used by team robotto

3D object recognition used by team robotto 3D object recognition used by team robotto Workshop Juliane Hoebel February 1, 2016 Faculty of Computer Science, Otto-von-Guericke University Magdeburg Content 1. Introduction 2. Depth sensor 3. 3D object

More information

PART A Three-Dimensional Measurement with iwitness

PART A Three-Dimensional Measurement with iwitness PART A Three-Dimensional Measurement with iwitness A1. The Basic Process The iwitness software system enables a user to convert two-dimensional (2D) coordinate (x,y) information of feature points on an

More information