CHAPTER 3 ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM

Size: px
Start display at page:

Download "CHAPTER 3 ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM"

Transcription

1 33 CHAPTER 3 ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM The objective of an ANFIS (Jang 1993) is to integrate the best features of Fuzzy Systems and Neural Networks. ANFIS is one of the best tradeoffs between neural and fuzzy systems, providing smoothness, due to the Fuzzy Control (FC) interpolation and adaptability due to the Neural Network Back propagation. 3.1 INTRODUCTION TO FUZZY LOGIC Two distinct forms of problem knowledge exist for many problems: Objective knowledge, which is used in all engineering problem formulations (e.g. mathematical models), and Subjective knowledge, which represents linguistic information that is usually impossible to quantify using traditional mathematics (e.g. rules, expert information, design requirements) (Mendel 1995). To solve most of the real world problems, both types of knowledge must be required. The two forms of knowledge can be coordinated in a logical way using fuzzy logic (FL). A fuzzy logic system is unique in that it is able to simultaneously handle numerical data and linguistic knowledge (Ross 2005). The founding father of entire field of FL is Dr. Lotfi Zadeh. In his paper, Zadeh (1965) states, As the complexity of a system increases, our ability to make precise and yet significant statements about its behavior diminishes until a threshold is reached beyond which precision and significance (or relevance) become almost mutually exclusive characteristics or, The closer one looks at a real world problem, the fuzzier becomes its solution.

2 FUZZY LOGIC SYSTEM (FLS) In general, a FLS is a nonlinear mapping of an input data (feature) vector into a scalar output data. The richness of the FL is that there are enormous numbers of possibilities that leads to lots of different mappings. This richness does require a careful understanding of FL and the elements that comprise a FLS. FLS contains four components: fuzzifier, rules, inference engine, and defuzzifier. Once the rules have been established, a FLS can be viewed as a mapping from inputs to outputs, and this mapping can be expressed quantitatively as y = f(x). Figure 3.1, depicts a FLS that is widely used in fuzzy logic controllers. RULES Crisp Inputs FUZZIFIER Crisp Outputs DEFUZZIFIER Fuzzy Input Sets INFERENCE Fuzzy Output Sets Figure 3.1 Schematic Diagram of a Fuzzy Inference System Fuzzy inference is the process which maps the given input into the output using fuzzy logic. Any fuzzy inference system can be simply represented in four integrating blocks: 1) Fuzzification: The process of transforming any crisp value to the corresponding linguistic variable (fuzzy value) based on the appropriate membership function.

3 35 2) Knowledge base: Contains membership functions definitions and the necessary IF-THEN rules. 3) Inference engine: This simulates human decision making through using implication and aggregation processes. 4) Defuzzification: The process of transforming the fuzzy output into a crisp numerical value. Rules may be provided by experts or can be extracted from numerical data. In either case, engineering rules are expressed as a collection of IF THEN statements, e.g. IF u 1 is very warm and u 2 is quite low, THEN turn v somewhat to right. This rule reveals that it needs an understanding of: 1) Linguistic variables versus numerical values of a variable (e.g. very warm versus 40 o C); 2) Quantifying linguistic variables (e.g., u 1 may have a finite number of linguistic terms associated with it, ranging from extremely hot to extremely cold), which is done using fuzzy membership functions; 3) Logical connections for linguistic variables (e.g., and, or etc.,); and 4) Implications, i.e., IF A THEN B. Additionally understanding of combining more than one rule is required. The fuzzifier maps crisp numbers into fuzzy sets. It is needed in order to activate rules which are in terms of linguistic variables, which have fuzzy sets associated with them. The inference engine of the FLS maps input fuzzy sets into output fuzzy sets. It handles the way in which rules are combined, just as humans use many different types of inferential procedures

4 36 to help us understand things or to make decisions. In many applications, crisp number must be obtained at the output of a FLS. The defuzzifier maps output sets into crisp numbers. 3.3 FUZZY SET THEORY Crisp Sets A crisp set A in a universe of discourse U (which provides the set of allowable values for a variable) can be defined by listing all of its members or by identifying the elements condition by which x x A A. One way to do the latter is to specify a ; thus A can be defined as A = {x x meets some condition}. Alternatively, we can introduce a zero-one membership function for A, denoted A (x), such that A A (x) = 1 if = 0 if x A x A and A (x). Subset A is mathematically equivalent to its membership function A (x) in the sense that knowing A (x) is the same as knowing A itself Fuzzy Sets A fuzzy set F defined on a universe of discourse U is characterized by a membership function F (x) which takes on values in the intervals [0, 1]. A fuzzy set is a generalization of an ordinary subset (i.e. a crisp subset) whose membership function only takes in two values, zero or unity. A membership function provides a measure of the degree of similarity of an element in U to the fuzzy subset. In FL an element can reside in more than one set to different degrees of similarity. This cannot occur in crisp set theory. A fuzzy set F in U may be represented as a set of ordered pairs of generic element x and its grade of membership function: F {( x, ( x)) x U}. When U is continuous, F is F commonly written as F ( x) x. In this equation the integral sign does U F not denote integration; it denotes the collection of all points xu with associated membership function F (x). When U is discrete, F is commonly

5 37 written as F F ( x) x. In this equation the summation sign denotes the U collection of all points xu with associated membership function F (x); hence it denotes the set theoretical operation of union. The slash in these expressions associates the elements in U with their membership grades, where F (x) > Linguistic Variables Linguistic variables are variable whose values are not numbers but words or sentences in a natural or artificial language. In general, linguistic variables are less specific than numerical ones. Let u denote the names of linguistic variable, numerical values of a linguistic variable u are denoted x, where x U. Sometimes x and u are interchangeably used. A linguistic variable is usually decomposed into a set of terms, T(u), which covers its universe of discourse Membership Functions Membership functions, F (x) for the most part, associated with terms that appear in the antecedents or consequents of rules, or in phrases. The most commonly used shapes for membership functions are triangular, trapezoidal, piecewise, linear and Gaussian. Usually, membership functions are chosen by the user arbitrarily, based on the user s experience; hence, the membership function for two users could be quite different depending upon their experiences, perspectives, cultures, etc. Figure 3.2 shows a sample membership function for two sets. Fuzzy logic was introduced as a superset of standard Boolean logic by considering the fuzzy values that ranges from 0 to 1 instead of only considering two values true or false and applying the same logic operators such as AND, OR, NOT, etc. Thus the concept is extended from two valued

6 38 logic to multi-valued logic, which have many applications (Babulal 2006, Babulal 2008, Behera 2009, Bonatto 1998, Boris 2006, Chilukuri 2004, Dash 2000, Elmitwally 2000, Farghal 2002, Grey 2005, Ibrahim 2001, Ibrahim 2002, Jain 2000, Ko 2004, Ko 2007, Kochukuttan 1997, Liang 2002, Masoum 2004, Morsi 2008, Morsi 2008a, Morsi 2008b, Morsi 2009, Nawi 2003, Saroj 2010, Zhang 2005, Zhu 2004). H (h): most people Short Medium Tall H (h): Professional basketball players Short Medium Tall Height Height (a) (b) Figure 3.2 Membership Function for T(Height) = {Short Men, Medium Men, Tall Men). (a) Most People s Membership Functions and (b) Professional Basketball Player s Membership Function The conditional statement commonly known as IF-THEN rules can be easily formulated using fuzzy logic. Rules consist of two parts: the antecedent or the IF part, and the consequent or the THEN part. The IF- THEN rule can take the following form: IF x is A and y is B THEN z is C where, A, B and C are linguistic variables whose values are sentences in a natural language.

7 39 The main disadvantage of fuzzy classifier is that system time response slows down with the increase in number of rules. If the system does not perform satisfactorily, then the rules are reset again to obtain efficient results i.e. it is not adaptable according to the variation in data. The accuracy of the system is dependent on the knowledge and experience of human experts. The rules should be updated and weighting factors in the fuzzy sets should be refined with time. Neural networks, genetic algorithms, swarm optimization techniques, etc. can be used to for fine tuning of fuzzy logic control systems. 3.4 NEURAL NETWORKS A neural network is a powerful data modeling tool that is able to capture and represent complex input/output relationships. The motivation for the development of neural network technology stemmed from the desire to develop an artificial system that could perform "intelligent" tasks similar to those performed by the human brain. Neural networks resemble the human brain in the following two ways: 1. A neural network acquires knowledge through learning. 2. A neural network's knowledge is stored within inter-neuron connection strengths known as synaptic weights. The true power and advantage of neural networks lies in their ability to represent both linear and non-linear relationships and in their ability to learn these relationships directly from the data being modeled. Traditional linear models are simply inadequate when it comes to modeling data that contains non-linear characteristics.

8 40 Figure 3.3 Multi-Layer Perceptron Neural Network The most common neural network model is the multi-layer perceptron (MLP). This type of neural network is known as a supervised network because it requires a desired output in order to learn. The goal of this type of network is to create a model that correctly maps the input to the output using historical data so that the model can then be used to produce the output when the desired output is unknown. A graphical representation of an MLP is shown in Figure 3.3. In a two hidden layer MLP, the inputs are fed into the input layer and get multiplied by interconnection weights as they are passed from the input layer to the first hidden layer. Within the first hidden layer, they get summed up and then processed by a nonlinear function (usually the hyperbolic tangent). As the processed data leaves the first hidden layer, again it gets multiplied by interconnection weights, then summed and processed by the second hidden layer. Finally the data is multiplied by interconnection weights then processed one last time within the output layer to produce the neural network output.

9 41 The MLP and many other neural networks learn using an algorithm called back-propagation. With back-propagation, the input data is repeatedly presented to the neural network. With each presentation the output of the neural network is compared to the desired output and an error is computed. This error is then fed back (back-propagated) to the neural network and used to adjust the weights such that the error decreases with each iteration and the neural model gets closer and closer to producing the desired output. This process is known as "training". Neural networks have been successfully applied to a broad spectrum of data-intensive applications. Artificial Neural Networks (ANN) is among the oldest Artificial Intelligence techniques; they have been around the power research arena for quite some time. ANNs mimic the neural brain structure of humans. This structure consists of simple arithmetic units connected in highly complex layer architecture. ANNs are capable of representing complex (nonlinear) functions, and they learn these functions through example. Neural networks have been applied extensively in Power Quality research. Major applications include Identifying Power Quality events from poor power quality ones Modeling the patterns of harmonic production from individual fluorescent lighting systems Estimating harmonic distortions and power quality in power networks Identifying and recognizing power quality events using the wavelet transform in conjunction with neural networks Identifying high-impedance fault, fault-like load, and normal load current patterns

10 42 Analyzing harmonic distortion while avoiding the effects of noise and sub-harmonics Developing screening tools for the power system engineers, to address power quality issues 3.5 ANFIS ARCHITECTURE ANFIS is a hybrid system incorporating the learning abilities of ANN and excellent knowledge representation and inference capabilities of fuzzy logic (Jang 1993) that have the ability to self modify their membership function to achieve a desired performance. An adaptive network, which subsumes almost all kinds of neural network paradigms, can be adopted to interpret the fuzzy inference system. ANFIS utilizes the hybrid-learning rule and manage complex decision-making or diagnosis systems. ANFIS has been proven to be an effective tool for tuning the membership functions of fuzzy inference systems. Ibrahim (2001) proposed an ANFIS based system to learn power quality signature waveform. It was shown that adaptive fuzzy systems are very successful in learning power quality waveform. Rasli (2009), Rathina (2009) and Rathina (2010) have proposed ANFIS based systems for power quality assessment. ANFIS is a simple data learning technique that uses a fuzzy inference system model to transform a given input into a target output. This prediction involves membership functions, fuzzy logic operators and if-then rules. There are two types of fuzzy system, commonly known as the Mamdani and Sugeno models. There are five main processing stages in the ANFIS operation, including input fuzzification, application of fuzzy operators, application method, output aggregation, and defuzzification.

11 43 ANFIS utilizes Representation of prior knowledge into a set of constraints (network topology) to reduce the optimization search space, from Fuzzy Systems and adaptation of back propagation to structured network to automate FC parametric tuning, from Neural Networks, to improve performance. The design objective of the fuzzy controller is to learn and achieve good performance in the presence of disturbances and uncertainties. The design of membership functions is done by the ANFIS batch learning technique, which amounts to tune a FIS with back propagation algorithm based on a collection of input output data pairs. Generally, ANFIS is a multilayer feed forward network in which each node performs a particular function (node function) on incoming signals. For simplicity, we consider two inputs 'x' and 'y' and one output 'z '. Suppose that the rule base contains two fuzzy if-then rules of Takagi and Sugeno type (Jang 1993): Rule 1: IF x is A1 and y is B1 THEN f 1 =P 1 x+q 1 y+r 1 Rule 2: IF x is A2 and y is B2 THEN f 2 =P 2 x+q 2 y+r 2 (3.1) Figure 3.4 ANFIS Architecture

12 44 The ANFIS architecture is a five layer feed forward network as shown in Figure 3.4. An adaptive network (Jang 1993) is a multilayer feed forward network in which each node performs a particular function (node function) on incoming signals as well as a set of parameters pertaining to this node. The formulas for the node functions may vary from node to node, and the choice of each node function depends on the overall input-output function which the adaptive network is required to carry out. Note that the links in an adaptive network only indicate the flow direction of signals between nodes; no weights are associated with the links. To reflect different adaptive capabilities, we use both circle and square nodes in an adaptive network. A square node (adaptive node) has parameters while a circle node (fixed node) has none. The parameter set of an adaptive network is the union of the parameter sets of each adaptive node. In order to achieve a desired input-output mapping, these parameters are updated according to given training data and a gradient-based learning procedure is used. Layer 1: Every node in this layer is a square node with a node function (the membership value of the premise part) O 1 i Ai ( x) (3.2) Where, x is the input to the node i, and A i is the linguistic label associated with this node function. Layer 2: Every node in this layer is a circle node labelled which multiplies the incoming signals. Each node output represents the firing strength of a rule. 2 Oi Ai ( x) Bi ( y) where i = 1:2 (3.3)

13 45 Layer 3: Every node in this layer is a circle node labeled N (normalization). The i th node calculates the ratio of the i th rule s firing strength to the sum of all firing strengths. O 3 i Wi Wi W, where i=1: 2 (3.4) W 1 2 function Layer 4: Every node in this layer is a square node with a node O 4 i Wi fi Wi ( Pi x Qi y Ri ), where i=1:2 (3.5) Layer 5: The single node in this layer is a circle node labeled that computes the overall output as the summation of all incoming signals 5 O i = System output, where i = 1:2 (3.6) Equation (3.6) represents the overall output of the ANFIS, which is functionally equivalent to the fuzzy system in (Morsi 2008a). 3.6 ANFIS LEARNING ALGORITHM In this subsection, the hybrid learning algorithm is explained briefly. The ANFIS Learning Algorithm uses a two-pass learning cycle. In the forward pass, S1 is unmodified and S2 is computed using a Least Squared Error (LSE) algorithm (Off-line Learning). In the Backward pass, S2 is unmodified and S1 is computed using a gradient descent algorithm (usually Back Propagation).

14 46 Figure 3.5 ANFIS Structure From the ANFIS structure shown in Figure 3.5, it has been observed that when the values of the premise parameters are fixed, the overall output can be expressed as a linear combination of the consequent parameters. The hybrid learning algorithm is a combination of both back propagation and the least square algorithms. Each epoch of the hybrid learning algorithm consists of two passes, namely forward pass and backward pass. In the forward pass of the hybrid learning algorithm, functional signals go forward up to layer 4 and the consequent parameters are identified by the least squares estimate. The back propagation is used to identify the nonlinear parameters (premise parameters) and the least square is used for the linear parameters in the consequent parts.

Unit V. Neural Fuzzy System

Unit V. Neural Fuzzy System Unit V Neural Fuzzy System 1 Fuzzy Set In the classical set, its characteristic function assigns a value of either 1 or 0 to each individual in the universal set, There by discriminating between members

More information

CHAPTER 3 FUZZY RULE BASED MODEL FOR FAULT DIAGNOSIS

CHAPTER 3 FUZZY RULE BASED MODEL FOR FAULT DIAGNOSIS 39 CHAPTER 3 FUZZY RULE BASED MODEL FOR FAULT DIAGNOSIS 3.1 INTRODUCTION Development of mathematical models is essential for many disciplines of engineering and science. Mathematical models are used for

More information

European Journal of Science and Engineering Vol. 1, Issue 1, 2013 ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM IDENTIFICATION OF AN INDUCTION MOTOR

European Journal of Science and Engineering Vol. 1, Issue 1, 2013 ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM IDENTIFICATION OF AN INDUCTION MOTOR ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM IDENTIFICATION OF AN INDUCTION MOTOR Ahmed A. M. Emam College of Engineering Karrary University SUDAN ahmedimam1965@yahoo.co.in Eisa Bashier M. Tayeb College of Engineering

More information

Lecture notes. Com Page 1

Lecture notes. Com Page 1 Lecture notes Com Page 1 Contents Lectures 1. Introduction to Computational Intelligence 2. Traditional computation 2.1. Sorting algorithms 2.2. Graph search algorithms 3. Supervised neural computation

More information

MODELING FOR RESIDUAL STRESS, SURFACE ROUGHNESS AND TOOL WEAR USING AN ADAPTIVE NEURO FUZZY INFERENCE SYSTEM

MODELING FOR RESIDUAL STRESS, SURFACE ROUGHNESS AND TOOL WEAR USING AN ADAPTIVE NEURO FUZZY INFERENCE SYSTEM CHAPTER-7 MODELING FOR RESIDUAL STRESS, SURFACE ROUGHNESS AND TOOL WEAR USING AN ADAPTIVE NEURO FUZZY INFERENCE SYSTEM 7.1 Introduction To improve the overall efficiency of turning, it is necessary to

More information

FUZZY INFERENCE SYSTEMS

FUZZY INFERENCE SYSTEMS CHAPTER-IV FUZZY INFERENCE SYSTEMS Fuzzy inference is the process of formulating the mapping from a given input to an output using fuzzy logic. The mapping then provides a basis from which decisions can

More information

ANFIS: ADAPTIVE-NETWORK-BASED FUZZY INFERENCE SYSTEMS (J.S.R. Jang 1993,1995) bell x; a, b, c = 1 a

ANFIS: ADAPTIVE-NETWORK-BASED FUZZY INFERENCE SYSTEMS (J.S.R. Jang 1993,1995) bell x; a, b, c = 1 a ANFIS: ADAPTIVE-NETWORK-ASED FUZZ INFERENCE SSTEMS (J.S.R. Jang 993,995) Membership Functions triangular triangle( ; a, a b, c c) ma min = b a, c b, 0, trapezoidal trapezoid( ; a, b, a c, d d) ma min =

More information

FUZZY LOGIC TECHNIQUES. on random processes. In such situations, fuzzy logic exhibits immense potential for

FUZZY LOGIC TECHNIQUES. on random processes. In such situations, fuzzy logic exhibits immense potential for FUZZY LOGIC TECHNIQUES 4.1: BASIC CONCEPT Problems in the real world are quite often very complex due to the element of uncertainty. Although probability theory has been an age old and effective tool to

More information

CHAPTER 5 FUZZY LOGIC CONTROL

CHAPTER 5 FUZZY LOGIC CONTROL 64 CHAPTER 5 FUZZY LOGIC CONTROL 5.1 Introduction Fuzzy logic is a soft computing tool for embedding structured human knowledge into workable algorithms. The idea of fuzzy logic was introduced by Dr. Lofti

More information

Fuzzy Reasoning. Outline

Fuzzy Reasoning. Outline Fuzzy Reasoning Outline Introduction Bivalent & Multivalent Logics Fundamental fuzzy concepts Fuzzification Defuzzification Fuzzy Expert System Neuro-fuzzy System Introduction Fuzzy concept first introduced

More information

CHAPTER 4 FREQUENCY STABILIZATION USING FUZZY LOGIC CONTROLLER

CHAPTER 4 FREQUENCY STABILIZATION USING FUZZY LOGIC CONTROLLER 60 CHAPTER 4 FREQUENCY STABILIZATION USING FUZZY LOGIC CONTROLLER 4.1 INTRODUCTION Problems in the real world quite often turn out to be complex owing to an element of uncertainty either in the parameters

More information

Why Fuzzy Fuzzy Logic and Sets Fuzzy Reasoning. DKS - Module 7. Why fuzzy thinking?

Why Fuzzy Fuzzy Logic and Sets Fuzzy Reasoning. DKS - Module 7. Why fuzzy thinking? Fuzzy Systems Overview: Literature: Why Fuzzy Fuzzy Logic and Sets Fuzzy Reasoning chapter 4 DKS - Module 7 1 Why fuzzy thinking? Experts rely on common sense to solve problems Representation of vague,

More information

7. Decision Making

7. Decision Making 7. Decision Making 1 7.1. Fuzzy Inference System (FIS) Fuzzy inference is the process of formulating the mapping from a given input to an output using fuzzy logic. Fuzzy inference systems have been successfully

More information

Neuro-fuzzy systems 1

Neuro-fuzzy systems 1 1 : Trends and Applications International Conference on Control, Engineering & Information Technology (CEIT 14), March 22-25, Tunisia Dr/ Ahmad Taher Azar Assistant Professor, Faculty of Computers and

More information

Deciphering Data Fusion Rule by using Adaptive Neuro-Fuzzy Inference System

Deciphering Data Fusion Rule by using Adaptive Neuro-Fuzzy Inference System Deciphering Data Fusion Rule by using Adaptive Neuro-Fuzzy Inference System Ramachandran, A. Professor, Dept. of Electronics and Instrumentation Engineering, MSRIT, Bangalore, and Research Scholar, VTU.

More information

Fuzzy If-Then Rules. Fuzzy If-Then Rules. Adnan Yazıcı

Fuzzy If-Then Rules. Fuzzy If-Then Rules. Adnan Yazıcı Fuzzy If-Then Rules Adnan Yazıcı Dept. of Computer Engineering, Middle East Technical University Ankara/Turkey Fuzzy If-Then Rules There are two different kinds of fuzzy rules: Fuzzy mapping rules and

More information

In the Name of God. Lecture 17: ANFIS Adaptive Network-Based Fuzzy Inference System

In the Name of God. Lecture 17: ANFIS Adaptive Network-Based Fuzzy Inference System In the Name of God Lecture 17: ANFIS Adaptive Network-Based Fuzzy Inference System Outline ANFIS Architecture Hybrid Learning Algorithm Learning Methods that Cross-Fertilize ANFIS and RBFN ANFIS as a universal

More information

Chapter 4 Fuzzy Logic

Chapter 4 Fuzzy Logic 4.1 Introduction Chapter 4 Fuzzy Logic The human brain interprets the sensory information provided by organs. Fuzzy set theory focus on processing the information. Numerical computation can be performed

More information

Chapter 7 Fuzzy Logic Controller

Chapter 7 Fuzzy Logic Controller Chapter 7 Fuzzy Logic Controller 7.1 Objective The objective of this section is to present the output of the system considered with a fuzzy logic controller to tune the firing angle of the SCRs present

More information

RULE BASED SIGNATURE VERIFICATION AND FORGERY DETECTION

RULE BASED SIGNATURE VERIFICATION AND FORGERY DETECTION RULE BASED SIGNATURE VERIFICATION AND FORGERY DETECTION M. Hanmandlu Multimedia University Jalan Multimedia 63100, Cyberjaya Selangor, Malaysia E-mail:madasu.hanmandlu@mmu.edu.my M. Vamsi Krishna Dept.

More information

ARTIFICIAL INTELLIGENCE - FUZZY LOGIC SYSTEMS

ARTIFICIAL INTELLIGENCE - FUZZY LOGIC SYSTEMS ARTIFICIAL INTELLIGENCE - FUZZY LOGIC SYSTEMS http://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_fuzzy_logic_systems.htm Copyright tutorialspoint.com Fuzzy Logic Systems FLS

More information

Machine Learning & Statistical Models

Machine Learning & Statistical Models Astroinformatics Machine Learning & Statistical Models Neural Networks Feed Forward Hybrid Decision Analysis Decision Trees Random Decision Forests Evolving Trees Minimum Spanning Trees Perceptron Multi

More information

ARTIFICIAL INTELLIGENCE. Uncertainty: fuzzy systems

ARTIFICIAL INTELLIGENCE. Uncertainty: fuzzy systems INFOB2KI 2017-2018 Utrecht University The Netherlands ARTIFICIAL INTELLIGENCE Uncertainty: fuzzy systems Lecturer: Silja Renooij These slides are part of the INFOB2KI Course Notes available from www.cs.uu.nl/docs/vakken/b2ki/schema.html

More information

Supervised Learning in Neural Networks (Part 2)

Supervised Learning in Neural Networks (Part 2) Supervised Learning in Neural Networks (Part 2) Multilayer neural networks (back-propagation training algorithm) The input signals are propagated in a forward direction on a layer-bylayer basis. Learning

More information

A New Fuzzy Neural System with Applications

A New Fuzzy Neural System with Applications A New Fuzzy Neural System with Applications Yuanyuan Chai 1, Jun Chen 1 and Wei Luo 1 1-China Defense Science and Technology Information Center -Network Center Fucheng Road 26#, Haidian district, Beijing

More information

Fuzzy rule-based decision making model for classification of aquaculture farms

Fuzzy rule-based decision making model for classification of aquaculture farms Chapter 6 Fuzzy rule-based decision making model for classification of aquaculture farms This chapter presents the fundamentals of fuzzy logic, and development, implementation and validation of a fuzzy

More information

Why Fuzzy? Definitions Bit of History Component of a fuzzy system Fuzzy Applications Fuzzy Sets Fuzzy Boundaries Fuzzy Representation

Why Fuzzy? Definitions Bit of History Component of a fuzzy system Fuzzy Applications Fuzzy Sets Fuzzy Boundaries Fuzzy Representation Contents Why Fuzzy? Definitions Bit of History Component of a fuzzy system Fuzzy Applications Fuzzy Sets Fuzzy Boundaries Fuzzy Representation Linguistic Variables and Hedges INTELLIGENT CONTROLSYSTEM

More information

Fuzzy Mod. Department of Electrical Engineering and Computer Science University of California, Berkeley, CA Generalized Neural Networks

Fuzzy Mod. Department of Electrical Engineering and Computer Science University of California, Berkeley, CA Generalized Neural Networks From: AAAI-91 Proceedings. Copyright 1991, AAAI (www.aaai.org). All rights reserved. Fuzzy Mod Department of Electrical Engineering and Computer Science University of California, Berkeley, CA 94 720 1

More information

fuzzylite a fuzzy logic control library in C++

fuzzylite a fuzzy logic control library in C++ fuzzylite a fuzzy logic control library in C++ Juan Rada-Vilela jcrada@fuzzylite.com Abstract Fuzzy Logic Controllers (FLCs) are software components found nowadays within well-known home appliances such

More information

Aircraft Landing Control Using Fuzzy Logic and Neural Networks

Aircraft Landing Control Using Fuzzy Logic and Neural Networks Aircraft Landing Control Using Fuzzy Logic and Neural Networks Elvira Lakovic Intelligent Embedded Systems elc10001@student.mdh.se Damir Lotinac Intelligent Embedded Systems dlc10001@student.mdh.se ABSTRACT

More information

Fuzzy Expert Systems Lecture 8 (Fuzzy Systems)

Fuzzy Expert Systems Lecture 8 (Fuzzy Systems) Fuzzy Expert Systems Lecture 8 (Fuzzy Systems) Soft Computing is an emerging approach to computing which parallels the remarkable ability of the human mind to reason and learn in an environment of uncertainty

More information

Introduction to Fuzzy Logic. IJCAI2018 Tutorial

Introduction to Fuzzy Logic. IJCAI2018 Tutorial Introduction to Fuzzy Logic IJCAI2018 Tutorial 1 Crisp set vs. Fuzzy set A traditional crisp set A fuzzy set 2 Crisp set vs. Fuzzy set 3 Crisp Logic Example I Crisp logic is concerned with absolutes-true

More information

Age Prediction and Performance Comparison by Adaptive Network based Fuzzy Inference System using Subtractive Clustering

Age Prediction and Performance Comparison by Adaptive Network based Fuzzy Inference System using Subtractive Clustering Age Prediction and Performance Comparison by Adaptive Network based Fuzzy Inference System using Subtractive Clustering Manisha Pariyani* & Kavita Burse** *M.Tech Scholar, department of Computer Science

More information

Figure 2-1: Membership Functions for the Set of All Numbers (N = Negative, P = Positive, L = Large, M = Medium, S = Small)

Figure 2-1: Membership Functions for the Set of All Numbers (N = Negative, P = Positive, L = Large, M = Medium, S = Small) Fuzzy Sets and Pattern Recognition Copyright 1998 R. Benjamin Knapp Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that

More information

On the use of Fuzzy Logic Controllers to Comply with Virtualized Application Demands in the Cloud

On the use of Fuzzy Logic Controllers to Comply with Virtualized Application Demands in the Cloud On the use of Fuzzy Logic Controllers to Comply with Virtualized Application Demands in the Cloud Kyriakos M. Deliparaschos Cyprus University of Technology k.deliparaschos@cut.ac.cy Themistoklis Charalambous

More information

Introduction 3 Fuzzy Inference. Aleksandar Rakić Contents

Introduction 3 Fuzzy Inference. Aleksandar Rakić Contents Beograd ETF Fuzzy logic Introduction 3 Fuzzy Inference Aleksandar Rakić rakic@etf.rs Contents Mamdani Fuzzy Inference Fuzzification of the input variables Rule evaluation Aggregation of rules output Defuzzification

More information

Introduction to Fuzzy Logic and Fuzzy Systems Adel Nadjaran Toosi

Introduction to Fuzzy Logic and Fuzzy Systems Adel Nadjaran Toosi Introduction to Fuzzy Logic and Fuzzy Systems Adel Nadjaran Toosi Fuzzy Slide 1 Objectives What Is Fuzzy Logic? Fuzzy sets Membership function Differences between Fuzzy and Probability? Fuzzy Inference.

More information

Fuzzy Logic Controller

Fuzzy Logic Controller Fuzzy Logic Controller Debasis Samanta IIT Kharagpur dsamanta@iitkgp.ac.in 23.01.2016 Debasis Samanta (IIT Kharagpur) Soft Computing Applications 23.01.2016 1 / 34 Applications of Fuzzy Logic Debasis Samanta

More information

Lotfi Zadeh (professor at UC Berkeley) wrote his original paper on fuzzy set theory. In various occasions, this is what he said

Lotfi Zadeh (professor at UC Berkeley) wrote his original paper on fuzzy set theory. In various occasions, this is what he said FUZZY LOGIC Fuzzy Logic Lotfi Zadeh (professor at UC Berkeley) wrote his original paper on fuzzy set theory. In various occasions, this is what he said Fuzzy logic is a means of presenting problems to

More information

Neural Networks Lesson 9 - Fuzzy Logic

Neural Networks Lesson 9 - Fuzzy Logic Neural Networks Lesson 9 - Prof. Michele Scarpiniti INFOCOM Dpt. - Sapienza University of Rome http://ispac.ing.uniroma1.it/scarpiniti/index.htm michele.scarpiniti@uniroma1.it Rome, 26 November 2009 M.

More information

Introduction. Aleksandar Rakić Contents

Introduction. Aleksandar Rakić Contents Beograd ETF Fuzzy logic Introduction Aleksandar Rakić rakic@etf.rs Contents Definitions Bit of History Fuzzy Applications Fuzzy Sets Fuzzy Boundaries Fuzzy Representation Linguistic Variables and Hedges

More information

Image Compression: An Artificial Neural Network Approach

Image Compression: An Artificial Neural Network Approach Image Compression: An Artificial Neural Network Approach Anjana B 1, Mrs Shreeja R 2 1 Department of Computer Science and Engineering, Calicut University, Kuttippuram 2 Department of Computer Science and

More information

Identification of Vehicle Class and Speed for Mixed Sensor Technology using Fuzzy- Neural & Genetic Algorithm : A Design Approach

Identification of Vehicle Class and Speed for Mixed Sensor Technology using Fuzzy- Neural & Genetic Algorithm : A Design Approach Identification of Vehicle Class and Speed for Mixed Sensor Technology using Fuzzy- Neural & Genetic Algorithm : A Design Approach Prashant Sharma, Research Scholar, GHRCE, Nagpur, India, Dr. Preeti Bajaj,

More information

Defect Depth Estimation Using Neuro-Fuzzy System in TNDE by Akbar Darabi and Xavier Maldague

Defect Depth Estimation Using Neuro-Fuzzy System in TNDE by Akbar Darabi and Xavier Maldague Defect Depth Estimation Using Neuro-Fuzzy System in TNDE by Akbar Darabi and Xavier Maldague Electrical Engineering Dept., Université Laval, Quebec City (Quebec) Canada G1K 7P4, E-mail: darab@gel.ulaval.ca

More information

Fuzzy if-then rules fuzzy database modeling

Fuzzy if-then rules fuzzy database modeling Fuzzy if-then rules Associates a condition described using linguistic variables and fuzzy sets to a conclusion A scheme for capturing knowledge that involves imprecision 23.11.2010 1 fuzzy database modeling

More information

LECTURE NOTES Professor Anita Wasilewska NEURAL NETWORKS

LECTURE NOTES Professor Anita Wasilewska NEURAL NETWORKS LECTURE NOTES Professor Anita Wasilewska NEURAL NETWORKS Neural Networks Classifier Introduction INPUT: classification data, i.e. it contains an classification (class) attribute. WE also say that the class

More information

* The terms used for grading are: - bad - good

* The terms used for grading are: - bad - good Hybrid Neuro-Fuzzy Systems or How to Combine German Mechanics with Italian Love by Professor Michael Negnevitsky University of Tasmania Introduction Contents Heterogeneous Hybrid Systems Diagnosis of myocardial

More information

ANFIS based HVDC control and fault identification of HVDC converter

ANFIS based HVDC control and fault identification of HVDC converter HAIT Journal of Science and Engineering B, Volume 2, Issues 5-6, pp. 673-689 Copyright C 2005 Holon Academic Institute of Technology ANFIS based HVDC control and fault identification of HVDC converter

More information

FUZZY INFERENCE. Siti Zaiton Mohd Hashim, PhD

FUZZY INFERENCE. Siti Zaiton Mohd Hashim, PhD FUZZY INFERENCE Siti Zaiton Mohd Hashim, PhD Fuzzy Inference Introduction Mamdani-style inference Sugeno-style inference Building a fuzzy expert system 9/29/20 2 Introduction Fuzzy inference is the process

More information

Designed By: Milad Niaz Azari

Designed By: Milad Niaz Azari Designed By: Milad Niaz Azari 88123916 The techniques of artificial intelligence based in fuzzy logic and neural networks are frequently applied together The reasons to combine these two paradigms come

More information

A Neuro-Fuzzy Application to Power System

A Neuro-Fuzzy Application to Power System 2009 International Conference on Machine Learning and Computing IPCSIT vol.3 (2011) (2011) IACSIT Press, Singapore A Neuro-Fuzzy Application to Power System Ahmed M. A. Haidar 1, Azah Mohamed 2, Norazila

More information

Adaptive Neuro Fuzzy Inference System (ANFIS) For Fault Classification in the Transmission Lines

Adaptive Neuro Fuzzy Inference System (ANFIS) For Fault Classification in the Transmission Lines Adaptive Neuro Fuzzy Inference System (ANFIS) For Fault Classification in the Transmission Lines Tamer S. Kamel M. A. Moustafa Hassan Electrical Power and Machines Department, Faculty of Engineering, Cairo

More information

A New Class of ANFIS based Channel Equalizers for Mobile Communication Systems

A New Class of ANFIS based Channel Equalizers for Mobile Communication Systems A New Class of ANFIS based Channel Equalizers for Mobile Communication Systems K.C.Raveendranathan Department of Electronics and Communication Engineering, Government Engineering College Barton Hill, Thiruvananthapuram-695035.

More information

742 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 13, NO. 6, DECEMBER Dong Zhang, Luo-Feng Deng, Kai-Yuan Cai, and Albert So

742 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 13, NO. 6, DECEMBER Dong Zhang, Luo-Feng Deng, Kai-Yuan Cai, and Albert So 742 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL 13, NO 6, DECEMBER 2005 Fuzzy Nonlinear Regression With Fuzzified Radial Basis Function Network Dong Zhang, Luo-Feng Deng, Kai-Yuan Cai, and Albert So Abstract

More information

Research Article Prediction of Surface Roughness in End Milling Process Using Intelligent Systems: A Comparative Study

Research Article Prediction of Surface Roughness in End Milling Process Using Intelligent Systems: A Comparative Study Applied Computational Intelligence and Soft Computing Volume 2, Article ID 83764, 8 pages doi:.55/2/83764 Research Article Prediction of Surface Roughness in End Milling Process Using Intelligent Systems:

More information

Final Exam. Controller, F. Expert Sys.., Solving F. Ineq.} {Hopefield, SVM, Comptetive Learning,

Final Exam. Controller, F. Expert Sys.., Solving F. Ineq.} {Hopefield, SVM, Comptetive Learning, Final Exam Question on your Fuzzy presentation {F. Controller, F. Expert Sys.., Solving F. Ineq.} Question on your Nets Presentations {Hopefield, SVM, Comptetive Learning, Winner- take all learning for

More information

Adaptive Neuro-Fuzzy Model with Fuzzy Clustering for Nonlinear Prediction and Control

Adaptive Neuro-Fuzzy Model with Fuzzy Clustering for Nonlinear Prediction and Control Asian Journal of Applied Sciences (ISSN: 232 893) Volume 2 Issue 3, June 24 Adaptive Neuro-Fuzzy Model with Fuzzy Clustering for Nonlinear Prediction and Control Bayadir Abbas AL-Himyari, Azman Yasin 2

More information

Dra. Ma. del Pilar Gómez Gil Primavera 2014

Dra. Ma. del Pilar Gómez Gil Primavera 2014 C291-78 Tópicos Avanzados: Inteligencia Computacional I Introducción a la Lógica Difusa Dra. Ma. del Pilar Gómez Gil Primavera 2014 pgomez@inaoep.mx Ver: 08-Mar-2016 1 Este material ha sido tomado de varias

More information

WHAT TYPE OF NEURAL NETWORK IS IDEAL FOR PREDICTIONS OF SOLAR FLARES?

WHAT TYPE OF NEURAL NETWORK IS IDEAL FOR PREDICTIONS OF SOLAR FLARES? WHAT TYPE OF NEURAL NETWORK IS IDEAL FOR PREDICTIONS OF SOLAR FLARES? Initially considered for this model was a feed forward neural network. Essentially, this means connections between units do not form

More information

Ensemble methods in machine learning. Example. Neural networks. Neural networks

Ensemble methods in machine learning. Example. Neural networks. Neural networks Ensemble methods in machine learning Bootstrap aggregating (bagging) train an ensemble of models based on randomly resampled versions of the training set, then take a majority vote Example What if you

More information

CHAPTER 3 INTELLIGENT FUZZY LOGIC CONTROLLER

CHAPTER 3 INTELLIGENT FUZZY LOGIC CONTROLLER 38 CHAPTER 3 INTELLIGENT FUZZY LOGIC CONTROLLER 3.1 INTRODUCTION The lack of intelligence, learning and adaptation capability in the control methods discussed in general control scheme, revealed the need

More information

Background Fuzzy control enables noncontrol-specialists. A fuzzy controller works with verbal rules rather than mathematical relationships.

Background Fuzzy control enables noncontrol-specialists. A fuzzy controller works with verbal rules rather than mathematical relationships. Introduction to Fuzzy Control Background Fuzzy control enables noncontrol-specialists to design control system. A fuzzy controller works with verbal rules rather than mathematical relationships. knowledge

More information

NEW HYBRID LEARNING ALGORITHMS IN ADAPTIVE NEURO FUZZY INFERENCE SYSTEMS FOR CONTRACTION SCOUR MODELING

NEW HYBRID LEARNING ALGORITHMS IN ADAPTIVE NEURO FUZZY INFERENCE SYSTEMS FOR CONTRACTION SCOUR MODELING Proceedings of the 4 th International Conference on Environmental Science and Technology Rhodes, Greece, 3-5 September 05 NEW HYBRID LEARNING ALGRITHMS IN ADAPTIVE NEUR FUZZY INFERENCE SYSTEMS FR CNTRACTIN

More information

Fuzzy Logic. Sourabh Kothari. Asst. Prof. Department of Electrical Engg. Presentation By

Fuzzy Logic. Sourabh Kothari. Asst. Prof. Department of Electrical Engg. Presentation By Fuzzy Logic Presentation By Sourabh Kothari Asst. Prof. Department of Electrical Engg. Outline of the Presentation Introduction What is Fuzzy? Why Fuzzy Logic? Concept of Fuzzy Logic Fuzzy Sets Membership

More information

MARS: Still an Alien Planet in Soft Computing?

MARS: Still an Alien Planet in Soft Computing? MARS: Still an Alien Planet in Soft Computing? Ajith Abraham and Dan Steinberg School of Computing and Information Technology Monash University (Gippsland Campus), Churchill 3842, Australia Email: ajith.abraham@infotech.monash.edu.au

More information

Chapter 2 Genetic Fuzzy System

Chapter 2 Genetic Fuzzy System Chapter 2 Genetic Fuzzy System The damage detection problem is a pattern classification problem which is based on ambiguous, noisy, or missing input information. The input information is typically obtained

More information

CHAPTER 3 FUZZY INFERENCE SYSTEM

CHAPTER 3 FUZZY INFERENCE SYSTEM CHAPTER 3 FUZZY INFERENCE SYSTEM Fuzzy inference is the process of formulating the mapping from a given input to an output using fuzzy logic. There are three types of fuzzy inference system that can be

More information

A Brief Idea on Fuzzy and Crisp Sets

A Brief Idea on Fuzzy and Crisp Sets International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) A Brief Idea on Fuzzy and Crisp Sets Rednam SS Jyothi 1, Eswar Patnala 2, K.Asish Vardhan 3 (Asst.Prof(c),Information Technology,

More information

Fuzzy Systems (1/2) Francesco Masulli

Fuzzy Systems (1/2) Francesco Masulli (1/2) Francesco Masulli DIBRIS - University of Genova, ITALY & S.H.R.O. - Sbarro Institute for Cancer Research and Molecular Medicine Temple University, Philadelphia, PA, USA email: francesco.masulli@unige.it

More information

ANALYSIS AND REASONING OF DATA IN THE DATABASE USING FUZZY SYSTEM MODELLING

ANALYSIS AND REASONING OF DATA IN THE DATABASE USING FUZZY SYSTEM MODELLING ANALYSIS AND REASONING OF DATA IN THE DATABASE USING FUZZY SYSTEM MODELLING Dr.E.N.Ganesh Dean, School of Engineering, VISTAS Chennai - 600117 Abstract In this paper a new fuzzy system modeling algorithm

More information

About the Tutorial. Audience. Prerequisites. Disclaimer& Copyright. Fuzzy Logic

About the Tutorial. Audience. Prerequisites. Disclaimer& Copyright. Fuzzy Logic About the Tutorial Fuzzy Logic resembles the human decision-making methodology and deals with vague and imprecise information. This is a very small tutorial that touches upon the very basic concepts of

More information

Fuzzy Classification of Facial Component Parameters

Fuzzy Classification of Facial Component Parameters Fuzzy Classification of Facial Component Parameters S. alder 1,. Bhattacherjee 2,. Nasipuri 2,. K. Basu 2* and. Kundu 2 1 epartment of Computer Science and Engineering, RCCIIT, Kolkata -, India Email:

More information

II. ARTIFICIAL NEURAL NETWORK

II. ARTIFICIAL NEURAL NETWORK Applications of Artificial Neural Networks in Power Systems: A Review Harsh Sareen 1, Palak Grover 2 1, 2 HMR Institute of Technology and Management Hamidpur New Delhi, India Abstract: A standout amongst

More information

4.12 Generalization. In back-propagation learning, as many training examples as possible are typically used.

4.12 Generalization. In back-propagation learning, as many training examples as possible are typically used. 1 4.12 Generalization In back-propagation learning, as many training examples as possible are typically used. It is hoped that the network so designed generalizes well. A network generalizes well when

More information

Introduction 2 Fuzzy Sets & Fuzzy Rules. Aleksandar Rakić Contents

Introduction 2 Fuzzy Sets & Fuzzy Rules. Aleksandar Rakić Contents Beograd ETF Fuzzy logic Introduction 2 Fuzzy Sets & Fuzzy Rules Aleksandar Rakić rakic@etf.rs Contents Characteristics of Fuzzy Sets Operations Properties Fuzzy Rules Examples 2 1 Characteristics of Fuzzy

More information

Web Shopping Expert Systems Using New Interval Type-2 Fuzzy Reasoning

Web Shopping Expert Systems Using New Interval Type-2 Fuzzy Reasoning Georgia State University ScholarWorks @ Georgia State University Computer Science Theses Department of Computer Science 1-12-2006 Web Shopping Expert Systems Using New Interval Type-2 Fuzzy Reasoning Ling

More information

APPLICATIONS OF INTELLIGENT HYBRID SYSTEMS IN MATLAB

APPLICATIONS OF INTELLIGENT HYBRID SYSTEMS IN MATLAB APPLICATIONS OF INTELLIGENT HYBRID SYSTEMS IN MATLAB Z. Dideková, S. Kajan Institute of Control and Industrial Informatics, Faculty of Electrical Engineering and Information Technology, Slovak University

More information

CPS331 Lecture: Fuzzy Logic last revised October 11, Objectives: 1. To introduce fuzzy logic as a way of handling imprecise information

CPS331 Lecture: Fuzzy Logic last revised October 11, Objectives: 1. To introduce fuzzy logic as a way of handling imprecise information CPS331 Lecture: Fuzzy Logic last revised October 11, 2016 Objectives: 1. To introduce fuzzy logic as a way of handling imprecise information Materials: 1. Projectable of young membership function 2. Projectable

More information

CHAPTER Introduction I

CHAPTER Introduction I CHAPTER-3 ARTIFICIAL NEURAL NETWORK AND NEURO-FUZZY MODELLING OF HOT EXTRUSION PROCESS, EQUAL CHANNEL ANGULAR PRESSING, ORTHOGONAL CUTTING PROCESS AND END MILLING PROCESS 3.1 Introduction I ntelligent

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Image Data: Classification via Neural Networks Instructor: Yizhou Sun yzsun@ccs.neu.edu November 19, 2015 Methods to Learn Classification Clustering Frequent Pattern Mining

More information

Exploring Gaussian and Triangular Primary Membership Functions in Non-Stationary Fuzzy Sets

Exploring Gaussian and Triangular Primary Membership Functions in Non-Stationary Fuzzy Sets Exploring Gaussian and Triangular Primary Membership Functions in Non-Stationary Fuzzy Sets S. Musikasuwan and J.M. Garibaldi Automated Scheduling, Optimisation and Planning Group University of Nottingham,

More information

Fault Detection and Classification in Transmission Lines Using ANFIS

Fault Detection and Classification in Transmission Lines Using ANFIS Minia University From the SelectedWorks of Dr. Adel A. Elbaset Summer July 17, 2009 Fault Detection and Classification in Transmission Lines Using ANFIS Dr. Adel A. Elbaset, Minia University Prof. Dr.

More information

Lecture 5 Fuzzy expert systems: Fuzzy inference Mamdani fuzzy inference Sugeno fuzzy inference Case study Summary

Lecture 5 Fuzzy expert systems: Fuzzy inference Mamdani fuzzy inference Sugeno fuzzy inference Case study Summary Lecture 5 Fuzzy expert systems: Fuzzy inference Mamdani fuzzy inference Sugeno fuzzy inference Case study Summary Negnevitsky, Pearson Education, 25 Fuzzy inference The most commonly used fuzzy inference

More information

Self-Learning Fuzzy Controllers Based on Temporal Back Propagation

Self-Learning Fuzzy Controllers Based on Temporal Back Propagation Self-Learning Fuzzy Controllers Based on Temporal Back Propagation Jyh-Shing R. Jang Department of Electrical Engineering and Computer Science University of California, Berkeley, CA 947 jang@eecs.berkeley.edu

More information

6. NEURAL NETWORK BASED PATH PLANNING ALGORITHM 6.1 INTRODUCTION

6. NEURAL NETWORK BASED PATH PLANNING ALGORITHM 6.1 INTRODUCTION 6 NEURAL NETWORK BASED PATH PLANNING ALGORITHM 61 INTRODUCTION In previous chapters path planning algorithms such as trigonometry based path planning algorithm and direction based path planning algorithm

More information

Multilayer Feed-forward networks

Multilayer Feed-forward networks Multi Feed-forward networks 1. Computational models of McCulloch and Pitts proposed a binary threshold unit as a computational model for artificial neuron. This first type of neuron has been generalized

More information

CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS

CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS CHAPTER 4 CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS 4.1 Introduction Optical character recognition is one of

More information

Classification with Diffuse or Incomplete Information

Classification with Diffuse or Incomplete Information Classification with Diffuse or Incomplete Information AMAURY CABALLERO, KANG YEN Florida International University Abstract. In many different fields like finance, business, pattern recognition, communication

More information

CHAPTER 4 FUZZY LOGIC, K-MEANS, FUZZY C-MEANS AND BAYESIAN METHODS

CHAPTER 4 FUZZY LOGIC, K-MEANS, FUZZY C-MEANS AND BAYESIAN METHODS CHAPTER 4 FUZZY LOGIC, K-MEANS, FUZZY C-MEANS AND BAYESIAN METHODS 4.1. INTRODUCTION This chapter includes implementation and testing of the student s academic performance evaluation to achieve the objective(s)

More information

Mechanics ISSN Transport issue 1, 2008 Communications article 0214

Mechanics ISSN Transport issue 1, 2008 Communications article 0214 Mechanics ISSN 1312-3823 Transport issue 1, 2008 Communications article 0214 Academic journal http://www.mtc-aj.com PARAMETER ADAPTATION IN A SIMULATION MODEL USING ANFIS Oktavián Strádal, Radovan Soušek

More information

Neural Networks. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani

Neural Networks. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani Neural Networks CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Biological and artificial neural networks Feed-forward neural networks Single layer

More information

INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET)

INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET) INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET) ISSN 0976 6367(Print) ISSN 0976 6375(Online) Volume 3, Issue 2, July- September (2012), pp. 157-166 IAEME: www.iaeme.com/ijcet.html Journal

More information

Types of Expert System: Comparative Study

Types of Expert System: Comparative Study Types of Expert System: Comparative Study Viral Nagori, Bhushan Trivedi GLS Institute of Computer Technology (MCA), India Email: viral011 {at} yahoo.com ABSTRACT--- The paper describes the different classifications

More information

Classification Lecture Notes cse352. Neural Networks. Professor Anita Wasilewska

Classification Lecture Notes cse352. Neural Networks. Professor Anita Wasilewska Classification Lecture Notes cse352 Neural Networks Professor Anita Wasilewska Neural Networks Classification Introduction INPUT: classification data, i.e. it contains an classification (class) attribute

More information

Fuzzy time series forecasting of wheat production

Fuzzy time series forecasting of wheat production Fuzzy time series forecasting of wheat production Narendra kumar Sr. lecturer: Computer Science, Galgotia college of engineering & Technology Sachin Ahuja Lecturer : IT Dept. Krishna Institute of Engineering

More information

Fuzzy Logic Using Matlab

Fuzzy Logic Using Matlab Fuzzy Logic Using Matlab Enrique Muñoz Ballester Dipartimento di Informatica via Bramante 65, 26013 Crema (CR), Italy enrique.munoz@unimi.it Material Download slides data and scripts: https://homes.di.unimi.it/munoz/teaching.html

More information

Intelligent Control. 4^ Springer. A Hybrid Approach Based on Fuzzy Logic, Neural Networks and Genetic Algorithms. Nazmul Siddique.

Intelligent Control. 4^ Springer. A Hybrid Approach Based on Fuzzy Logic, Neural Networks and Genetic Algorithms. Nazmul Siddique. Nazmul Siddique Intelligent Control A Hybrid Approach Based on Fuzzy Logic, Neural Networks and Genetic Algorithms Foreword by Bernard Widrow 4^ Springer Contents 1 Introduction 1 1.1 Intelligent Control

More information

Dinner for Two, Reprise

Dinner for Two, Reprise Fuzzy Logic Toolbox Dinner for Two, Reprise In this section we provide the same two-input, one-output, three-rule tipping problem that you saw in the introduction, only in more detail. The basic structure

More information

Similarity Measures of Pentagonal Fuzzy Numbers

Similarity Measures of Pentagonal Fuzzy Numbers Volume 119 No. 9 2018, 165-175 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Similarity Measures of Pentagonal Fuzzy Numbers T. Pathinathan 1 and

More information

CHAPTER 6 SOLUTION TO NETWORK TRAFFIC PROBLEM IN MIGRATING PARALLEL CRAWLERS USING FUZZY LOGIC

CHAPTER 6 SOLUTION TO NETWORK TRAFFIC PROBLEM IN MIGRATING PARALLEL CRAWLERS USING FUZZY LOGIC CHAPTER 6 SOLUTION TO NETWORK TRAFFIC PROBLEM IN MIGRATING PARALLEL CRAWLERS USING FUZZY LOGIC 6.1 Introduction The properties of the Internet that make web crawling challenging are its large amount of

More information