Towards a practical simplex method for second order cone programming

Size: px
Start display at page:

Download "Towards a practical simplex method for second order cone programming"

Transcription

1 Towards a practical simplex method for second order cone programming Kartik Krishnan Department of Computing and Software McMaster University Joint work with Gábor Pataki (UNC), Neha Gupta (IIT Delhi), and Tamás Terlaky (Mac) INFORMS Annual Meeting Denver Oct 26, 2004

2 Overview Second Order Cone Programming (SOCP) Contrast simplex-like approaches and IPMs for conic optimization The geometry of SOCP Simplex algorithm for SOCP Special case: Simplex method for LP Properties of the algorithm Preliminary computational results Conclusions and future work 1

3 Second order cone optimization Primal min c T 1 x 1 + c T 2 x c T r x r A 1 x 1 + A 2 x A r x r = b, (SOCP) x i K i. Dual max b T y A T i y + s i = c i, i = 1,..., r, s i K i. (SOCD) Notation A = (A 1, A 2,..., A r ) R m n with full row rank. K = K 1... K r. Each K i = { x R n i : x 1 of size n i, i = 1,..., r. x 2:ni } is a second order cone 2

4 Optimality conditions (x, y, s ) are optimal iff Ax = b, x K, A T y + s = c, s K, x i s i = 0, i = 1,..., r. (CS) (PF) (DF) For an SOCP cone in R n x s = ( x T s x(1)s(2 : n) + s(1)x(2 : n) ). For any cone K x K, s K, x T s = 0 x s = 0. 3

5 Eigenvalues and Eigenvectors Given x R n, we have ( x = 1 2 ( x 1 x 2:n ) 1; x ) 2:n + 1 x 2:n 2 ( x 1 + x 2:n ) = λ min ( x)v min ( x) + λ max ( x)v max ( x). Index classification: Given x i K i we have i O (zero blocks) if λ max ( x i ) = 0. i R (boundary blocks) if λ min ( x i ) = 0. i I (interior blocks) if λ min ( x i ) > 0. ( 1; ) x 2:n x 2:n 4

6 Contrast simplex and IPMs for CP I. Start Extreme Points Start Central Path Our Algorithm Simplex Method Finish Interior Point Method Finish Feasible Direction Method Interior Point Methods deal with matrices of full rank. In the simplex method, the rank of the extreme points satisfy (1) r <= m (Linear Programming) (2) r(r+1)/2 <= m (Semidefinite Programming) 5

7 Contrast simplex and IPMs for CP II. Why a simplex method for conic programming?. 1. Listed as an important open problem in conic programming. 2. Warm start after branching or the addition of cutting planes using the dual simplex method. 3. It is possible to do every simplex iteration more quickly than an IPM iteration using fast basis LU updates to factorize the basis matrix. 6

8 Terminology I. Given a closed convex cone K R n. Consider x K Lineality space: B x = {d R n : x ± ǫd K, ǫ > 0}. Tangent space: T x = { d R n : dist( x ± ǫd, K) = O(ǫ 2 ), ǫ > 0 }. Residual space: R x = T x \ B x. 7

9 Terminology II. Cone of feasible directions: Tangent cone: dir( x, K) = (K + B x ) = {d R n : x + ǫd K, ǫ > 0}. TC( x, K) = cl(dir( x, K)) = { d R n : dist( x + ǫd, K) = O(ǫ 2 ), ǫ > 0 }. Null space: N = {x R n : Ax = 0}. 8

10 Demo Given x i R n i on the boundary of the SOCP cone K i. B xi = α x i for α R. T xi = lin ( B xi ( 0 {( 0 w ) : w T x 2:ni = 0 Note x i + ǫ / K w i. ( ) ( 0 However x i + ǫ + ǫ w ) ) }). int(k i ). 9

11 Notions of nondegeneracy A feasible x in (SOCP) is c-nondegenerate This is a generic property. T x + N = R n. f-nondegenerate B x + N = R n. Extreme point B x N = {0}. 10

12 Simplex algorithm for SOCP I. Given a feasible c-nondegenerate x = ( x I ; x R ; x O ) in (SOCP). Indices i I and j R are ranked on λ min ( x i ) and x j1 respectively. 1. Select basis: Construct the following basis elements: Decompose x = M B x B + M N x N, where M B R n m and M N R n (n m). M B is chosen with Range(M B ) T x such that A B = AM B is a nonsingular basis matrix of size m. Also, c B = M T B c. Let B,N be the index set of cones K i,i = 1,..., r with columns in M B and M N respectively. (Note: B N φ). 2. Construct dual solution: Solve A T B y = c B for ȳ. Compute s i = c i A T i ȳi, i N. (Note: s i = 0, i / N). 11

13 Simplex algorithm for SOCP II. 3. Pricing: Compute α = max{ λ min ( s i ) : s i / K i, i N}. β = max{ x T i s i : s i K i, i N}. If α = β = 0 STOP; ( x, ȳ, s) is an optimal solution. Else k = { an index s.t. α = λmin ( s k ) if α > β. an index s.t. β = x T k s k if α < β. 4. Find improving direction: Improving component: Compute d N R n where d Ni = min d =1 d TC( x k,k ) st k d k (IC) if i = k 0 for i = 1,..., r and i k. (Note: dir( x k, K k ) is not CLOSED!) 12

14 Simplex algorithm for SOCP III. 4. Find improving direction (continued): Centering component: Construct d C R n satisfying d Ci = (α;0) i R B, a nonzero subset of R xi Range(A B ) (α;0) i = k if k R 0 otherwise with α > 0 chosen so that s T k ( d N + d C ) < 0. Basic component: Compute d B R m by solving A B d B = (Ad N + Ad C ). The improving direction d = (M B d B + d C + d N ). 13

15 Simplex algorithm for SOCP IV. 5. Line search: Compute ᾱ where ᾱ = max{α i : x i + α i d i K i, i = 1,..., r}. If ᾱ = the primal is unbounded. STOP. Else set x = x + ᾱ d and return to step 1. (Note: The new x is assumed to be c-nondegenerate). 14

16 Computing the improving component I. The solution d Nk to (IC) is If k O: d Nk = s k s k if λ max ( s k ) < 0 v min ( s k ) if λ min ( s k ) < 0 and λ max ( s k ) 0 0 if s k K k If k I: d Nk = s k s k if s k 0 0 if s k = 0 15

17 Computing the improving component II. If k R: We have TC( x k, K k ) = {d R n k : x 1 d 1 n k j=2 x jd j 0} In this case d Nk is d Nk = 0 if s k = ( x 1 ; x 2:nk ) min d =1, d TC( x k,k ) st k d otherwise k 16

18 Special case: Simplex method for LP 1. The initial iterate is an nondegenerate extreme point solution. If this iterate is not an extreme point, the method is instead a feasible direction method. 2. Given a non-degenerate extreme point, the simplex method chooses the basis matrix as A B = A(:,support( x)). This is nonsingular with Range(A B ) = B x. 3. For the improving direction d N = e k (k is the index for which s i is the most negative) and d B the solution to A B d B = A k. No centering term d C is needed. The resulting direction d is along an edge of the feasible set. 17

19 Properties of the algorithm Theorem. Let {(x k, y k, s k )} be a sequence generated by the algorithm. Then for all k, x k is primal feasible. At the k-th iteration, one of the following alternative cases arises: 1. If it stops in Step 2 then x k, (y k, s k ) are primal and dual optimal solutions to (SOCP) and (SOCD) respectively. 2. If it stops in Step 5, then (SOCP) is unbounded and (SOCD) is infeasible. 3. Otherwise, if x k is also c-nondegenerate we have c T x k+1 < c T x k. 18

20 Convergence of the algorithm Some practical issues affecting convergence include: One also adds a centering term d Ci to the cones i I which are very nearly in R. This is to prevent the algorithm from getting jammed at a suboptimal point. There is also the issue of zigzagging with the algorithm. Conjecture. If {x k } contains a nondegenerate subsequence, then the algorithm with the anti-jamming safeguard either terminates in a finite number of steps, or all accumulation points of {x k } are optimal solutions to (SOCP). 19

21 Comments on the simplex algorithm The simplex algorithm for SOCP is a feasible direction method that generates search directions in the tangent cone. This direction is suitably centered so as to generate a feasible direction. The simplex iterates are not always extreme points and the search directions may traverse the interior of the feasible region. The method resembles the convex simplex method of Zangwill for minimizing a convex function over a polyhedron. The algorithm maintains primal feasibility in every iteration while dual feasibility and complementary slackness are attained at optimality. The step length calculation in Step 5 has a closed analytic expression. 20

22 Preliminary computational results Prob m n lp r Opt Obj(0) Obj(iter) Iter hs [12] (*) 10 slp (3) slp (3) slp [50 10] (*) 183 slp (3) (*) 896 slp (3) (*) 153 slp (5) slp (5) slp [10] (*) 157 slp [10] (*) 128 slp [ ] slp [ ]

23 Conclusions and future work 1. A primal simplex approach for conic optimization of which the primal simplex method for LP is a special case. 2. The simplex approach exploits the well known facial structure of SOCP problems developed in Pataki (2000). 3. We have the framework for solving conic optimization problems over LP, SOCP and SDP cones. 4. We also have a dual simplex variant which mimics the dual simplex method for LP. 5. Currently investigating fast basis inverse (LU) updates to speed up the algorithm. 6. Future use in warm start after branching or the addition of cutting planes. 22

24 References F. Alizadeh and D. Goldfarb. Second-order cone programming, Mathematical Programming, 95(2003), pp F. Alizadeh, J.P.A. Haeberly, and M.L. Overton. Complementarity and Nondegeneracy in SDP, Mathematical Programming, 77(1997), pp M.S. Bazaraa, H.D. Sherali and C.M. Shetty. Nonlinear Programming: Theory and Algorithms, 2nd edition, John Wiley K. Krishnan, G. Pataki, N. Gupta and T. Terlaky. A feasible direction method for SOCP, forthcoming. 23

25 I. Maros. Computational techniques of the simplex method. Kluwer International Series, G. Pataki. Cone-LP s and Semidefinite Programs: Geometry and a Simplex-type Method, Proceedings of the 5th IPCO conference, Springer Verlag G. Pataki. The Geometry of Semidefinite Programming, Handbook of SDP edited by H. Wolkowicz et al., Kluwer Academic Publishers, 2000, pp

Linear programming and duality theory

Linear programming and duality theory Linear programming and duality theory Complements of Operations Research Giovanni Righini Linear Programming (LP) A linear program is defined by linear constraints, a linear objective function. Its variables

More information

David G. Luenberger Yinyu Ye. Linear and Nonlinear. Programming. Fourth Edition. ö Springer

David G. Luenberger Yinyu Ye. Linear and Nonlinear. Programming. Fourth Edition. ö Springer David G. Luenberger Yinyu Ye Linear and Nonlinear Programming Fourth Edition ö Springer Contents 1 Introduction 1 1.1 Optimization 1 1.2 Types of Problems 2 1.3 Size of Problems 5 1.4 Iterative Algorithms

More information

Research Interests Optimization:

Research Interests Optimization: Mitchell: Research interests 1 Research Interests Optimization: looking for the best solution from among a number of candidates. Prototypical optimization problem: min f(x) subject to g(x) 0 x X IR n Here,

More information

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini DM545 Linear and Integer Programming Lecture 2 The Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 3. 4. Standard Form Basic Feasible Solutions

More information

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs Introduction to Mathematical Programming IE496 Final Review Dr. Ted Ralphs IE496 Final Review 1 Course Wrap-up: Chapter 2 In the introduction, we discussed the general framework of mathematical modeling

More information

A primal-dual Dikin affine scaling method for symmetric conic optimization

A primal-dual Dikin affine scaling method for symmetric conic optimization A primal-dual Dikin affine scaling method for symmetric conic optimization Ali Mohammad-Nezhad Tamás Terlaky Department of Industrial and Systems Engineering Lehigh University July 15, 2015 A primal-dual

More information

Outline. CS38 Introduction to Algorithms. Linear programming 5/21/2014. Linear programming. Lecture 15 May 20, 2014

Outline. CS38 Introduction to Algorithms. Linear programming 5/21/2014. Linear programming. Lecture 15 May 20, 2014 5/2/24 Outline CS38 Introduction to Algorithms Lecture 5 May 2, 24 Linear programming simplex algorithm LP duality ellipsoid algorithm * slides from Kevin Wayne May 2, 24 CS38 Lecture 5 May 2, 24 CS38

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

Math 5593 Linear Programming Lecture Notes

Math 5593 Linear Programming Lecture Notes Math 5593 Linear Programming Lecture Notes Unit II: Theory & Foundations (Convex Analysis) University of Colorado Denver, Fall 2013 Topics 1 Convex Sets 1 1.1 Basic Properties (Luenberger-Ye Appendix B.1).........................

More information

A PRIMAL-DUAL EXTERIOR POINT ALGORITHM FOR LINEAR PROGRAMMING PROBLEMS

A PRIMAL-DUAL EXTERIOR POINT ALGORITHM FOR LINEAR PROGRAMMING PROBLEMS Yugoslav Journal of Operations Research Vol 19 (2009), Number 1, 123-132 DOI:10.2298/YUJOR0901123S A PRIMAL-DUAL EXTERIOR POINT ALGORITHM FOR LINEAR PROGRAMMING PROBLEMS Nikolaos SAMARAS Angelo SIFELARAS

More information

Some Advanced Topics in Linear Programming

Some Advanced Topics in Linear Programming Some Advanced Topics in Linear Programming Matthew J. Saltzman July 2, 995 Connections with Algebra and Geometry In this section, we will explore how some of the ideas in linear programming, duality theory,

More information

Linear Optimization. Andongwisye John. November 17, Linkoping University. Andongwisye John (Linkoping University) November 17, / 25

Linear Optimization. Andongwisye John. November 17, Linkoping University. Andongwisye John (Linkoping University) November 17, / 25 Linear Optimization Andongwisye John Linkoping University November 17, 2016 Andongwisye John (Linkoping University) November 17, 2016 1 / 25 Overview 1 Egdes, One-Dimensional Faces, Adjacency of Extreme

More information

Linear Programming. Course review MS-E2140. v. 1.1

Linear Programming. Course review MS-E2140. v. 1.1 Linear Programming MS-E2140 Course review v. 1.1 Course structure Modeling techniques Linear programming theory and the Simplex method Duality theory Dual Simplex algorithm and sensitivity analysis Integer

More information

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 2 Review Dr. Ted Ralphs IE316 Quiz 2 Review 1 Reading for The Quiz Material covered in detail in lecture Bertsimas 4.1-4.5, 4.8, 5.1-5.5, 6.1-6.3 Material

More information

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited.

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited. page v Preface xiii I Basics 1 1 Optimization Models 3 1.1 Introduction... 3 1.2 Optimization: An Informal Introduction... 4 1.3 Linear Equations... 7 1.4 Linear Optimization... 10 Exercises... 12 1.5

More information

Lecture Notes 2: The Simplex Algorithm

Lecture Notes 2: The Simplex Algorithm Algorithmic Methods 25/10/2010 Lecture Notes 2: The Simplex Algorithm Professor: Yossi Azar Scribe:Kiril Solovey 1 Introduction In this lecture we will present the Simplex algorithm, finish some unresolved

More information

Read: H&L chapters 1-6

Read: H&L chapters 1-6 Viterbi School of Engineering Daniel J. Epstein Department of Industrial and Systems Engineering ISE 330: Introduction to Operations Research Fall 2006 (Oct 16): Midterm Review http://www-scf.usc.edu/~ise330

More information

Linear Optimization and Extensions: Theory and Algorithms

Linear Optimization and Extensions: Theory and Algorithms AT&T Linear Optimization and Extensions: Theory and Algorithms Shu-Cherng Fang North Carolina State University Sarai Puthenpura AT&T Bell Labs Prentice Hall, Englewood Cliffs, New Jersey 07632 Contents

More information

Section Notes 5. Review of Linear Programming. Applied Math / Engineering Sciences 121. Week of October 15, 2017

Section Notes 5. Review of Linear Programming. Applied Math / Engineering Sciences 121. Week of October 15, 2017 Section Notes 5 Review of Linear Programming Applied Math / Engineering Sciences 121 Week of October 15, 2017 The following list of topics is an overview of the material that was covered in the lectures

More information

Open problems in convex geometry

Open problems in convex geometry Open problems in convex geometry 10 March 2017, Monash University Seminar talk Vera Roshchina, RMIT University Based on joint work with Tian Sang (RMIT University), Levent Tunçel (University of Waterloo)

More information

The Ascendance of the Dual Simplex Method: A Geometric View

The Ascendance of the Dual Simplex Method: A Geometric View The Ascendance of the Dual Simplex Method: A Geometric View Robert Fourer 4er@ampl.com AMPL Optimization Inc. www.ampl.com +1 773-336-AMPL U.S.-Mexico Workshop on Optimization and Its Applications Huatulco

More information

Dual-fitting analysis of Greedy for Set Cover

Dual-fitting analysis of Greedy for Set Cover Dual-fitting analysis of Greedy for Set Cover We showed earlier that the greedy algorithm for set cover gives a H n approximation We will show that greedy produces a solution of cost at most H n OPT LP

More information

CS675: Convex and Combinatorial Optimization Spring 2018 The Simplex Algorithm. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Spring 2018 The Simplex Algorithm. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Spring 2018 The Simplex Algorithm Instructor: Shaddin Dughmi Algorithms for Convex Optimization We will look at 2 algorithms in detail: Simplex and Ellipsoid.

More information

THEORY OF LINEAR AND INTEGER PROGRAMMING

THEORY OF LINEAR AND INTEGER PROGRAMMING THEORY OF LINEAR AND INTEGER PROGRAMMING ALEXANDER SCHRIJVER Centrum voor Wiskunde en Informatica, Amsterdam A Wiley-Inter science Publication JOHN WILEY & SONS^ Chichester New York Weinheim Brisbane Singapore

More information

Linear Programming in Small Dimensions

Linear Programming in Small Dimensions Linear Programming in Small Dimensions Lekcija 7 sergio.cabello@fmf.uni-lj.si FMF Univerza v Ljubljani Edited from slides by Antoine Vigneron Outline linear programming, motivation and definition one dimensional

More information

INTRODUCTION TO LINEAR AND NONLINEAR PROGRAMMING

INTRODUCTION TO LINEAR AND NONLINEAR PROGRAMMING INTRODUCTION TO LINEAR AND NONLINEAR PROGRAMMING DAVID G. LUENBERGER Stanford University TT ADDISON-WESLEY PUBLISHING COMPANY Reading, Massachusetts Menlo Park, California London Don Mills, Ontario CONTENTS

More information

Lecture 2. Topology of Sets in R n. August 27, 2008

Lecture 2. Topology of Sets in R n. August 27, 2008 Lecture 2 Topology of Sets in R n August 27, 2008 Outline Vectors, Matrices, Norms, Convergence Open and Closed Sets Special Sets: Subspace, Affine Set, Cone, Convex Set Special Convex Sets: Hyperplane,

More information

Open problems in convex optimisation

Open problems in convex optimisation Open problems in convex optimisation 26 30 June 2017 AMSI Optimise Vera Roshchina RMIT University and Federation University Australia Perceptron algorithm and its complexity Find an x R n such that a T

More information

Detecting Infeasibility in Infeasible-Interior-Point. Methods for Optimization

Detecting Infeasibility in Infeasible-Interior-Point. Methods for Optimization FOCM 02 Infeasible Interior Point Methods 1 Detecting Infeasibility in Infeasible-Interior-Point Methods for Optimization Slide 1 Michael J. Todd, School of Operations Research and Industrial Engineering,

More information

Properties of a Cutting Plane Method for Semidefinite Programming 1

Properties of a Cutting Plane Method for Semidefinite Programming 1 Properties of a Cutting Plane Method for Semidefinite Programming 1 Kartik Krishnan Sivaramakrishnan Department of Mathematics North Carolina State University Raleigh, NC 27695-8205 kksivara@ncsu.edu http://www4.ncsu.edu/

More information

Graphs that have the feasible bases of a given linear

Graphs that have the feasible bases of a given linear Algorithmic Operations Research Vol.1 (2006) 46 51 Simplex Adjacency Graphs in Linear Optimization Gerard Sierksma and Gert A. Tijssen University of Groningen, Faculty of Economics, P.O. Box 800, 9700

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-4: Constrained optimization Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428 June

More information

Conic Duality. yyye

Conic Duality.  yyye Conic Linear Optimization and Appl. MS&E314 Lecture Note #02 1 Conic Duality Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/

More information

Lesson 17. Geometry and Algebra of Corner Points

Lesson 17. Geometry and Algebra of Corner Points SA305 Linear Programming Spring 2016 Asst. Prof. Nelson Uhan 0 Warm up Lesson 17. Geometry and Algebra of Corner Points Example 1. Consider the system of equations 3 + 7x 3 = 17 + 5 = 1 2 + 11x 3 = 24

More information

Optimization under uncertainty: modeling and solution methods

Optimization under uncertainty: modeling and solution methods Optimization under uncertainty: modeling and solution methods Paolo Brandimarte Dipartimento di Scienze Matematiche Politecnico di Torino e-mail: paolo.brandimarte@polito.it URL: http://staff.polito.it/paolo.brandimarte

More information

Civil Engineering Systems Analysis Lecture XIV. Instructor: Prof. Naveen Eluru Department of Civil Engineering and Applied Mechanics

Civil Engineering Systems Analysis Lecture XIV. Instructor: Prof. Naveen Eluru Department of Civil Engineering and Applied Mechanics Civil Engineering Systems Analysis Lecture XIV Instructor: Prof. Naveen Eluru Department of Civil Engineering and Applied Mechanics Today s Learning Objectives Dual 2 Linear Programming Dual Problem 3

More information

Extensions of Semidefinite Coordinate Direction Algorithm. for Detecting Necessary Constraints to Unbounded Regions

Extensions of Semidefinite Coordinate Direction Algorithm. for Detecting Necessary Constraints to Unbounded Regions Extensions of Semidefinite Coordinate Direction Algorithm for Detecting Necessary Constraints to Unbounded Regions Susan Perrone Department of Mathematics and Statistics Northern Arizona University, Flagstaff,

More information

4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Mathematical programming (optimization) problem: min f (x) s.t. x X R n set of feasible solutions with linear objective function

More information

Convex Sets. CSCI5254: Convex Optimization & Its Applications. subspaces, affine sets, and convex sets. operations that preserve convexity

Convex Sets. CSCI5254: Convex Optimization & Its Applications. subspaces, affine sets, and convex sets. operations that preserve convexity CSCI5254: Convex Optimization & Its Applications Convex Sets subspaces, affine sets, and convex sets operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

4.1 Graphical solution of a linear program and standard form

4.1 Graphical solution of a linear program and standard form 4.1 Graphical solution of a linear program and standard form Consider the problem min c T x Ax b x where x = ( x1 x ) ( 16, c = 5 ), b = 4 5 9, A = 1 7 1 5 1. Solve the problem graphically and determine

More information

Stability of closedness of convex cones under linear mappings

Stability of closedness of convex cones under linear mappings Stability of closedness of convex cones under linear mappings Jonathan M. Borwein and Warren B. Moors 1 Abstract. In this paper we reconsider the question of when the continuous linear image of a closed

More information

LARGE SCALE LINEAR AND INTEGER OPTIMIZATION: A UNIFIED APPROACH

LARGE SCALE LINEAR AND INTEGER OPTIMIZATION: A UNIFIED APPROACH LARGE SCALE LINEAR AND INTEGER OPTIMIZATION: A UNIFIED APPROACH Richard Kipp Martin Graduate School of Business University of Chicago % Kluwer Academic Publishers Boston/Dordrecht/London CONTENTS Preface

More information

Part 4. Decomposition Algorithms Dantzig-Wolf Decomposition Algorithm

Part 4. Decomposition Algorithms Dantzig-Wolf Decomposition Algorithm In the name of God Part 4. 4.1. Dantzig-Wolf Decomposition Algorithm Spring 2010 Instructor: Dr. Masoud Yaghini Introduction Introduction Real world linear programs having thousands of rows and columns.

More information

Programs. Introduction

Programs. Introduction 16 Interior Point I: Linear Programs Lab Objective: For decades after its invention, the Simplex algorithm was the only competitive method for linear programming. The past 30 years, however, have seen

More information

CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension

CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension Antoine Vigneron King Abdullah University of Science and Technology November 7, 2012 Antoine Vigneron (KAUST) CS 372 Lecture

More information

Mathematical and Algorithmic Foundations Linear Programming and Matchings

Mathematical and Algorithmic Foundations Linear Programming and Matchings Adavnced Algorithms Lectures Mathematical and Algorithmic Foundations Linear Programming and Matchings Paul G. Spirakis Department of Computer Science University of Patras and Liverpool Paul G. Spirakis

More information

AMS : Combinatorial Optimization Homework Problems - Week V

AMS : Combinatorial Optimization Homework Problems - Week V AMS 553.766: Combinatorial Optimization Homework Problems - Week V For the following problems, A R m n will be m n matrices, and b R m. An affine subspace is the set of solutions to a a system of linear

More information

Marginal and Sensitivity Analyses

Marginal and Sensitivity Analyses 8.1 Marginal and Sensitivity Analyses Katta G. Murty, IOE 510, LP, U. Of Michigan, Ann Arbor, Winter 1997. Consider LP in standard form: min z = cx, subject to Ax = b, x 0 where A m n and rank m. Theorem:

More information

Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding

Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding B. O Donoghue E. Chu N. Parikh S. Boyd Convex Optimization and Beyond, Edinburgh, 11/6/2104 1 Outline Cone programming Homogeneous

More information

Linear Programming. Larry Blume. Cornell University & The Santa Fe Institute & IHS

Linear Programming. Larry Blume. Cornell University & The Santa Fe Institute & IHS Linear Programming Larry Blume Cornell University & The Santa Fe Institute & IHS Linear Programs The general linear program is a constrained optimization problem where objectives and constraints are all

More information

Bilinear Programming

Bilinear Programming Bilinear Programming Artyom G. Nahapetyan Center for Applied Optimization Industrial and Systems Engineering Department University of Florida Gainesville, Florida 32611-6595 Email address: artyom@ufl.edu

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 1 A. d Aspremont. Convex Optimization M2. 1/49 Today Convex optimization: introduction Course organization and other gory details... Convex sets, basic definitions. A. d

More information

2. Convex sets. x 1. x 2. affine set: contains the line through any two distinct points in the set

2. Convex sets. x 1. x 2. affine set: contains the line through any two distinct points in the set 2. Convex sets Convex Optimization Boyd & Vandenberghe affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

Aone-phaseinteriorpointmethodfornonconvexoptimization

Aone-phaseinteriorpointmethodfornonconvexoptimization Aone-phaseinteriorpointmethodfornonconvexoptimization Oliver Hinder, Yinyu Ye Department of Management Science and Engineering Stanford University April 28, 2018 Sections 1 Motivation 2 Why a one-phase

More information

Math Models of OR: The Simplex Algorithm: Practical Considerations

Math Models of OR: The Simplex Algorithm: Practical Considerations Math Models of OR: The Simplex Algorithm: Practical Considerations John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA September 2018 Mitchell Simplex Algorithm: Practical Considerations

More information

A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem

A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem Presented by: Ted Ralphs Joint work with: Leo Kopman Les Trotter Bill Pulleyblank 1 Outline of Talk Introduction Description

More information

Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity

Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity Marc Uetz University of Twente m.uetz@utwente.nl Lecture 5: sheet 1 / 26 Marc Uetz Discrete Optimization Outline 1 Min-Cost Flows

More information

DEGENERACY AND THE FUNDAMENTAL THEOREM

DEGENERACY AND THE FUNDAMENTAL THEOREM DEGENERACY AND THE FUNDAMENTAL THEOREM The Standard Simplex Method in Matrix Notation: we start with the standard form of the linear program in matrix notation: (SLP) m n we assume (SLP) is feasible, and

More information

Convex Optimization. Convex Sets. ENSAE: Optimisation 1/24

Convex Optimization. Convex Sets. ENSAE: Optimisation 1/24 Convex Optimization Convex Sets ENSAE: Optimisation 1/24 Today affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes

More information

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 6

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 6 EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 6 Andre Tkacenko Signal Processing Research Group Jet Propulsion Laboratory April 19, 2012 Andre Tkacenko

More information

Lecture 5: Duality Theory

Lecture 5: Duality Theory Lecture 5: Duality Theory Rajat Mittal IIT Kanpur The objective of this lecture note will be to learn duality theory of linear programming. We are planning to answer following questions. What are hyperplane

More information

What is linear programming (LP)? NATCOR Convex Optimization Linear Programming 1. Solving LP problems: The standard simplex method

What is linear programming (LP)? NATCOR Convex Optimization Linear Programming 1. Solving LP problems: The standard simplex method NATCOR Convex Optimization Linear Programming 1 Julian Hall School of Mathematics University of Edinburgh jajhall@ed.ac.uk 14 June 2016 What is linear programming (LP)? The most important model used in

More information

LECTURE 18 LECTURE OUTLINE

LECTURE 18 LECTURE OUTLINE LECTURE 18 LECTURE OUTLINE Generalized polyhedral approximation methods Combined cutting plane and simplicial decomposition methods Lecture based on the paper D. P. Bertsekas and H. Yu, A Unifying Polyhedral

More information

A PARAMETRIC SIMPLEX METHOD FOR OPTIMIZING A LINEAR FUNCTION OVER THE EFFICIENT SET OF A BICRITERIA LINEAR PROBLEM. 1.

A PARAMETRIC SIMPLEX METHOD FOR OPTIMIZING A LINEAR FUNCTION OVER THE EFFICIENT SET OF A BICRITERIA LINEAR PROBLEM. 1. ACTA MATHEMATICA VIETNAMICA Volume 21, Number 1, 1996, pp. 59 67 59 A PARAMETRIC SIMPLEX METHOD FOR OPTIMIZING A LINEAR FUNCTION OVER THE EFFICIENT SET OF A BICRITERIA LINEAR PROBLEM NGUYEN DINH DAN AND

More information

Linear Programming. Linear programming provides methods for allocating limited resources among competing activities in an optimal way.

Linear Programming. Linear programming provides methods for allocating limited resources among competing activities in an optimal way. University of Southern California Viterbi School of Engineering Daniel J. Epstein Department of Industrial and Systems Engineering ISE 330: Introduction to Operations Research - Deterministic Models Fall

More information

Linear Programming Problems

Linear Programming Problems Linear Programming Problems Two common formulations of linear programming (LP) problems are: min Subject to: 1,,, 1,2,,;, max Subject to: 1,,, 1,2,,;, Linear Programming Problems The standard LP problem

More information

Surrogate Gradient Algorithm for Lagrangian Relaxation 1,2

Surrogate Gradient Algorithm for Lagrangian Relaxation 1,2 Surrogate Gradient Algorithm for Lagrangian Relaxation 1,2 X. Zhao 3, P. B. Luh 4, and J. Wang 5 Communicated by W.B. Gong and D. D. Yao 1 This paper is dedicated to Professor Yu-Chi Ho for his 65th birthday.

More information

NATCOR Convex Optimization Linear Programming 1

NATCOR Convex Optimization Linear Programming 1 NATCOR Convex Optimization Linear Programming 1 Julian Hall School of Mathematics University of Edinburgh jajhall@ed.ac.uk 5 June 2018 What is linear programming (LP)? The most important model used in

More information

2. Convex sets. affine and convex sets. some important examples. operations that preserve convexity. generalized inequalities

2. Convex sets. affine and convex sets. some important examples. operations that preserve convexity. generalized inequalities 2. Convex sets Convex Optimization Boyd & Vandenberghe affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

Linear and Integer Programming (ADM II) Script. Rolf Möhring WS 2010/11

Linear and Integer Programming (ADM II) Script. Rolf Möhring WS 2010/11 Linear and Integer Programming (ADM II) Script Rolf Möhring WS 200/ Contents -. Algorithmic Discrete Mathematics (ADM)... 3... 4.3 Winter term 200/... 5 2. Optimization problems 2. Examples... 7 2.2 Neighborhoods

More information

New Penalty Approaches for Bilevel Optimization Problems arising in Transportation Network Design

New Penalty Approaches for Bilevel Optimization Problems arising in Transportation Network Design New Penalty Approaches for Bilevel Optimization Problems arising in Transportation Network Design Jörg Fliege, Konstantinos Kaparis, & Huifu Xu Melbourne, 2013 Contents 1 Problem Statement 2 A Slight Detour:

More information

Mixed Integer Second Order Cone Optimization (MISOCO): Cuts, Warm Start, and Rounding

Mixed Integer Second Order Cone Optimization (MISOCO): Cuts, Warm Start, and Rounding Mixed Integer Second Order Cone Optimization (MISOCO): Conic Tamás Terlaky, Mohammad Shahabsafa, Julio C. Góez, Sertalp Cay, Imre Pólik OPDGTP, Tel Aviv, Israel April 2018 1/35 Outline 1 Disjunctive Conic

More information

Constrained optimization

Constrained optimization Constrained optimization Problem in standard form minimize f(x) subject to a i (x) = 0, for i =1, 2, p c j (x) 0 for j =1, 2,,q f : R n R a i : R n R c j : R n R f(x )=, if problem is infeasible f(x )=,

More information

Linear Programming: Mathematics, Theory and Algorithms

Linear Programming: Mathematics, Theory and Algorithms Linear Programming: Mathematics, Theory and Algorithms Applied Optimization Volume 2 The titles published in this series are listed at the end of this volume. Linear Programming: Mathematics, Theory and

More information

VARIANTS OF THE SIMPLEX METHOD

VARIANTS OF THE SIMPLEX METHOD C H A P T E R 6 VARIANTS OF THE SIMPLEX METHOD By a variant of the Simplex Method (in this chapter) we mean an algorithm consisting of a sequence of pivot steps in the primal system using alternative rules

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 36 CS 473: Algorithms, Spring 2018 LP Duality Lecture 20 April 3, 2018 Some of the

More information

A Simplex-Cosine Method for Solving Hard Linear Problems

A Simplex-Cosine Method for Solving Hard Linear Problems A Simplex-Cosine Method for Solving Hard Linear Problems FEDERICO TRIGOS 1, JUAN FRAUSTO-SOLIS 2 and RAFAEL RIVERA-LOPEZ 3 1 Division of Engineering and Sciences ITESM, Campus Toluca Av. Eduardo Monroy

More information

Linear Programming. Readings: Read text section 11.6, and sections 1 and 2 of Tom Ferguson s notes (see course homepage).

Linear Programming. Readings: Read text section 11.6, and sections 1 and 2 of Tom Ferguson s notes (see course homepage). Linear Programming Learning Goals. Introduce Linear Programming Problems. Widget Example, Graphical Solution. Basic Theory: Feasible Set, Vertices, Existence of Solutions. Equivalent formulations. Outline

More information

Primal and Dual Methods for Optimisation over the Non-dominated Set of a Multi-objective Programme and Computing the Nadir Point

Primal and Dual Methods for Optimisation over the Non-dominated Set of a Multi-objective Programme and Computing the Nadir Point Primal and Dual Methods for Optimisation over the Non-dominated Set of a Multi-objective Programme and Computing the Nadir Point Ethan Liu Supervisor: Professor Matthias Ehrgott Lancaster University Outline

More information

Tribhuvan University Institute Of Science and Technology Tribhuvan University Institute of Science and Technology

Tribhuvan University Institute Of Science and Technology Tribhuvan University Institute of Science and Technology Tribhuvan University Institute Of Science and Technology Tribhuvan University Institute of Science and Technology Course Title: Linear Programming Full Marks: 50 Course No. : Math 403 Pass Mark: 17.5 Level

More information

Linear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued.

Linear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued. Linear Programming Widget Factory Example Learning Goals. Introduce Linear Programming Problems. Widget Example, Graphical Solution. Basic Theory:, Vertices, Existence of Solutions. Equivalent formulations.

More information

Optimization Methods. Final Examination. 1. There are 5 problems each w i t h 20 p o i n ts for a maximum of 100 points.

Optimization Methods. Final Examination. 1. There are 5 problems each w i t h 20 p o i n ts for a maximum of 100 points. 5.93 Optimization Methods Final Examination Instructions:. There are 5 problems each w i t h 2 p o i n ts for a maximum of points. 2. You are allowed to use class notes, your homeworks, solutions to homework

More information

Advanced Algorithms Linear Programming

Advanced Algorithms Linear Programming Reading: Advanced Algorithms Linear Programming CLRS, Chapter29 (2 nd ed. onward). Linear Algebra and Its Applications, by Gilbert Strang, chapter 8 Linear Programming, by Vasek Chvatal Introduction to

More information

Nonlinear Programming

Nonlinear Programming Nonlinear Programming SECOND EDITION Dimitri P. Bertsekas Massachusetts Institute of Technology WWW site for book Information and Orders http://world.std.com/~athenasc/index.html Athena Scientific, Belmont,

More information

George B. Dantzig Mukund N. Thapa. Linear Programming. 1: Introduction. With 87 Illustrations. Springer

George B. Dantzig Mukund N. Thapa. Linear Programming. 1: Introduction. With 87 Illustrations. Springer George B. Dantzig Mukund N. Thapa Linear Programming 1: Introduction With 87 Illustrations Springer Contents FOREWORD PREFACE DEFINITION OF SYMBOLS xxi xxxiii xxxvii 1 THE LINEAR PROGRAMMING PROBLEM 1

More information

60 2 Convex sets. {x a T x b} {x ã T x b}

60 2 Convex sets. {x a T x b} {x ã T x b} 60 2 Convex sets Exercises Definition of convexity 21 Let C R n be a convex set, with x 1,, x k C, and let θ 1,, θ k R satisfy θ i 0, θ 1 + + θ k = 1 Show that θ 1x 1 + + θ k x k C (The definition of convexity

More information

R n a T i x = b i} is a Hyperplane.

R n a T i x = b i} is a Hyperplane. Geometry of LPs Consider the following LP : min {c T x a T i x b i The feasible region is i =1,...,m}. X := {x R n a T i x b i i =1,...,m} = m i=1 {x Rn a T i x b i} }{{} X i The set X i is a Half-space.

More information

Interpretation of Dual Model for Piecewise Linear. Programming Problem Robert Hlavatý

Interpretation of Dual Model for Piecewise Linear. Programming Problem Robert Hlavatý Interpretation of Dual Model for Piecewise Linear 1 Introduction Programming Problem Robert Hlavatý Abstract. Piecewise linear programming models are suitable tools for solving situations of non-linear

More information

Simplex Algorithm in 1 Slide

Simplex Algorithm in 1 Slide Administrivia 1 Canonical form: Simplex Algorithm in 1 Slide If we do pivot in A r,s >0, where c s

More information

The Affine Scaling Method

The Affine Scaling Method MA33 Linear Programming W. J. Martin October 9, 8 The Affine Scaling Method Overview Given a linear programming problem in equality form with full rank constraint matrix and a strictly positive feasible

More information

Selected Topics in Column Generation

Selected Topics in Column Generation Selected Topics in Column Generation February 1, 2007 Choosing a solver for the Master Solve in the dual space(kelly s method) by applying a cutting plane algorithm In the bundle method(lemarechal), a

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Combinatorial Optimization G. Guérard Department of Nouvelles Energies Ecole Supérieur d Ingénieurs Léonard de Vinci Lecture 1 GG A.I. 1/34 Outline 1 Motivation 2 Geometric resolution

More information

Convex Optimization - Chapter 1-2. Xiangru Lian August 28, 2015

Convex Optimization - Chapter 1-2. Xiangru Lian August 28, 2015 Convex Optimization - Chapter 1-2 Xiangru Lian August 28, 2015 1 Mathematical optimization minimize f 0 (x) s.t. f j (x) 0, j=1,,m, (1) x S x. (x 1,,x n ). optimization variable. f 0. R n R. objective

More information

College of Computer & Information Science Fall 2007 Northeastern University 14 September 2007

College of Computer & Information Science Fall 2007 Northeastern University 14 September 2007 College of Computer & Information Science Fall 2007 Northeastern University 14 September 2007 CS G399: Algorithmic Power Tools I Scribe: Eric Robinson Lecture Outline: Linear Programming: Vertex Definitions

More information

Convex Optimization. 2. Convex Sets. Prof. Ying Cui. Department of Electrical Engineering Shanghai Jiao Tong University. SJTU Ying Cui 1 / 33

Convex Optimization. 2. Convex Sets. Prof. Ying Cui. Department of Electrical Engineering Shanghai Jiao Tong University. SJTU Ying Cui 1 / 33 Convex Optimization 2. Convex Sets Prof. Ying Cui Department of Electrical Engineering Shanghai Jiao Tong University 2018 SJTU Ying Cui 1 / 33 Outline Affine and convex sets Some important examples Operations

More information

AMATH 383 Lecture Notes Linear Programming

AMATH 383 Lecture Notes Linear Programming AMATH 8 Lecture Notes Linear Programming Jakob Kotas (jkotas@uw.edu) University of Washington February 4, 014 Based on lecture notes for IND E 51 by Zelda Zabinsky, available from http://courses.washington.edu/inde51/notesindex.htm.

More information

DETERMINISTIC OPERATIONS RESEARCH

DETERMINISTIC OPERATIONS RESEARCH DETERMINISTIC OPERATIONS RESEARCH Models and Methods in Optimization Linear DAVID J. RADER, JR. Rose-Hulman Institute of Technology Department of Mathematics Terre Haute, IN WILEY A JOHN WILEY & SONS,

More information

Integer Programming Theory

Integer Programming Theory Integer Programming Theory Laura Galli October 24, 2016 In the following we assume all functions are linear, hence we often drop the term linear. In discrete optimization, we seek to find a solution x

More information

Improved Gomory Cuts for Primal Cutting Plane Algorithms

Improved Gomory Cuts for Primal Cutting Plane Algorithms Improved Gomory Cuts for Primal Cutting Plane Algorithms S. Dey J-P. Richard Industrial Engineering Purdue University INFORMS, 2005 Outline 1 Motivation The Basic Idea Set up the Lifting Problem How to

More information

Applied Integer Programming

Applied Integer Programming Applied Integer Programming D.S. Chen; R.G. Batson; Y. Dang Fahimeh 8.2 8.7 April 21, 2015 Context 8.2. Convex sets 8.3. Describing a bounded polyhedron 8.4. Describing unbounded polyhedron 8.5. Faces,

More information