LATIN SQUARES AND THEIR APPLICATION TO THE FEASIBLE SET FOR ASSIGNMENT PROBLEMS

Size: px
Start display at page:

Download "LATIN SQUARES AND THEIR APPLICATION TO THE FEASIBLE SET FOR ASSIGNMENT PROBLEMS"

Transcription

1 LATIN SQUARES AND THEIR APPLICATION TO THE FEASIBLE SET FOR ASSIGNMENT PROBLEMS TIMOTHY L. VIS Abstract. A significant problem in finite optimization is the assignment problem. In essence, the assignment problem asks for a minimum weight assignment of elements of distinct sets to one another. Assignment problems have many applications. We give descriptions of several of the most common assignment problems. We relate the planar assignment problems to Latin squares and orthogonal Latin squares and discuss many known results on the existence of Latin squares and orthogonal Latin squares as the feasible sets for these assignment problems. Finally, we give a mathematical formulation for planar assignment problems and look in some depth at the intersection graph induced by the four index planar assignment problem. This intersection graph has application to the structure of the solution polytope; however, we do not directly explore this application.. Introduction A common class of combinatorial optimization problems is the class of assignment problems. An assignment problem is any problem in which elements of one set are assigned to elements of another set (or sets). An assignment problem can generally be broken down into two parts: that of determining feasible assignments, and that of determining the optimal assignment. For some classes of assignment problems, elegant combinatorial constructions exist that exhibit the feasiblity of the problem. For some very limited subclasses of assignment problems, elegant and efficient algorithms exist for optimizing the assignment. However, in general, once the problems become more complex than the most basic assignment problems, both determining the set of feasible assignments and determining which of these assignments is optimal become very difficult problems. We will introduce several classes of assignment problems, with a particular focus on planar assignment problems, wherein the feasible solutions are closely related to Latin squares. The simplest type of assignment problem is the -index assignment problem. Mathematically, given sets G and H, with G = H = n, and a cost (benefit) associated to each ordered pair (g, h), where g G, h H, determine the bijection between G and H that minimizes (maximizes) the total cost (benefit). For example, suppose an office has five positions to fill and five staff members with which to fill the positions. What assignment of staff members to positions will minimize the cost (maximize the benefit) to this office? This sort of problem can be easily modeled by way of a weighted complete bipartite graph. Such a model easily adapts to the Date: February 6, 007.

2 TIMOTHY L. VIS more complex situation in which the sets may have differing sizes, or the situation where not every pairing is possible by the addition or removal of vertices and edges.. Multi-index Assignment Problems This notion of an assignment problem can be generalized to the case with a larger number of sets and with different means of assigning the sets. In the -index assignment problem, each assignment is an ordered pair, and each element of each of the sets is required to appear in exactly one ordered pair. In general, given k sets of n elements each, an assignment will be an ordered k-tuple. Note, however, that the requirement need no longer be that every element of each set appear in exactly one ordered k-tuple. The requirement could easily be amended to require that every pair of elements from distinct sets appear in exactly one ordered k-tuple, or likewise, every set of s elements from distinct sets appear in exactly one ordered k-tuple, or that they appear at least once. We will refer to the number k of sets as the index of the problem. Two varieties of multi-index assignment problems are of particular interest: the axial assignment problem and the planar assignment problem. The axial assignment problem asks for an optimal set of n k-tuples, such that each element appears in exactly one such k-tuple. The following far-fetched, but helpful example of an axial -index assignment problem is due to Spieksma [8]. A certain chaotic village has exactly 0 cats, 0 houses, 0 men, and 0 women. For each household unit consisting of one house, one cat, one man, and one woman, there is some number measuring the happiness of this household unit. What household units should be created in order to maximize the happiness of the village and to bring peace and quiet to this part of the world? In this situation, there are a possible (0!), or about , partitions of the village into household units. Of course, the problem is easily extended to higher indices by the addition of other sets to the system. It should be easy to see that the axial assignment problem, as described here, will always have a feasible solution. In fact, a simple counting argument will establish the existence of (n!) k distinct solutions, where n is the order of each of the sets and k the index of the problem. On the other hand, the planar assignment problem, which will be described shortly, given sufficiently high index, may not have any solution. The planar assignment problem asks for an optimal system of n k tuples, where every ordered pair of elements from two distinct sets appears exactly once. In 78, Euler considered the following problem. Thirty-six officers, six from each of six regiments, and six of each of six ranks are selected, so that any two officers from the same regiment are of different ranks. Is it possible to position these officers at the thirty-six intersections of a six-by-six street grid so that no two officers in the same street are of the same rank or are from the same regiment? The Euler Officer Problem (taken here from [6]) is a classic example of a -index planar assignment problem. In particular, Euler s Officer Problem is an example of an infeasible planar assignment problem, as was shown by Tarry in 900 [9]. For the balance of this paper, we shall concentrate only on the planar assignment problem, and in particular, on the combinatorial structures which give rise to its feasible solutions.

3 ASSIGNMENT PROBLEMS.. Orthogonal Arrays.. Orthogonal Arrays and Latin Squares Definition.. An orthogonal array of size N, k constraints, n levels, strength t, and index λ is a k N matrix M having n different elements and with the property that each different ordered t-tuple of elements occurs exactly λ times as a column in any t-rowed submatrix of M [5]. It should be clear from this definition that there is a fairly direct correlation between orthogonal arrays and the feasible sets to general assignment problems. We are interested in particular in the planar assignment problem. With this in mind, we refine the definition. Definition.. An orthogonal array corresponding to a k-index planar assignment problem on sets of n elements is a k n matrix having n different elements with the property that each different ordered pair of elements occurs exactly once as a column in any n submatrix of M.. Latin Squares. Definition.. A Latin Square of order n is an n n matrix L with n different elements and the property that every element occurs exactly once in each row and column of the matrix. The following theorem establishes the existence of Latin squares of every possible order. Theorem.. For every positive integer n, there exists a Latin square of order n. Proof. Given n, define L in the following manner: set L i,j = i + j and reduce modulo n. Consider L i,j and L i,k, where j k. Then j and k differ by at most n, so that i+j and i+k are distinct when reduced modulo n. That is L i,j L i,k. Likewise, L i,k and L j,k are distinct when i j. As such, L is a Latin square of order n. If we assign to each entry in a Latin square a column vector, such that the first entry gives its row, the second entry its column, and the third its symbol, we create n entry column vectors. If we let these be the columns of a n matrix M, it is easily seen that this matrix is an orthogonal array. Conversely, given a n orthogonal array, we can construct a Latin square by letting the third entry of any column denote the symbol placed in the position whose row and column are determined by the first and second entry of that same column. As such, a n orthogonal array is equivalent to a Latin square of order n... Mutually Orthogonal Latin Squares. Definition.5. Two Latin squares on the integers,,...,n L = a i,j and L = b i,j of order n are orthogonal if and only if every ordered pair of symbols occurs exactly once among the n pairs (a i,j, b i,j ), where i, j =,,..., n. The following figure illustrates a pair of orthogonal Latin squares of order.

4 TIMOTHY L. VIS By a simple relabelling, we may assume that any Latin square of order n uses as its symbols the integers,,..., n. so that the definition is easily extended to any pair of Latin squares. This definition is easily extended to a set of k Latin squares in the following manner: Definition.6. A set of k Latin squares is mutually orthogonally if and only if any two distinct Latin squares in the set are orthogonal. We can easily extend the earlier relation between Latin squares and orthogonal arrays to relate sets of mutually orthogonal Latin squares (or MOLS) and orthogonal arrays. We simply add a row to our orthogonal array for each additional Latin square. We simply replace the third row in the earlier argument with the row corresponding to a given Latin square in the set of MOLS. As such, an k + n orthogonal array is equivalent to a set of k MOLS of order n. Thus, there is a direct correspondence between sets of k MOLS of order n and feasible solutions to the k + -index planar assignment problem with sets of size n, where a set of one MOLS is simply any Latin square. Lemma.7. The maximum size k of a set of mutually orthogonal Latin squares of order n is n. Proof. Without loss of generality, we can assume that the Latin squares of order n use the symbols,,...,n, and that the entry L,k = k by way of some relabelling or permutation of the symbols. As such, the ordered pair (k, k) occurs in the position L,k for any pair of the Latin squares. Consider now the possible entries in position L,. Since occurs in L, for each of the squares, cannot ever occur as the entry L,. Further, if two of the squares have L, = k, then those squares are not orthogonal, since L,k = k for both of those squares. Thus, only n squares are possible, each having a distinct entry L,. Definition.8. A set of n mutually orthogonal Latin squares of order n is called complete. We now present a construction for Latin squares which has the property that it is easily extended to produce sets of mutually orthogonal Latin squares. Let GF (q) be the finite field of order q with set of elements F and operations addition and multiplication. For each k GF (q), k 0, define a binary operation k on F by x k y = xk + y. Then the operation table for (F, k ) is a Latin square. As a proof, suppose that x k y = x k z. Then xk + y = xk + z, so that y = z. Suppose that x k z = y k z. Then xk + z = yk + z, so that xk = yk, and since k 0, x = y. Thus, a Latin square is produced. Theorem.9. The Latin squares determined by {(F, k )} where k ranges over the nonzero elements of GF (n) form a complete set of mutually orthogonal Latin squares of order n.

5 ASSIGNMENT PROBLEMS 5 Proof. Suppose k l and consider the Latin squares determined by (F, k ) (L k ) and (F, l ) (L l ). It suffices to show that if L k i,j = Lk u,v, then L l i,j Ll u,v. So suppose that L k i,j = Lk u,v and Ll i,j = Ll u,v. Then we have i k + j = u k + v and i l + j = u l + v. Subtracting the two equations, we have i (k l) = u (k l). Since k and l are assumed to be distinct, this implies that i = u. But then L k i,j and L k u,v must represent the same entry in each of the Latin squares. Thus, for distinct (i, j) and (u, v), L k i,j = Lk u,v implies that Ll i,j Ll u,v, so that Lk and L l are orthogonal. Since finite fields of order p m exist for every prime power p m, a complete set of MOLS exists for every prime power p m. These sets of MOLS can be used to construct sets of MOLS of higher order. Definition.0. The direct product of an m m Latin square L and an n n Latin square L is the mn mn matrix formed by replacing each entry of L with a copy of L whose entries are changed to ordered pairs with first coordinate the entry in L replaced by the copy of L and with second coordinate the entry in L. Lemma.. The direct product of two Latin squares is a Latin square. Proof. Consider two distinct entries in the same row (column). If the two distinct entries have the first coordinate in common, they sit in the same copy of L and have distinct second coordinates. Thus, no two entries in the same row (column) have both the first and second coordinates in common. Lemma.. If K and K are orthogonal Latin squares of order m and L and L are orthogonal Latin squares of order n, then the direct product of K and L and the direct product of K and L are orthogonal. Proof. We will again show that if two cells contain the same entry in the first direct product, they cannot contain the same entry in the second direct product. Suppose that two cells contain the same entry in the first direct product, and contain the same first coordinate in the entry in the second direct product. Then these cells must be in the same copy of L and L in each direct product (otherwise the orthogonality of K and K is violated. Since the cells are distinct, however, these cells must correspond to different cells in L and L. Since L and L are orthogonal, the second coordinates must differ. That is, two cells containing the same entry in the direct product of K and L cannot contain the same entry in the direct product of K and L. The preceding Lemma and the following theorem are due to MacNeish [7]. Theorem.. If there exist r MOLS of order m and r MOLS of order n, then there exist r MOLS of order mn. Proof. Taking the direct product of each of the MOLS of order m with a different Latin square of order n yields pairwise orthogonal Latin squares of order mn by the preceding two Lemmas. Thus, the r Latin squares of order mn thus produced are a set of r MOLS of order mn. Finally, we have the following important corollary. Corollary.. If n = p r pr pr k k, where each p i is a distinct prime, then there exist min {p r, pr,..., pr k k } MOLS of order n.

6 6 TIMOTHY L. VIS Proof. For each p ri i there exists a finite field, and thus a set of p ri i MOLS by the finite field construction. Repeated application of the direct product construction will then produce the desired set of MOLS. Further constructions exist that yield larger sets than are given by this result, and in fact, at least a pair of orthogonal Latin squares of order n exists for all n except n = and n = 6. A more complicated construction due to Richard Wilson (in [6]) establishes existence for all cases other than 0 and where existence does not follow from the preceding work. However, this result is extremely important, as it gives a lower bound on the number of MOLS of a given order that exist.. Mathematical Formulation In order to generally formulate the planar assignment problem, we first consider the -index planar assignment problem. The formulation that follows is taken from Appa, Magos, and Mourtos []. Let I, J, and K, with I = J = K = n be the sets under consideration. We define x ijk (i I, j J, k K) as one or zero, according as (i, j, k) appears as a triple. We further define w ijk as the cost of the triple (i, j, k). Then, given a valid assignment, and a pair of elements (i, j), i I, j J, exactly one k K occurs in a triple with i and j in this assignment. We formulate this as follows: x ijk = for all i I j J k K This argument is symmetric in all three variables, so that we also obtain the constraints: x ijk = for all j J k K i I x ijk = for all i I k K j J Further, with the costs of each triple defined, and the variables x determining whether or not a triple is in the assignment, we obtain the following objective function to be minimized: w ijk x ijk. i I j J k K Thus, the mathematical formulation of the problem is minimize w ijk x ijk subject to i I j J k K x ijk = for all j J k K i I x ijk = for all i I k K j J x ijk = for all i I j J k K If we extend this to the -index planar assignment problem, the constraint desired is that each ordered pair in each set appears exactly twice. Let our sets be I, J, K,

7 ASSIGNMENT PROBLEMS 7 and L, with I = J = K = L = n and the variable x ijkl (i I, j J, k K, l L) equal to one or zero, according as (i, j, k, l) appears as a quadruple, and let w ijkl be the cost of the quadruple (i, j, k, l). Then we consider a pair of elements from each of two sets, i I and j J, for instance. This pair must occur only once in all of the possible combinations of values for k and l. That is, x ijkl = for all i I k K k K l L As with the -index assignment problem, the costs of each quadruple are defined, and the variables x determine whether or not a quadruple is in a given assignment. Thus, we obtain the following objective function to be minimized: w ijkl x ijkl i I j J k K l L To obtain the final formulation of the problem, we add the remaining constraints, corresponding to each of the other pairs of sets. The final formulation (due to Gale in []) of the problem is the following: minimize w ijkl x ijkl subject to i I j J k K l L x ijkl = for all k K l L i I j J x ijkl = for all j J l L i I k K x ijkl = for all j J k K i I l L x ijkl = for all i I l L j J k K x ijkl = for all i I k K j J l L x ijkl = for all i I j J k K l L In general, the objective function will be the sum over all elements in all sets of w ii i k x ii i k. There will be a set of constraints for every pair of sets, such that the sum over all element in all other sets of x is. We have a total of n k binary variables, and ( k ) n k equality constraints. We now consider some of the work concerning the polytope derived from the constraints of the -index assignment problem. Although, we will not delve into the details of the polytope, we will discuss the intersection graph, a graph which plays a key role in the discussion of the polytope, at some length. The work that follows is taken from []. 5. The Intersection Graph Recall that in the formulation of the k-index planar assignment problem, we had n k binary variables and ( k ) n k equality constraints. In particular, the - index planar assignment problem involves n binary variables and ( ) n = 6n constraints. If we arrange these entries in a matrix A, we find that A has n columns

8 8 TIMOTHY L. VIS and 6n rows. Each row corresponds to one constraint. Since each constraint fixes the element in each of two sets and sums over the remaining constraints, a bijective correspondance is induced between the constraints and elements of the set R = (K L) (J L) (J K) (I L) (I K) (I J). We thus index each constraint and each row of A with its corresponding element in R. Similarly, each column corresponds to one binary variable. Since each variable corresponds to a set of one element from each of the sets I, J, K, and L, we can index each variable and each column of A with its corresponding element in the set C = I J K L. Note that each element of C can be denoted as an ordered quadruple (i, j, k, l), where i I, j J, k K, and l L. Any pair of distinct quadruples will then share zero, one, two, or three indices in common. We define the intersection graph in the following manner: Definition 5.. The intersection graph for a pair of orthogonal Latin squares is the graph with a vertex for every element of C and an edge between two elements of C if and only if they share two or three indices in common. Proposition 5.. The intersection graph thus defined is (n )(n )-regular. Proof. The proof is a simple counting argument. Let v be a vertex in the intersection graph. There are a total of n possible vertices, of which v is one. Since v corresponds to a particular quadruple, there are n choices for each entry in the quadruple that will be different from the same entry in v. Thus, there are (n ) vertices corresponding to elements of C sharing no common index with v. Further, there are four choices for a shared index with v and (n ) ways to pick the remaining indices to be different from v, for a total of (n ) vertices corresponding to elements of C sharing one index with v. The remaining vertices must share two or three indices in common with v and must thus be adjacent to v. This total is d = n (n ) (n ) = n ( n n + 6n n + ) ( n n + n ) = n n + n 6n + n n + n n + = 6n 8n + = (n )(n ) Since v was chosen arbitrarily, every vertex is adjacent to (n )(n ) other vertices; the intersection graph is (n )(n )-regular. Corollary 5.. The graph has n (n )(n ) edges. Proof. Each vertex is an end-vertex for (n )(n ) edges. Multiplying this by n vertices and dividing by vertices for each edge gives the desired result. Of particular interest is the clique structure of the intersection graph. We wish to determine all of the cliques in the intersection graph. Consider first a row r of the matrix A, and denote by R (r) the set of entries in C having a non-zero entry in row r. Recall that each row corresponds to a unique constraint and that each constraint sums over all assignments fixing two constraints. We have the following:

9 ASSIGNMENT PROBLEMS 9 Proposition 5.. For each row r, the set of vertices corresponding to the elements of R (r) induces a maximal clique in the intersection graph of order n, and there are 6n such cliques. Proof. That the set of vertices is a clique is a direct consequence of the fact that the row is a constraint summing over terms with two indices in common. That is, each pair of vertices is adjacent. That the clique is maximal follows from the fact that the constraint sums over all terms with two indices in common. In order for another vertex to have at least two indices in common with all other vertices in the clique, it would need to share those two indices, and is thus already included. Finally, since there are 6n rows, there are 6n such cliques. We will refer to these cliques as Type I cliques. Now consider a vertex v and all vertices that share three indices with v. We denote this set by Q (v). Proposition 5.5. For each vertex v, the set of vertices Q (v) induces a maximal clique in the intersection graph of order n and there are n such cliques. Proof. Consider two elements x and y of the set Q (v). Each of these elements differs from v in exactly one index. Then x and y differ from one another in at most two indices (those in which they differ from v). But then x and y share at least two indices in common and are thus adjacent. So Q (v) induces a clique. To see that the clique is maximal, consider some other element z adjacent to v. This element agrees with v in exactly two indices. But then there exists an element of Q (v) that agrees with v in only one of those two indices and differs from v elsewhere. In particular, this element is not adjacent to z, so the clique is maximal as it is. Finally, each element induces a different clique, so as there are n elements, there are n cliques of this type. We will refer to these cliques as Type II cliques. We now consider one further type of clique. Consider a pair of vertices u and v, such that their elements of C share exactly one index in common. Then consider the set Q (u, v) of vertices that share three indices with v and two indices with u along with u. Proposition 5.6. For each pair of vertices u and v sharing one common index, the set Q (u, v) induces a maximal clique in the intersection graph of order. There are n (n ) such cliques. Proof. Any element other than u in the set Q (u, v) shares, by definition, two indices with u and is adjacent to u. Further, any two other elements share three indices with v. Since there are only four indices, any pair may differ in at most two indices and must then share at least two indices. As such, every vertex in Q (u, v) is adjacent to every other vertex in Q (u, v). To see that the clique is maximal, consider some other vertex. This vertex must share at least two indices in common with u and at most two indices in common with v. We have two cases: either this vertex w shares the same index with u as does v or it does not. In the former case, w shares only one of the other three indices with v at most. But then one of the vertices of Q (u, v) shares only the other two indices and the common index to u and v with v, and thus is not adjacent to w. In the latter case, w can only share one index with v if it is to share two with u. But then the vertex from Q (u, v) that shares the other three indices with v is not adjacent to w. To see that the clique has size four, recognize that the index shared by u and v must be shared by any vertex of

10 0 TIMOTHY L. VIS Q (u, v) in order to allow it to both share two indices with u and three with v. Since every such clique is induced by an ordered pair sharing one index, and there are n (n ) choices of these ordered pairs (by the argument in Proposition 5.), there are at most n (n ) such cliques. However, each clique can be induced by four different ordered pairs (by letting each of the vertices play the role of u and altering v accordingly. Further, no other ordered pairs can induce the same clique. Thus, there are n (n ) such cliques. We will refer to these cliques as Type III cliques. As such, we have now defined three distinct classes of cliques. The final theorem in this paper asserts that there are no other cliques. Theorem 5.7. The only maximal cliques in the intersection graph are the Type I, Type II, and Type III cliques. Proof. Suppose Q is a set of vertices inducing a maximal clique in the intersection graph. Fix some vertex u in Q. Then if v is some other vertex in Q, v must share at least two indices with u. If no vertex in Q shares only two indices with u, then Q is a Type II clique. Further, if every vertex in Q shares the same two indices with u, then Q is a Type I clique. So assume that some vertex in Q shares only two indices with u and that no two vertices are common to all vertices in Q. Suppose then that v has only two indices in common with u and that w does not share those same two vertices in common with u. Now w must share at least one of the two indices common to both u and v. If not, it shares the other two indices with u and no indices with v. Further, of the two indices not common between u and v, w shares one with u and the other with v. Again, this is necessary to ensure that w is adjacent to both u and v. But in this case the indices of w not agreeing with u are determined, so that each element of Q shares exactly two indices with u, and three indices with some element not in the clique. That is, the clique is a Type III clique. 6. Conclusion Although we do not discuss them in this paper, the classification of all cliques in the intersection graph allows the definition of inequalities which define facets of the polytope necessary for the use of various programming techniques in the solution of problems based on Latin squares. Again, while we do not discuss those here, the work put forth provides a solid foundation for further reading into the usage of this work. A great deal of further discussion is provided by Appa, Magos, Mourtos and Janssen [], who give a general description of many properties of the polytope, and by Appa, Magos, and Mourtos [], who exploit further structures within the intersection graph. References [] G. Appa, D. Magos, and I. Mourtos. The wheels of the orthogonal latin squares polytope: Classification and valid inequalities. J. Combin. Optimization, 0:65 89, 005. [] G. Appa, D. Magos, and I. Mourtos. A new class of facets for the latin square polytope. Disc. App. Math., 5:900 9, 006. [] G. Appa, D. Magos, I. Mourtos, and J. Janssen. On the orthogonal latin squares polytope. Disc. Math., 06:7 87, 006. [] G. Dantzig. Linear Programming and Extensions. Princeton University Press, 96.

11 ASSIGNMENT PROBLEMS [5] J. Dénes and A. Keedwell. Latin Squares and their Applications. Academic Press, New York, 97. [6] C. Lindner and C. Rodger. Design Theory. CRC Press, Boca Raton, 997. [7] H. MacNeish. Euler squares. Ann. Math., : 7, 9. [8] F. Spieksma. Multi-index assignment problems: complexity, approximation, applications. In L. Pitsoulis and P. Pardalos, editors, Nonlinear Assignment Problems: Algorithms and Applications, pages. Kluwer Academic Publishers, Amsterdam, 000. [9] G. Tarry. Le problème des 6 officers. C. R. Assoc. Fr. Av. Sci., 9:70 0, 900.

3 No-Wait Job Shops with Variable Processing Times

3 No-Wait Job Shops with Variable Processing Times 3 No-Wait Job Shops with Variable Processing Times In this chapter we assume that, on top of the classical no-wait job shop setting, we are given a set of processing times for each operation. We may select

More information

The strong chromatic number of a graph

The strong chromatic number of a graph The strong chromatic number of a graph Noga Alon Abstract It is shown that there is an absolute constant c with the following property: For any two graphs G 1 = (V, E 1 ) and G 2 = (V, E 2 ) on the same

More information

Treewidth and graph minors

Treewidth and graph minors Treewidth and graph minors Lectures 9 and 10, December 29, 2011, January 5, 2012 We shall touch upon the theory of Graph Minors by Robertson and Seymour. This theory gives a very general condition under

More information

REGULAR GRAPHS OF GIVEN GIRTH. Contents

REGULAR GRAPHS OF GIVEN GIRTH. Contents REGULAR GRAPHS OF GIVEN GIRTH BROOKE ULLERY Contents 1. Introduction This paper gives an introduction to the area of graph theory dealing with properties of regular graphs of given girth. A large portion

More information

Copyright 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin Introduction to the Design & Analysis of Algorithms, 2 nd ed., Ch.

Copyright 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin Introduction to the Design & Analysis of Algorithms, 2 nd ed., Ch. Iterative Improvement Algorithm design technique for solving optimization problems Start with a feasible solution Repeat the following step until no improvement can be found: change the current feasible

More information

CMSC Honors Discrete Mathematics

CMSC Honors Discrete Mathematics CMSC 27130 Honors Discrete Mathematics Lectures by Alexander Razborov Notes by Justin Lubin The University of Chicago, Autumn 2017 1 Contents I Number Theory 4 1 The Euclidean Algorithm 4 2 Mathematical

More information

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings On the Relationships between Zero Forcing Numbers and Certain Graph Coverings Fatemeh Alinaghipour Taklimi, Shaun Fallat 1,, Karen Meagher 2 Department of Mathematics and Statistics, University of Regina,

More information

Winning Positions in Simplicial Nim

Winning Positions in Simplicial Nim Winning Positions in Simplicial Nim David Horrocks Department of Mathematics and Statistics University of Prince Edward Island Charlottetown, Prince Edward Island, Canada, C1A 4P3 dhorrocks@upei.ca Submitted:

More information

Unlabeled equivalence for matroids representable over finite fields

Unlabeled equivalence for matroids representable over finite fields Unlabeled equivalence for matroids representable over finite fields November 16, 2012 S. R. Kingan Department of Mathematics Brooklyn College, City University of New York 2900 Bedford Avenue Brooklyn,

More information

Research Question Presentation on the Edge Clique Covers of a Complete Multipartite Graph. Nechama Florans. Mentor: Dr. Boram Park

Research Question Presentation on the Edge Clique Covers of a Complete Multipartite Graph. Nechama Florans. Mentor: Dr. Boram Park Research Question Presentation on the Edge Clique Covers of a Complete Multipartite Graph Nechama Florans Mentor: Dr. Boram Park G: V 5 Vertex Clique Covers and Edge Clique Covers: Suppose we have a graph

More information

LATIN SQUARES AND TRANSVERSAL DESIGNS

LATIN SQUARES AND TRANSVERSAL DESIGNS LATIN SQUARES AND TRANSVERSAL DESIGNS *Shirin Babaei Department of Mathematics, University of Zanjan, Zanjan, Iran *Author for Correspondence ABSTRACT We employ a new construction to show that if and if

More information

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge.

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge. 1 Graph Basics What is a graph? Graph: a graph G consists of a set of vertices, denoted V (G), a set of edges, denoted E(G), and a relation called incidence so that each edge is incident with either one

More information

On median graphs and median grid graphs

On median graphs and median grid graphs On median graphs and median grid graphs Sandi Klavžar 1 Department of Mathematics, PEF, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia e-mail: sandi.klavzar@uni-lj.si Riste Škrekovski

More information

Polytopes Course Notes

Polytopes Course Notes Polytopes Course Notes Carl W. Lee Department of Mathematics University of Kentucky Lexington, KY 40506 lee@ms.uky.edu Fall 2013 i Contents 1 Polytopes 1 1.1 Convex Combinations and V-Polytopes.....................

More information

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality Planar Graphs In the first half of this book, we consider mostly planar graphs and their geometric representations, mostly in the plane. We start with a survey of basic results on planar graphs. This chapter

More information

Pebble Sets in Convex Polygons

Pebble Sets in Convex Polygons 2 1 Pebble Sets in Convex Polygons Kevin Iga, Randall Maddox June 15, 2005 Abstract Lukács and András posed the problem of showing the existence of a set of n 2 points in the interior of a convex n-gon

More information

THE LABELLED PEER CODE FOR KNOT AND LINK DIAGRAMS 26th February, 2015

THE LABELLED PEER CODE FOR KNOT AND LINK DIAGRAMS 26th February, 2015 THE LABELLED PEER CODE FOR KNOT AND LINK DIAGRAMS 26th February, 2015 A labelled peer code is a descriptive syntax for a diagram of a knot or link on a two dimensional sphere. The syntax is able to describe

More information

2 The Fractional Chromatic Gap

2 The Fractional Chromatic Gap C 1 11 2 The Fractional Chromatic Gap As previously noted, for any finite graph. This result follows from the strong duality of linear programs. Since there is no such duality result for infinite linear

More information

Assignment 4 Solutions of graph problems

Assignment 4 Solutions of graph problems Assignment 4 Solutions of graph problems 1. Let us assume that G is not a cycle. Consider the maximal path in the graph. Let the end points of the path be denoted as v 1, v k respectively. If either of

More information

11 Linear Programming

11 Linear Programming 11 Linear Programming 11.1 Definition and Importance The final topic in this course is Linear Programming. We say that a problem is an instance of linear programming when it can be effectively expressed

More information

1. Lecture notes on bipartite matching February 4th,

1. Lecture notes on bipartite matching February 4th, 1. Lecture notes on bipartite matching February 4th, 2015 6 1.1.1 Hall s Theorem Hall s theorem gives a necessary and sufficient condition for a bipartite graph to have a matching which saturates (or matches)

More information

5 Matchings in Bipartite Graphs and Their Applications

5 Matchings in Bipartite Graphs and Their Applications 5 Matchings in Bipartite Graphs and Their Applications 5.1 Matchings Definition 5.1 A matching M in a graph G is a set of edges of G, none of which is a loop, such that no two edges in M have a common

More information

Chapter 4. square sum graphs. 4.1 Introduction

Chapter 4. square sum graphs. 4.1 Introduction Chapter 4 square sum graphs In this Chapter we introduce a new type of labeling of graphs which is closely related to the Diophantine Equation x 2 + y 2 = n and report results of our preliminary investigations

More information

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism CHAPTER 2 Graphs 1. Introduction to Graphs and Graph Isomorphism 1.1. The Graph Menagerie. Definition 1.1.1. A simple graph G = (V, E) consists of a set V of vertices and a set E of edges, represented

More information

Stable sets, corner polyhedra and the Chvátal closure

Stable sets, corner polyhedra and the Chvátal closure Stable sets, corner polyhedra and the Chvátal closure Manoel Campêlo Departamento de Estatística e Matemática Aplicada, Universidade Federal do Ceará, Brazil, mcampelo@lia.ufc.br. Gérard Cornuéjols Tepper

More information

Math 778S Spectral Graph Theory Handout #2: Basic graph theory

Math 778S Spectral Graph Theory Handout #2: Basic graph theory Math 778S Spectral Graph Theory Handout #: Basic graph theory Graph theory was founded by the great Swiss mathematician Leonhard Euler (1707-178) after he solved the Königsberg Bridge problem: Is it possible

More information

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2 Graph Theory S I I S S I I S Graphs Definition A graph G is a pair consisting of a vertex set V (G), and an edge set E(G) ( ) V (G). x and y are the endpoints of edge e = {x, y}. They are called adjacent

More information

A geometric non-existence proof of an extremal additive code

A geometric non-existence proof of an extremal additive code A geometric non-existence proof of an extremal additive code Jürgen Bierbrauer Department of Mathematical Sciences Michigan Technological University Stefano Marcugini and Fernanda Pambianco Dipartimento

More information

Graph Theory Questions from Past Papers

Graph Theory Questions from Past Papers Graph Theory Questions from Past Papers Bilkent University, Laurence Barker, 19 October 2017 Do not forget to justify your answers in terms which could be understood by people who know the background theory

More information

CHAPTER 8. Copyright Cengage Learning. All rights reserved.

CHAPTER 8. Copyright Cengage Learning. All rights reserved. CHAPTER 8 RELATIONS Copyright Cengage Learning. All rights reserved. SECTION 8.3 Equivalence Relations Copyright Cengage Learning. All rights reserved. The Relation Induced by a Partition 3 The Relation

More information

Planar graphs. Chapter 8

Planar graphs. Chapter 8 Chapter 8 Planar graphs Definition 8.1. A graph is called planar if it can be drawn in the plane so that edges intersect only at vertices to which they are incident. Example 8.2. Different representations

More information

arxiv: v1 [math.co] 25 Sep 2015

arxiv: v1 [math.co] 25 Sep 2015 A BASIS FOR SLICING BIRKHOFF POLYTOPES TREVOR GLYNN arxiv:1509.07597v1 [math.co] 25 Sep 2015 Abstract. We present a change of basis that may allow more efficient calculation of the volumes of Birkhoff

More information

REDUCING GRAPH COLORING TO CLIQUE SEARCH

REDUCING GRAPH COLORING TO CLIQUE SEARCH Asia Pacific Journal of Mathematics, Vol. 3, No. 1 (2016), 64-85 ISSN 2357-2205 REDUCING GRAPH COLORING TO CLIQUE SEARCH SÁNDOR SZABÓ AND BOGDÁN ZAVÁLNIJ Institute of Mathematics and Informatics, University

More information

On the Balanced Case of the Brualdi-Shen Conjecture on 4-Cycle Decompositions of Eulerian Bipartite Tournaments

On the Balanced Case of the Brualdi-Shen Conjecture on 4-Cycle Decompositions of Eulerian Bipartite Tournaments Electronic Journal of Graph Theory and Applications 3 (2) (2015), 191 196 On the Balanced Case of the Brualdi-Shen Conjecture on 4-Cycle Decompositions of Eulerian Bipartite Tournaments Rafael Del Valle

More information

1. Lecture notes on bipartite matching

1. Lecture notes on bipartite matching Massachusetts Institute of Technology 18.453: Combinatorial Optimization Michel X. Goemans February 5, 2017 1. Lecture notes on bipartite matching Matching problems are among the fundamental problems in

More information

The Probabilistic Method

The Probabilistic Method The Probabilistic Method Po-Shen Loh June 2010 1 Warm-up 1. (Russia 1996/4 In the Duma there are 1600 delegates, who have formed 16000 committees of 80 persons each. Prove that one can find two committees

More information

Random strongly regular graphs?

Random strongly regular graphs? Graphs with 3 vertices Random strongly regular graphs? Peter J Cameron School of Mathematical Sciences Queen Mary, University of London London E1 NS, U.K. p.j.cameron@qmul.ac.uk COMB01, Barcelona, 1 September

More information

The Structure of Bull-Free Perfect Graphs

The Structure of Bull-Free Perfect Graphs The Structure of Bull-Free Perfect Graphs Maria Chudnovsky and Irena Penev Columbia University, New York, NY 10027 USA May 18, 2012 Abstract The bull is a graph consisting of a triangle and two vertex-disjoint

More information

Graphs (MTAT , 6 EAP) Lectures: Mon 14-16, hall 404 Exercises: Wed 14-16, hall 402

Graphs (MTAT , 6 EAP) Lectures: Mon 14-16, hall 404 Exercises: Wed 14-16, hall 402 Graphs (MTAT.05.080, 6 EAP) Lectures: Mon 14-16, hall 404 Exercises: Wed 14-16, hall 402 homepage: http://courses.cs.ut.ee/2012/graafid (contains slides) For grade: Homework + three tests (during or after

More information

Line Graphs and Circulants

Line Graphs and Circulants Line Graphs and Circulants Jason Brown and Richard Hoshino Department of Mathematics and Statistics Dalhousie University Halifax, Nova Scotia, Canada B3H 3J5 Abstract The line graph of G, denoted L(G),

More information

A TIGHT BOUND ON THE LENGTH OF ODD CYCLES IN THE INCOMPATIBILITY GRAPH OF A NON-C1P MATRIX

A TIGHT BOUND ON THE LENGTH OF ODD CYCLES IN THE INCOMPATIBILITY GRAPH OF A NON-C1P MATRIX A TIGHT BOUND ON THE LENGTH OF ODD CYCLES IN THE INCOMPATIBILITY GRAPH OF A NON-C1P MATRIX MEHRNOUSH MALEKESMAEILI, CEDRIC CHAUVE, AND TAMON STEPHEN Abstract. A binary matrix has the consecutive ones property

More information

Introduction III. Graphs. Motivations I. Introduction IV

Introduction III. Graphs. Motivations I. Introduction IV Introduction I Graphs Computer Science & Engineering 235: Discrete Mathematics Christopher M. Bourke cbourke@cse.unl.edu Graph theory was introduced in the 18th century by Leonhard Euler via the Königsberg

More information

Ma/CS 6b Class 26: Art Galleries and Politicians

Ma/CS 6b Class 26: Art Galleries and Politicians Ma/CS 6b Class 26: Art Galleries and Politicians By Adam Sheffer The Art Gallery Problem Problem. We wish to place security cameras at a gallery, such that they cover it completely. Every camera can cover

More information

STANLEY S SIMPLICIAL POSET CONJECTURE, AFTER M. MASUDA

STANLEY S SIMPLICIAL POSET CONJECTURE, AFTER M. MASUDA Communications in Algebra, 34: 1049 1053, 2006 Copyright Taylor & Francis Group, LLC ISSN: 0092-7872 print/1532-4125 online DOI: 10.1080/00927870500442005 STANLEY S SIMPLICIAL POSET CONJECTURE, AFTER M.

More information

arxiv: v2 [math.co] 13 Aug 2013

arxiv: v2 [math.co] 13 Aug 2013 Orthogonality and minimality in the homology of locally finite graphs Reinhard Diestel Julian Pott arxiv:1307.0728v2 [math.co] 13 Aug 2013 August 14, 2013 Abstract Given a finite set E, a subset D E (viewed

More information

OPERATIONS RESEARCH. Transportation and Assignment Problems

OPERATIONS RESEARCH. Transportation and Assignment Problems OPERATIONS RESEARCH Chapter 2 Transportation and Assignment Problems Prof Bibhas C Giri Professor of Mathematics Jadavpur University West Bengal, India E-mail : bcgirijumath@gmailcom MODULE-3: Assignment

More information

Math 776 Graph Theory Lecture Note 1 Basic concepts

Math 776 Graph Theory Lecture Note 1 Basic concepts Math 776 Graph Theory Lecture Note 1 Basic concepts Lectured by Lincoln Lu Transcribed by Lincoln Lu Graph theory was founded by the great Swiss mathematician Leonhard Euler (1707-178) after he solved

More information

6 Randomized rounding of semidefinite programs

6 Randomized rounding of semidefinite programs 6 Randomized rounding of semidefinite programs We now turn to a new tool which gives substantially improved performance guarantees for some problems We now show how nonlinear programming relaxations can

More information

Acyclic Edge Colorings of Graphs

Acyclic Edge Colorings of Graphs Acyclic Edge Colorings of Graphs Noga Alon Ayal Zaks Abstract A proper coloring of the edges of a graph G is called acyclic if there is no 2-colored cycle in G. The acyclic edge chromatic number of G,

More information

All 0-1 Polytopes are. Abstract. We study the facial structure of two important permutation polytopes

All 0-1 Polytopes are. Abstract. We study the facial structure of two important permutation polytopes All 0-1 Polytopes are Traveling Salesman Polytopes L.J. Billera and A. Sarangarajan y Abstract We study the facial structure of two important permutation polytopes in R n2, the Birkho or assignment polytope

More information

2 Eulerian digraphs and oriented trees.

2 Eulerian digraphs and oriented trees. 2 Eulerian digraphs and oriented trees. A famous problem which goes back to Euler asks for what graphs G is there a closed walk which uses every edge exactly once. (There is also a version for non-closed

More information

Small Survey on Perfect Graphs

Small Survey on Perfect Graphs Small Survey on Perfect Graphs Michele Alberti ENS Lyon December 8, 2010 Abstract This is a small survey on the exciting world of Perfect Graphs. We will see when a graph is perfect and which are families

More information

Structured System Theory

Structured System Theory Appendix C Structured System Theory Linear systems are often studied from an algebraic perspective, based on the rank of certain matrices. While such tests are easy to derive from the mathematical model,

More information

Graph Coloring Facets from a Constraint Programming Formulation

Graph Coloring Facets from a Constraint Programming Formulation Graph Coloring Facets from a Constraint Programming Formulation David Bergman J. N. Hooker Carnegie Mellon University INFORMS 2011 Motivation 0-1 variables often encode choices that can be represented

More information

Abstract. A graph G is perfect if for every induced subgraph H of G, the chromatic number of H is equal to the size of the largest clique of H.

Abstract. A graph G is perfect if for every induced subgraph H of G, the chromatic number of H is equal to the size of the largest clique of H. Abstract We discuss a class of graphs called perfect graphs. After defining them and getting intuition with a few simple examples (and one less simple example), we present a proof of the Weak Perfect Graph

More information

Algebraic Graph Theory- Adjacency Matrix and Spectrum

Algebraic Graph Theory- Adjacency Matrix and Spectrum Algebraic Graph Theory- Adjacency Matrix and Spectrum Michael Levet December 24, 2013 Introduction This tutorial will introduce the adjacency matrix, as well as spectral graph theory. For those familiar

More information

Chapter 11: Graphs and Trees. March 23, 2008

Chapter 11: Graphs and Trees. March 23, 2008 Chapter 11: Graphs and Trees March 23, 2008 Outline 1 11.1 Graphs: An Introduction 2 11.2 Paths and Circuits 3 11.3 Matrix Representations of Graphs 4 11.5 Trees Graphs: Basic Definitions Informally, a

More information

On some subclasses of circular-arc graphs

On some subclasses of circular-arc graphs On some subclasses of circular-arc graphs Guillermo Durán - Min Chih Lin Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires e-mail: {willy,oscarlin}@dc.uba.ar

More information

AMS /672: Graph Theory Homework Problems - Week V. Problems to be handed in on Wednesday, March 2: 6, 8, 9, 11, 12.

AMS /672: Graph Theory Homework Problems - Week V. Problems to be handed in on Wednesday, March 2: 6, 8, 9, 11, 12. AMS 550.47/67: Graph Theory Homework Problems - Week V Problems to be handed in on Wednesday, March : 6, 8, 9,,.. Assignment Problem. Suppose we have a set {J, J,..., J r } of r jobs to be filled by a

More information

Bounds on the signed domination number of a graph.

Bounds on the signed domination number of a graph. Bounds on the signed domination number of a graph. Ruth Haas and Thomas B. Wexler September 7, 00 Abstract Let G = (V, E) be a simple graph on vertex set V and define a function f : V {, }. The function

More information

Dominating Sets in Planar Graphs 1

Dominating Sets in Planar Graphs 1 Dominating Sets in Planar Graphs 1 Lesley R. Matheson 2 Robert E. Tarjan 2; May, 1994 Abstract Motivated by an application to unstructured multigrid calculations, we consider the problem of asymptotically

More information

Monotone Paths in Geometric Triangulations

Monotone Paths in Geometric Triangulations Monotone Paths in Geometric Triangulations Adrian Dumitrescu Ritankar Mandal Csaba D. Tóth November 19, 2017 Abstract (I) We prove that the (maximum) number of monotone paths in a geometric triangulation

More information

arxiv: v1 [cs.cc] 30 Jun 2017

arxiv: v1 [cs.cc] 30 Jun 2017 On the Complexity of Polytopes in LI( Komei Fuuda May Szedlá July, 018 arxiv:170610114v1 [cscc] 30 Jun 017 Abstract In this paper we consider polytopes given by systems of n inequalities in d variables,

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

Three applications of Euler s formula. Chapter 10

Three applications of Euler s formula. Chapter 10 Three applications of Euler s formula Chapter 10 A graph is planar if it can be drawn in the plane R without crossing edges (or, equivalently, on the -dimensional sphere S ). We talk of a plane graph if

More information

MATH 682 Notes Combinatorics and Graph Theory II. One interesting class of graphs rather akin to trees and acyclic graphs is the bipartite graph:

MATH 682 Notes Combinatorics and Graph Theory II. One interesting class of graphs rather akin to trees and acyclic graphs is the bipartite graph: 1 Bipartite graphs One interesting class of graphs rather akin to trees and acyclic graphs is the bipartite graph: Definition 1. A graph G is bipartite if the vertex-set of G can be partitioned into two

More information

GEOMETRIC DISTANCE-REGULAR COVERS

GEOMETRIC DISTANCE-REGULAR COVERS NEW ZEALAND JOURNAL OF MATHEMATICS Volume 22 (1993), 31-38 GEOMETRIC DISTANCE-REGULAR COVERS C.D. G o d s i l 1 (Received March 1993) Abstract. Let G be a distance-regular graph with valency k and least

More information

A graph is finite if its vertex set and edge set are finite. We call a graph with just one vertex trivial and all other graphs nontrivial.

A graph is finite if its vertex set and edge set are finite. We call a graph with just one vertex trivial and all other graphs nontrivial. 2301-670 Graph theory 1.1 What is a graph? 1 st semester 2550 1 1.1. What is a graph? 1.1.2. Definition. A graph G is a triple (V(G), E(G), ψ G ) consisting of V(G) of vertices, a set E(G), disjoint from

More information

Mathematical and Algorithmic Foundations Linear Programming and Matchings

Mathematical and Algorithmic Foundations Linear Programming and Matchings Adavnced Algorithms Lectures Mathematical and Algorithmic Foundations Linear Programming and Matchings Paul G. Spirakis Department of Computer Science University of Patras and Liverpool Paul G. Spirakis

More information

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini DM545 Linear and Integer Programming Lecture 2 The Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 3. 4. Standard Form Basic Feasible Solutions

More information

SANDRA SPIROFF AND CAMERON WICKHAM

SANDRA SPIROFF AND CAMERON WICKHAM A ZERO DIVISOR GRAPH DETERMINED BY EQUIVALENCE CLASSES OF ZERO DIVISORS arxiv:0801.0086v2 [math.ac] 17 Aug 2009 SANDRA SPIROFF AND CAMERON WICKHAM Abstract. We study the zero divisor graph determined by

More information

IMO Training 2008: Graph Theory

IMO Training 2008: Graph Theory IMO Training 2008: Graph Theory by: Adrian Tang Email: tang @ math.ucalgary.ca This is a compilation of math problems (with motivation towards the training for the International Mathematical Olympiad)

More information

Rigidity, connectivity and graph decompositions

Rigidity, connectivity and graph decompositions First Prev Next Last Rigidity, connectivity and graph decompositions Brigitte Servatius Herman Servatius Worcester Polytechnic Institute Page 1 of 100 First Prev Next Last Page 2 of 100 We say that a framework

More information

Vertex-Colouring Edge-Weightings

Vertex-Colouring Edge-Weightings Vertex-Colouring Edge-Weightings L. Addario-Berry a, K. Dalal a, C. McDiarmid b, B. A. Reed a and A. Thomason c a School of Computer Science, McGill University, University St. Montreal, QC, H3A A7, Canada

More information

The Matrix-Tree Theorem and Its Applications to Complete and Complete Bipartite Graphs

The Matrix-Tree Theorem and Its Applications to Complete and Complete Bipartite Graphs The Matrix-Tree Theorem and Its Applications to Complete and Complete Bipartite Graphs Frankie Smith Nebraska Wesleyan University fsmith@nebrwesleyan.edu May 11, 2015 Abstract We will look at how to represent

More information

PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS

PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS PAUL BALISTER Abstract It has been shown [Balister, 2001] that if n is odd and m 1,, m t are integers with m i 3 and t i=1 m i = E(K n) then K n can be decomposed

More information

Discrete mathematics , Fall Instructor: prof. János Pach

Discrete mathematics , Fall Instructor: prof. János Pach Discrete mathematics 2016-2017, Fall Instructor: prof. János Pach - covered material - Lecture 1. Counting problems To read: [Lov]: 1.2. Sets, 1.3. Number of subsets, 1.5. Sequences, 1.6. Permutations,

More information

Vertex Magic Total Labelings of Complete Graphs 1

Vertex Magic Total Labelings of Complete Graphs 1 Vertex Magic Total Labelings of Complete Graphs 1 Krishnappa. H. K. and Kishore Kothapalli and V. Ch. Venkaiah Centre for Security, Theory, and Algorithmic Research International Institute of Information

More information

Introduction to Mathematical Programming IE406. Lecture 20. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 20. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 20 Dr. Ted Ralphs IE406 Lecture 20 1 Reading for This Lecture Bertsimas Sections 10.1, 11.4 IE406 Lecture 20 2 Integer Linear Programming An integer

More information

arxiv: v1 [cs.dm] 21 Dec 2015

arxiv: v1 [cs.dm] 21 Dec 2015 The Maximum Cardinality Cut Problem is Polynomial in Proper Interval Graphs Arman Boyacı 1, Tinaz Ekim 1, and Mordechai Shalom 1 Department of Industrial Engineering, Boğaziçi University, Istanbul, Turkey

More information

Problem Set 3. MATH 778C, Spring 2009, Austin Mohr (with John Boozer) April 15, 2009

Problem Set 3. MATH 778C, Spring 2009, Austin Mohr (with John Boozer) April 15, 2009 Problem Set 3 MATH 778C, Spring 2009, Austin Mohr (with John Boozer) April 15, 2009 1. Show directly that P 1 (s) P 1 (t) for all t s. Proof. Given G, let H s be a subgraph of G on s vertices such that

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 351 George Voutsadakis (LSSU) Introduction to Graph Theory August 2018 1 /

More information

Lecture 5: Graphs. Rajat Mittal. IIT Kanpur

Lecture 5: Graphs. Rajat Mittal. IIT Kanpur Lecture : Graphs Rajat Mittal IIT Kanpur Combinatorial graphs provide a natural way to model connections between different objects. They are very useful in depicting communication networks, social networks

More information

Testing Isomorphism of Strongly Regular Graphs

Testing Isomorphism of Strongly Regular Graphs Spectral Graph Theory Lecture 9 Testing Isomorphism of Strongly Regular Graphs Daniel A. Spielman September 26, 2018 9.1 Introduction In the last lecture we saw how to test isomorphism of graphs in which

More information

On the construction of nested orthogonal arrays

On the construction of nested orthogonal arrays isid/ms/2010/06 September 10, 2010 http://wwwisidacin/ statmath/eprints On the construction of nested orthogonal arrays Aloke Dey Indian Statistical Institute, Delhi Centre 7, SJSS Marg, New Delhi 110

More information

INTRODUCTION TO GRAPH THEORY. 1. Definitions

INTRODUCTION TO GRAPH THEORY. 1. Definitions INTRODUCTION TO GRAPH THEORY D. JAKOBSON 1. Definitions A graph G consists of vertices {v 1, v 2,..., v n } and edges {e 1, e 2,..., e m } connecting pairs of vertices. An edge e = (uv) is incident with

More information

Math 443/543 Graph Theory Notes 5: Planar graphs and coloring

Math 443/543 Graph Theory Notes 5: Planar graphs and coloring Math 443/543 Graph Theory Notes 5: Planar graphs and coloring David Glickenstein October 10, 2014 1 Planar graphs The Three Houses and Three Utilities Problem: Given three houses and three utilities, can

More information

arxiv: v1 [math.co] 7 Dec 2018

arxiv: v1 [math.co] 7 Dec 2018 SEQUENTIALLY EMBEDDABLE GRAPHS JACKSON AUTRY AND CHRISTOPHER O NEILL arxiv:1812.02904v1 [math.co] 7 Dec 2018 Abstract. We call a (not necessarily planar) embedding of a graph G in the plane sequential

More information

CS7540 Spectral Algorithms, Spring 2017 Lecture #2. Matrix Tree Theorem. Presenter: Richard Peng Jan 12, 2017

CS7540 Spectral Algorithms, Spring 2017 Lecture #2. Matrix Tree Theorem. Presenter: Richard Peng Jan 12, 2017 CS7540 Spectral Algorithms, Spring 2017 Lecture #2 Matrix Tree Theorem Presenter: Richard Peng Jan 12, 2017 DISCLAIMER: These notes are not necessarily an accurate representation of what I said during

More information

15-451/651: Design & Analysis of Algorithms October 11, 2018 Lecture #13: Linear Programming I last changed: October 9, 2018

15-451/651: Design & Analysis of Algorithms October 11, 2018 Lecture #13: Linear Programming I last changed: October 9, 2018 15-451/651: Design & Analysis of Algorithms October 11, 2018 Lecture #13: Linear Programming I last changed: October 9, 2018 In this lecture, we describe a very general problem called linear programming

More information

Star Decompositions of the Complete Split Graph

Star Decompositions of the Complete Split Graph University of Dayton ecommons Honors Theses University Honors Program 4-016 Star Decompositions of the Complete Split Graph Adam C. Volk Follow this and additional works at: https://ecommons.udayton.edu/uhp_theses

More information

Part II. Graph Theory. Year

Part II. Graph Theory. Year Part II Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2017 53 Paper 3, Section II 15H Define the Ramsey numbers R(s, t) for integers s, t 2. Show that R(s, t) exists for all s,

More information

Math 170- Graph Theory Notes

Math 170- Graph Theory Notes 1 Math 170- Graph Theory Notes Michael Levet December 3, 2018 Notation: Let n be a positive integer. Denote [n] to be the set {1, 2,..., n}. So for example, [3] = {1, 2, 3}. To quote Bud Brown, Graph theory

More information

SUBDIVISIONS OF TRANSITIVE TOURNAMENTS A.D. SCOTT

SUBDIVISIONS OF TRANSITIVE TOURNAMENTS A.D. SCOTT SUBDIVISIONS OF TRANSITIVE TOURNAMENTS A.D. SCOTT Abstract. We prove that, for r 2 and n n(r), every directed graph with n vertices and more edges than the r-partite Turán graph T (r, n) contains a subdivision

More information

6. Lecture notes on matroid intersection

6. Lecture notes on matroid intersection Massachusetts Institute of Technology 18.453: Combinatorial Optimization Michel X. Goemans May 2, 2017 6. Lecture notes on matroid intersection One nice feature about matroids is that a simple greedy algorithm

More information

Lecture 12 March 4th

Lecture 12 March 4th Math 239: Discrete Mathematics for the Life Sciences Spring 2008 Lecture 12 March 4th Lecturer: Lior Pachter Scribe/ Editor: Wenjing Zheng/ Shaowei Lin 12.1 Alignment Polytopes Recall that the alignment

More information

On the positive semidenite polytope rank

On the positive semidenite polytope rank On the positive semidenite polytope rank Davíd Trieb Bachelor Thesis Betreuer: Tim Netzer Institut für Mathematik Universität Innsbruck February 16, 017 On the positive semidefinite polytope rank - Introduction

More information

Bipartite Roots of Graphs

Bipartite Roots of Graphs Bipartite Roots of Graphs Lap Chi Lau Department of Computer Science University of Toronto Graph H is a root of graph G if there exists a positive integer k such that x and y are adjacent in G if and only

More information

Graph Theory II. Po-Shen Loh. June edges each. Solution: Spread the n vertices around a circle. Take parallel classes.

Graph Theory II. Po-Shen Loh. June edges each. Solution: Spread the n vertices around a circle. Take parallel classes. Graph Theory II Po-Shen Loh June 009 1 Warm-up 1. Let n be odd. Partition the edge set of K n into n matchings with n 1 edges each. Solution: Spread the n vertices around a circle. Take parallel classes..

More information

MA4254: Discrete Optimization. Defeng Sun. Department of Mathematics National University of Singapore Office: S Telephone:

MA4254: Discrete Optimization. Defeng Sun. Department of Mathematics National University of Singapore Office: S Telephone: MA4254: Discrete Optimization Defeng Sun Department of Mathematics National University of Singapore Office: S14-04-25 Telephone: 6516 3343 Aims/Objectives: Discrete optimization deals with problems of

More information