Lectures 19: The Gauss-Bonnet Theorem I. Table of contents

Size: px
Start display at page:

Download "Lectures 19: The Gauss-Bonnet Theorem I. Table of contents"

Transcription

1 Math 348 Fall 07 Lectures 9: The Gauss-Bonnet Theorem I Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only. It should not be relied on when preparing for exams. In this lecture we introduce the Gauss-Bonnet theorem. The required section is 3.. The optional sections are I try my best to make the examples in this note dierent from examples in the textbook. Please read the textbook carefully and try your hands on the exercises. During this please don't hesitate to contact me if you have any questions. Table of contents Lectures 9: The Gauss-Bonnet Theorem I Gauss-Bonnet for Plane Polygons Gauss-Bonnet for plane curvilinear polygons

2 Dierential Geometry of urves & Surfaces. Gauss-Bonnet for Plane Polygons Theorem. (Gauss-Bonnet for plane triangles) Let AB be a triangle in the at plane. Then \A + \B + \ =. Theorem. (Gauss-Bonnet for plane convex polygons) Let A A :::A k be a k- polygon in a plane. Further assume that it is convex. Then the sum of its exterior angles is. 3 6 Why: Figure. Sum of exterior angles of a convex polygon: = Remark 3. (Signed exterior angles) The exterior angles of a plane polygon can be signed. Assume that we are traveling along the boundary counterclockwise. Then if the tangent vector is also turning counterclockwise, we say the exterior angle is positive, otherwise it's negative. A A 3 A 4 A A 5 A 6 A 7 Figure. Positive and negative exterior angles: > 0; < 0. Theorem 4. (Gauss-Bonnet for general plane polygons) The sum exterior angles of a plane polygon, convex or not, is. Remark 5. Such a general polygon is a convex polygon (its convex hull) with one or more convex polygon taken away.

3 Math 348 Fall 07 Take the polygon in Figure as an example. Applying Gauss-Bonnet to the small triangle A 3 A 4 A 5 we see that + = and therefore the sum of exterior angles of the non-convex polygon A :::A 7 is the same as that of the convex polygon A A A 3 A 5 A 6 A 7. Proof. We prove through induction on the number of vertices n. Base. When n = ; 3 the result is trivial. Induction. Assume that the result holds for all n 6 k. Let P be a (k + )-polygon that is not convex. Then there is a pair of vertices A ; A of P such that the line segment A A is not an edge of P, and the whole P lies to one side of A A. Like in the gure below. Now it is clear that P = P A P B where P A is the polygon A A A 3 A l, and P B is the polygon A A B B m. It is easy to see that both P A and P B have 6k vertices. A A B B m A 3 B A l P Now we denote the signed exterior angles at B ; :::; B m by ; :::; m and the signed exterior angles at A ; A ; A 3 ; :::; A l by ; :::; l. By induction hypothesis we have + + l = m = : () Here ; are the two exterior angles at A ; A, but for the polygon P B. Next notice that the exterior angles of P are 3 ; :::; l ; ; :::; m and two other angles ;. We thus have X exterior angles of P = + m l = ( + ) + ( + ). Gauss-Bonnet for plane curvilinear polygons Angle = concentrated curvature. = + = : () 3

4 Dierential Geometry of urves & Surfaces B A Figure 3. Angle as concentrated curvature Exercise. We smooth the angle through an arc (part of a circle) that is tangent to the two arms at A; B respectively. Prove that B ds = (3) where the integral is along the arc. A Exercise. What if we smooth the angle through a dierent family of arcs, say parabolas? Signed curvature for plane curves. T N T T? B N N A T? T T? Figure 4. Signed curvature s. For the plane vector T = (T x ; T y ), we can dene T? := ( T y ; T x ) which is the counterclockwise rotation of T by /. learly T??T. On the other hand, we have N = dt?t. Thus either N = T? or N = T?. In the former case we dene the ds signed curvature s = while in the latter case we dene s =. For example in Figure 4 s = at but = at A; B. Exercise 3. Prove that = j s j. Theorem 6. (Gauss-Bonnet for simple closed plane curves) A smooth, closed, non-self-intersecting planar curve satises s (s) ds = : (4) 4

5 Math 348 Fall 07 Proof. i. We rst prove the following. Let the parametrization of by arc length be (s): [a; b] 7! R. Then b s (s) ds = 0 + k (5) for some k. To see this, notice that we can denote a T (s) = _(s) = (cos (s); sin (s)) (6) where (s) is the angle between _(s) and _(a). Taking derivative we have (s) = _ (s) ( sin (s); cos (s)) = _ (s) T? (s): (7) Therefore s (s) = _ (s). onsequently Since T (b) = (cos (b); sin (b)) = (cos 0 ; sin 0 ), (5) follows. a b s (s) ds = (b): (8) ii. Thus we see that for a closed simple curve there holds s ds = k (9) for some k. Now we prove that k =. Wlog the parametrization is counterclociwise, that is the point (s) moves counterclockwise with respect to the interior of as s increases. Pick s 0 = a < s < < s k < b = s k+ such that s i+ (s) ds < ; (0) s i for all i. Then for any s 0 ; s 00 (s i ; s i+ ), we have s 00 s s (s) ds s 00 6 (s) ds < : () 0 On the other hand, we have s 0 s 00 s (s) ds = 0 + k () s 0 where 0 ( ; ] is the angle between T (s 00 ) and T (s 0 ).. Rigorously speaking, it is the angle between x 0 (a) and the vector that is the parallel transported x 0 (s). 5

6 Dierential Geometry of urves & Surfaces Figure 5. Left: 0 > 0; Right: 0 < 0. Noticing that j 0 + k j > for all k =/ 0, we conclude that s 00 s (s) ds = 0 ; (3) s 0 when s 0 ; s 00 are close enough. Now let P be the polygon with vertices (s 0 ); (s );:::; (s k ); (s k+ )= (s 0 ). Note that P can be made not self-intersecting (see remark below). By the mean value theorem there are s 0 0 [s 0 ; s ]; s 0 [s ; s ]; :::; s k 0 [s k ; s k+ ] such that _(s i 0 ) k (s i )(s i+ ). Thanks to the arguments (0)(3) we see that s i 0 0 s i+ s (s) ds = the exterior angle at (s i ): (4) Now the conclusion (4) follows from Theorem 4, the the polygon Gauss-Bonnet theorem Remark 7. In the above proof, besides (0), we also require the partition s 0 ; :::; s k be such that the polygon P is simple, that is does not intersect itself. Question 8. an this always be done through making s i+ s i small enough? If not, can we prove Gauss-Bonnet for polygons that intersect itself? Theorem 9. (Gauss-Bonnet for curvilinear polygons) Let ; :::; k be the exterior angles. Then s ds + X k i = : (5) i= Proof. Left as exercise.. Keep in mind that the mean value theorem does not hold for space curves. 6

In this lecture we introduce the Gauss-Bonnet theorem. The required section is The optional sections are

In this lecture we introduce the Gauss-Bonnet theorem. The required section is The optional sections are Math 348 Fall 2017 Lectures 20: The Gauss-Bonnet Theorem II Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only. It should not be relied on when preparing for exams.

More information

Final Review II: Examples

Final Review II: Examples Final Review II: Examles We go through last year's nal. This should not be treated as a samle nal. Question. Let (s) cos s; cos s; sin s. a) Prove that s is the arc length arameter. b) Calculate ; ; T

More information

The equal tangents property

The equal tangents property The equal tangents property J. Jerónimo-Castro, G. Ruiz-Hernández and S. Tabachnikov April 29, 2012 Abstract Let M be a C 2 -smooth strictly convex closed surface in R 3 and denote by H the set of points

More information

Planar graphs. Math Prof. Kindred - Lecture 16 Page 1

Planar graphs. Math Prof. Kindred - Lecture 16 Page 1 Planar graphs Typically a drawing of a graph is simply a notational shorthand or a more visual way to capture the structure of the graph. Now we focus on the drawings themselves. Definition A drawing of

More information

274 Curves on Surfaces, Lecture 5

274 Curves on Surfaces, Lecture 5 274 Curves on Surfaces, Lecture 5 Dylan Thurston Notes by Qiaochu Yuan Fall 2012 5 Ideal polygons Previously we discussed three models of the hyperbolic plane: the Poincaré disk, the upper half-plane,

More information

GAUSS-BONNET FOR DISCRETE SURFACES

GAUSS-BONNET FOR DISCRETE SURFACES GAUSS-BONNET FOR DISCRETE SURFACES SOHINI UPADHYAY Abstract. Gauss-Bonnet is a deep result in differential geometry that illustrates a fundamental relationship between the curvature of a surface and its

More information

Simplicial Cells in Arrangements of Hyperplanes

Simplicial Cells in Arrangements of Hyperplanes Simplicial Cells in Arrangements of Hyperplanes Christoph Dätwyler 05.01.2013 This paper is a report written due to the authors presentation of a paper written by Shannon [1] in 1977. The presentation

More information

2 Geometry Solutions

2 Geometry Solutions 2 Geometry Solutions jacques@ucsd.edu Here is give problems and solutions in increasing order of difficulty. 2.1 Easier problems Problem 1. What is the minimum number of hyperplanar slices to make a d-dimensional

More information

Week 2 Polygon Triangulation

Week 2 Polygon Triangulation Week 2 Polygon Triangulation What is a polygon? Last week A polygonal chain is a connected series of line segments A closed polygonal chain is a polygonal chain, such that there is also a line segment

More information

Tangencies between disjoint regions in the plane

Tangencies between disjoint regions in the plane June 16, 20 Problem Definition Two nonoverlapping Jordan regions in the plane are said to touch each other or to be tangent to each other if their boundaries have precisely one point in common and their

More information

7. The Gauss-Bonnet theorem

7. The Gauss-Bonnet theorem 7. The Gauss-Bonnet theorem 7.1 Hyperbolic polygons In Euclidean geometry, an n-sided polygon is a subset of the Euclidean plane bounded by n straight lines. Thus the edges of a Euclidean polygon are formed

More information

5. THE ISOPERIMETRIC PROBLEM

5. THE ISOPERIMETRIC PROBLEM Math 501 - Differential Geometry Herman Gluck March 1, 2012 5. THE ISOPERIMETRIC PROBLEM Theorem. Let C be a simple closed curve in the plane with length L and bounding a region of area A. Then L 2 4 A,

More information

Geometry Vocabulary Math Fundamentals Reference Sheet Page 1

Geometry Vocabulary Math Fundamentals Reference Sheet Page 1 Math Fundamentals Reference Sheet Page 1 Acute Angle An angle whose measure is between 0 and 90 Acute Triangle A that has all acute Adjacent Alternate Interior Angle Two coplanar with a common vertex and

More information

of a set of n straight lines, have been considered. Among them are k-sets in higher dimensions or k-levels of curves in two dimensions and surfaces in

of a set of n straight lines, have been considered. Among them are k-sets in higher dimensions or k-levels of curves in two dimensions and surfaces in Point-sets with few k-sets Helmut Alt? Stefan Felsner Ferran Hurtado y Marc Noy y Abstract A k-set of a nite set S of points in the plane is a subset of cardinality k that can be separated from the rest

More information

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder]

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Preliminaries Recall: Given a smooth function f:r R, the function

More information

Background for Surface Integration

Background for Surface Integration Background for urface Integration 1 urface Integrals We have seen in previous work how to define and compute line integrals in R 2. You should remember the basic surface integrals that we will need to

More information

Point A location in geometry. A point has no dimensions without any length, width, or depth. This is represented by a dot and is usually labelled.

Point A location in geometry. A point has no dimensions without any length, width, or depth. This is represented by a dot and is usually labelled. Test Date: November 3, 2016 Format: Scored out of 100 points. 8 Multiple Choice (40) / 8 Short Response (60) Topics: Points, Angles, Linear Objects, and Planes Recognizing the steps and procedures for

More information

Shape Modeling. Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell. CS 523: Computer Graphics, Spring 2011

Shape Modeling. Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell. CS 523: Computer Graphics, Spring 2011 CS 523: Computer Graphics, Spring 2011 Shape Modeling Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell 2/15/2011 1 Motivation Geometry processing: understand geometric characteristics,

More information

Math 348 Differential Geometry of Curves and Surfaces

Math 348 Differential Geometry of Curves and Surfaces Math 348 Differential Geometry of Curves and Surfaces Lecture 3 Curves in Calculus Xinwei Yu Sept. 12, 2017 CAB 527, xinwei2@ualberta.ca Department of Mathematical & Statistical Sciences University of

More information

THE DNA INEQUALITY POWER ROUND

THE DNA INEQUALITY POWER ROUND THE DNA INEQUALITY POWER ROUND Instructions Write/draw all solutions neatly, with at most one question per page, clearly numbered. Turn in the solutions in numerical order, with your team name at the upper

More information

Lattice Polygon s and Pick s Theorem From Dana Paquin and Tom Davis 1 Warm-Up to Ponder

Lattice Polygon s and Pick s Theorem From Dana Paquin and Tom Davis   1 Warm-Up to Ponder Lattice Polygon s and Pick s Theorem From Dana Paquin and Tom Davis http://www.geometer.org/mathcircles/pick.pdf 1 Warm-Up to Ponder 1. Is it possible to draw an equilateral triangle on graph paper so

More information

Lines That Intersect Circles

Lines That Intersect Circles LESSON 11-1 Lines That Intersect Circles Lesson Objectives (p. 746): Vocabulary 1. Interior of a circle (p. 746): 2. Exterior of a circle (p. 746): 3. Chord (p. 746): 4. Secant (p. 746): 5. Tangent of

More information

Classification of Extremal Curves with 6 Double Points and of Tree-like Curves with 6 Double Points and I! 5

Classification of Extremal Curves with 6 Double Points and of Tree-like Curves with 6 Double Points and I! 5 Classification of Extremal Curves with 6 Double Points and of Tree-like Curves with 6 Double Points and I! 5 Tim Ritter Bethel College Mishawaka, IN timritter@juno.com Advisor: Juha Pohjanpelto Oregon

More information

Lesson Plan #39. 2) Students will be able to find the sum of the measures of the exterior angles of a triangle.

Lesson Plan #39. 2) Students will be able to find the sum of the measures of the exterior angles of a triangle. Lesson Plan #39 Class: Geometry Date: Tuesday December 11 th, 2018 Topic: Sum of the measures of the interior angles of a polygon Objectives: Aim: What is the sum of the measures of the interior angles

More information

Shape Modeling and Geometry Processing

Shape Modeling and Geometry Processing 252-0538-00L, Spring 2018 Shape Modeling and Geometry Processing Discrete Differential Geometry Differential Geometry Motivation Formalize geometric properties of shapes Roi Poranne # 2 Differential Geometry

More information

EXTREME POINTS AND AFFINE EQUIVALENCE

EXTREME POINTS AND AFFINE EQUIVALENCE EXTREME POINTS AND AFFINE EQUIVALENCE The purpose of this note is to use the notions of extreme points and affine transformations which are studied in the file affine-convex.pdf to prove that certain standard

More information

Chapter 8. Voronoi Diagrams. 8.1 Post Oce Problem

Chapter 8. Voronoi Diagrams. 8.1 Post Oce Problem Chapter 8 Voronoi Diagrams 8.1 Post Oce Problem Suppose there are n post oces p 1,... p n in a city. Someone who is located at a position q within the city would like to know which post oce is closest

More information

1. A statement is a set of words and/or symbols that collectively make a claim that can be classified as true or false.

1. A statement is a set of words and/or symbols that collectively make a claim that can be classified as true or false. Chapter 1 Line and Angle Relationships 1.1 Sets, Statements and Reasoning Definitions 1. A statement is a set of words and/or symbols that collectively make a claim that can be classified as true or false.

More information

ACT Math and Science - Problem Drill 11: Plane Geometry

ACT Math and Science - Problem Drill 11: Plane Geometry ACT Math and Science - Problem Drill 11: Plane Geometry No. 1 of 10 1. Which geometric object has no dimensions, no length, width or thickness? (A) Angle (B) Line (C) Plane (D) Point (E) Polygon An angle

More information

MATH 113 Section 8.2: Two-Dimensional Figures

MATH 113 Section 8.2: Two-Dimensional Figures MATH 113 Section 8.2: Two-Dimensional Figures Prof. Jonathan Duncan Walla Walla University Winter Quarter, 2008 Outline 1 Classifying Two-Dimensional Shapes 2 Polygons Triangles Quadrilaterals 3 Other

More information

Unit 6: Connecting Algebra and Geometry Through Coordinates

Unit 6: Connecting Algebra and Geometry Through Coordinates Unit 6: Connecting Algebra and Geometry Through Coordinates The focus of this unit is to have students analyze and prove geometric properties by applying algebraic concepts and skills on a coordinate plane.

More information

Unit 2A: Angle Pairs and Transversal Notes

Unit 2A: Angle Pairs and Transversal Notes Unit 2A: Angle Pairs and Transversal Notes Day 1: Special angle pairs Day 2: Angle pairs formed by transversal through two nonparallel lines Day 3: Angle pairs formed by transversal through parallel lines

More information

Bezier Curves. An Introduction. Detlef Reimers

Bezier Curves. An Introduction. Detlef Reimers Bezier Curves An Introduction Detlef Reimers detlefreimers@gmx.de http://detlefreimers.de September 1, 2011 Chapter 1 Bezier Curve Basics 1.1 Linear Interpolation This section will give you a basic introduction

More information

Week 7 Convex Hulls in 3D

Week 7 Convex Hulls in 3D 1 Week 7 Convex Hulls in 3D 2 Polyhedra A polyhedron is the natural generalization of a 2D polygon to 3D 3 Closed Polyhedral Surface A closed polyhedral surface is a finite set of interior disjoint polygons

More information

Introduction to Complex Analysis

Introduction to Complex Analysis Introduction to Complex Analysis George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 413 George Voutsadakis (LSSU) Complex Analysis October 2014 1 / 50 Outline

More information

Lifting Transform, Voronoi, Delaunay, Convex Hulls

Lifting Transform, Voronoi, Delaunay, Convex Hulls Lifting Transform, Voronoi, Delaunay, Convex Hulls Subhash Suri Department of Computer Science University of California Santa Barbara, CA 93106 1 Lifting Transform (A combination of Pless notes and my

More information

arxiv:math/ v3 [math.dg] 23 Jul 2007

arxiv:math/ v3 [math.dg] 23 Jul 2007 THE INTRINSIC GEOMETRY OF A JORDAN DOMAIN arxiv:math/0512622v3 [math.dg] 23 Jul 2007 RICHARD L. BISHOP Abstract. For a Jordan domain in the plane the length metric space of points connected to an interior

More information

CS 532: 3D Computer Vision 14 th Set of Notes

CS 532: 3D Computer Vision 14 th Set of Notes 1 CS 532: 3D Computer Vision 14 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Lecture Outline Triangulating

More information

Geometry. Course Requirements

Geometry. Course Requirements Geometry Geometry is a full year, high school math course for the student who has successfully completed the prerequisite course, Algebra I. The course focuses on the skills and methods of linear, coordinate,

More information

High School Geometry. Correlation of the ALEKS course High School Geometry to the ACT College Readiness Standards for Mathematics

High School Geometry. Correlation of the ALEKS course High School Geometry to the ACT College Readiness Standards for Mathematics High School Geometry Correlation of the ALEKS course High School Geometry to the ACT College Readiness Standards for Mathematics Standard 5 : Graphical Representations = ALEKS course topic that addresses

More information

GEOMETRY R Unit 2: Angles and Parallel Lines

GEOMETRY R Unit 2: Angles and Parallel Lines GEOMETRY R Unit 2: Angles and Parallel Lines Day Classwork Homework Friday 9/15 Unit 1 Test Monday 9/18 Tuesday 9/19 Angle Relationships HW 2.1 Angle Relationships with Transversals HW 2.2 Wednesday 9/20

More information

Problem 3.1 (Building up geometry). For an axiomatically built-up geometry, six groups of axioms needed:

Problem 3.1 (Building up geometry). For an axiomatically built-up geometry, six groups of axioms needed: Math 3181 Dr. Franz Rothe September 29, 2016 All3181\3181_fall16h3.tex Names: Homework has to be turned in this handout. For extra space, use the back pages, or put blank pages between. The homework can

More information

Euler s Theorem. Brett Chenoweth. February 26, 2013

Euler s Theorem. Brett Chenoweth. February 26, 2013 Euler s Theorem Brett Chenoweth February 26, 2013 1 Introduction This summer I have spent six weeks of my holidays working on a research project funded by the AMSI. The title of my project was Euler s

More information

Lecture 25: Bezier Subdivision. And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10

Lecture 25: Bezier Subdivision. And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10 Lecture 25: Bezier Subdivision And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10 1. Divide and Conquer If we are going to build useful

More information

Let and be a differentiable function. Let Then be the level surface given by

Let and be a differentiable function. Let Then be the level surface given by Module 12 : Total differential, Tangent planes and normals Lecture 35 : Tangent plane and normal [Section 35.1] > Objectives In this section you will learn the following : The notion tangent plane to a

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley FINAL EXAMINATION, Fall 2012 DURATION: 3 hours Department of Mathematics MATH 53 Multivariable Calculus Examiner: Sean Fitzpatrick Total: 100 points Family Name: Given

More information

Math 144 Activity #7 Trigonometric Identities

Math 144 Activity #7 Trigonometric Identities 44 p Math 44 Activity #7 Trigonometric Identities What is a trigonometric identity? Trigonometric identities are equalities that involve trigonometric functions that are true for every single value of

More information

Figure 1: A positive crossing

Figure 1: A positive crossing Notes on Link Universality. Rich Schwartz: In his 1991 paper, Ramsey Theorems for Knots, Links, and Spatial Graphs, Seiya Negami proved a beautiful theorem about linearly embedded complete graphs. These

More information

Indicate whether the statement is true or false.

Indicate whether the statement is true or false. Math 121 Fall 2017 - Practice Exam - Chapters 5 & 6 Indicate whether the statement is true or false. 1. The simplified form of the ratio 6 inches to 1 foot is 6:1. 2. The triple (20,21,29) is a Pythagorean

More information

Instructional Unit CPM Geometry Unit Content Objective Performance Indicator Performance Task State Standards Code:

Instructional Unit CPM Geometry Unit Content Objective Performance Indicator Performance Task State Standards Code: 306 Instructional Unit Area 1. Areas of Squares and The students will be -Find the amount of carpet 2.4.11 E Rectangles able to determine the needed to cover various plane 2. Areas of Parallelograms and

More information

FORMULAS to UNDERSTAND & MEMORIZE

FORMULAS to UNDERSTAND & MEMORIZE 1 of 6 FORMULAS to UNDERSTAND & MEMORIZE Now we come to the part where you need to just bear down and memorize. To make the process a bit simpler, I am providing all of the key info that they re going

More information

Angles of Polygons. Essential Question What is the sum of the measures of the interior angles of a polygon?

Angles of Polygons. Essential Question What is the sum of the measures of the interior angles of a polygon? 7.1 Angles of Polygons Essential Question What is the sum of the measures of the interior angles of a polygon? The Sum of the Angle Measures of a Polygon Work with a partner. Use dynamic geometry software.

More information

The Art Gallery Problem

The Art Gallery Problem The Art Gallery Problem Imagine an art gallery whose floor plan is a simple polygon, and a guard (a point) inside the gallery. Computational Geometry [csci 3250] The Art Gallery Problem Laura Toma Bowdoin

More information

Teaching diary. Francis Bonahon University of Southern California

Teaching diary. Francis Bonahon University of Southern California Teaching diary In the Fall 2010, I used the book Low-dimensional geometry: from euclidean surfaces to hyperbolic knots as the textbook in the class Math 434, Geometry and Transformations, at USC. Most

More information

[8] that this cannot happen on the projective plane (cf. also [2]) and the results of Robertson, Seymour, and Thomas [5] on linkless embeddings of gra

[8] that this cannot happen on the projective plane (cf. also [2]) and the results of Robertson, Seymour, and Thomas [5] on linkless embeddings of gra Apex graphs with embeddings of face-width three Bojan Mohar Department of Mathematics University of Ljubljana Jadranska 19, 61111 Ljubljana Slovenia bojan.mohar@uni-lj.si Abstract Aa apex graph is a graph

More information

LAMC Advanced Circle October 9, Oleg Gleizer. Warm-up

LAMC Advanced Circle October 9, Oleg Gleizer. Warm-up LAMC Advanced Circle October 9, 2016 Oleg Gleizer prof1140g@math.ucla.edu Warm-up Problem 1 Prove that a straight line tangent to a circle is perpendicular to the radius connecting the tangency point to

More information

Math 3315: Geometry Vocabulary Review Human Dictionary: WORD BANK

Math 3315: Geometry Vocabulary Review Human Dictionary: WORD BANK Math 3315: Geometry Vocabulary Review Human Dictionary: WORD BANK [acute angle] [acute triangle] [adjacent interior angle] [alternate exterior angles] [alternate interior angles] [altitude] [angle] [angle_addition_postulate]

More information

Computational Geometry [csci 3250]

Computational Geometry [csci 3250] Computational Geometry [csci 3250] Laura Toma Bowdoin College The Art Gallery Problem The Art Gallery Problem Imagine an art gallery whose floor plan is a simple polygon, and a guard (a point) inside the

More information

Mathematically, the path or the trajectory of a particle moving in space in described by a function of time.

Mathematically, the path or the trajectory of a particle moving in space in described by a function of time. Module 15 : Vector fields, Gradient, Divergence and Curl Lecture 45 : Curves in space [Section 45.1] Objectives In this section you will learn the following : Concept of curve in space. Parametrization

More information

MATH 230 FALL 2004 FINAL EXAM DECEMBER 13, :20-2:10 PM

MATH 230 FALL 2004 FINAL EXAM DECEMBER 13, :20-2:10 PM Problem Score 1 2 Name: SID: Section: Instructor: 3 4 5 6 7 8 9 10 11 12 Total MATH 230 FALL 2004 FINAL EXAM DECEMBER 13, 2004 12:20-2:10 PM INSTRUCTIONS There are 12 problems on this exam for a total

More information

6.1 Circles and Related Segments and Angles

6.1 Circles and Related Segments and Angles Chapter 6 Circles 6.1 Circles and Related Segments and Angles Definitions 32. A circle is the set of all points in a plane that are a fixed distance from a given point known as the center of the circle.

More information

Geometry I Can Statements I can describe the undefined terms: point, line, and distance along a line in a plane I can describe the undefined terms:

Geometry I Can Statements I can describe the undefined terms: point, line, and distance along a line in a plane I can describe the undefined terms: Geometry I Can Statements I can describe the undefined terms: point, line, and distance along a line in a plane I can describe the undefined terms: point, line, and distance along a line in a plane I can

More information

CURVES OF CONSTANT WIDTH AND THEIR SHADOWS. Have you ever wondered why a manhole cover is in the shape of a circle? This

CURVES OF CONSTANT WIDTH AND THEIR SHADOWS. Have you ever wondered why a manhole cover is in the shape of a circle? This CURVES OF CONSTANT WIDTH AND THEIR SHADOWS LUCIE PACIOTTI Abstract. In this paper we will investigate curves of constant width and the shadows that they cast. We will compute shadow functions for the circle,

More information

Central issues in modelling

Central issues in modelling Central issues in modelling Construct families of curves, surfaces and volumes that can represent common objects usefully; are easy to interact with; interaction includes: manual modelling; fitting to

More information

CHAPTER 2 REVIEW COORDINATE GEOMETRY MATH Warm-Up: See Solved Homework questions. 2.2 Cartesian coordinate system

CHAPTER 2 REVIEW COORDINATE GEOMETRY MATH Warm-Up: See Solved Homework questions. 2.2 Cartesian coordinate system CHAPTER 2 REVIEW COORDINATE GEOMETRY MATH6 2.1 Warm-Up: See Solved Homework questions 2.2 Cartesian coordinate system Coordinate axes: Two perpendicular lines that intersect at the origin O on each line.

More information

3D convex hulls. Computational Geometry [csci 3250] Laura Toma Bowdoin College

3D convex hulls. Computational Geometry [csci 3250] Laura Toma Bowdoin College 3D convex hulls Computational Geometry [csci 3250] Laura Toma Bowdoin College Convex Hull in 3D The problem: Given a set P of points in 3D, compute their convex hull convex polyhedron 2D 3D polygon

More information

Unit 13: Periodic Functions and Trig

Unit 13: Periodic Functions and Trig Date Period Unit 13: Periodic Functions and Trig Day Topic 0 Special Right Triangles and Periodic Function 1 Special Right Triangles Standard Position Coterminal Angles 2 Unit Circle Cosine & Sine (x,

More information

ON THE EMPTY CONVEX PARTITION OF A FINITE SET IN THE PLANE**

ON THE EMPTY CONVEX PARTITION OF A FINITE SET IN THE PLANE** Chin. Ann. of Math. 23B:(2002),87-9. ON THE EMPTY CONVEX PARTITION OF A FINITE SET IN THE PLANE** XU Changqing* DING Ren* Abstract The authors discuss the partition of a finite set of points in the plane

More information

CS 177 Homework 1. Julian Panetta. October 22, We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F:

CS 177 Homework 1. Julian Panetta. October 22, We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F: CS 177 Homework 1 Julian Panetta October, 009 1 Euler Characteristic 1.1 Polyhedral Formula We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F: V E + F = 1 First,

More information

Geometry. AIR Study Guide

Geometry. AIR Study Guide Geometry AIR Study Guide Table of Contents Topic Slide Formulas 3 5 Angles 6 Lines and Slope 7 Transformations 8 Constructions 9 10 Triangles 11 Congruency and Similarity 12 Right Triangles Only 13 Other

More information

Points covered an odd number of times by translates

Points covered an odd number of times by translates Points covered an odd number of times by translates Rom Pinchasi August 5, 0 Abstract Let T be a fixed triangle and consider an odd number of translated copies of T in the plane. We show that the set of

More information

CURRICULUM CATALOG. GSE Geometry ( ) GA

CURRICULUM CATALOG. GSE Geometry ( ) GA 2018-19 CURRICULUM CATALOG Table of Contents COURSE OVERVIEW... 1 UNIT 1: TRANSFORMATIONS IN THE COORDINATE PLANE... 2 UNIT 2: SIMILARITY, CONGRUENCE, AND PROOFS PART 1... 2 UNIT 3: SIMILARITY, CONGRUENCE,

More information

Geometry Unit 2 Test , 3.8,

Geometry Unit 2 Test , 3.8, Name: Class: Date: ID: A Geometry Unit 2 Test - 3.1-3.5, 3.8, 9.1-9.3 Short Answer - You are allowed to use your notes and calculator. No cell phones.good luck! 1. Line r is parallel to line t. Find m

More information

10. Line Arrangements Lecture on Monday 2 nd November, 2009 by Michael Homann

10. Line Arrangements Lecture on Monday 2 nd November, 2009 by Michael Homann 10. Line Arrangements Lecture on Monday 2 nd November, 2009 by Michael Homann During the course of this lecture we encountered several situations where it was convenient to assume

More information

18.02 Final Exam. y = 0

18.02 Final Exam. y = 0 No books, notes or calculators. 5 problems, 50 points. 8.0 Final Exam Useful formula: cos (θ) = ( + cos(θ)) Problem. (0 points) a) (5 pts.) Find the equation in the form Ax + By + z = D of the plane P

More information

THE THIRD JTST FOR JBMO - Saudi Arabia, 2017

THE THIRD JTST FOR JBMO - Saudi Arabia, 2017 THE THIRD JTST FOR JBMO - Saudi Arabia, 017 Problem 1. Let a, b, c be positive real numbers such that a + b + c = 3. Prove the inequality a(a b ) + b(b c ) + c(c a ) 0. a + b b + c c + a Problem. Find

More information

Solve 3-D problems using Pythagoras theorem and trigonometric ratios (A*) Solve more complex 2-D problems using Pythagoras theorem & trigonometry (A)

Solve 3-D problems using Pythagoras theorem and trigonometric ratios (A*) Solve more complex 2-D problems using Pythagoras theorem & trigonometry (A) Moving from A to A* Solve 3-D problems using Pythagoras theorem and trigonometric ratios (A*) A* Use the sine & cosine rules to solve more complex problems involving non right-angled triangles (A*) Find

More information

This image cannot currently be displayed. Course Catalog. Geometry Glynlyon, Inc.

This image cannot currently be displayed. Course Catalog. Geometry Glynlyon, Inc. This image cannot currently be displayed. Course Catalog Geometry 2016 Glynlyon, Inc. Table of Contents COURSE OVERVIEW... 1 UNIT 1: INTRODUCTION... 1 UNIT 2: LOGIC... 1 UNIT 3: ANGLES AND PARALLELS...

More information

Lectures on Challenging Mathematics. Integrated Mathematics 3. Idea Math. Geometry (Part 2) Summer Internal Use

Lectures on Challenging Mathematics. Integrated Mathematics 3. Idea Math. Geometry (Part 2) Summer Internal Use Lectures on Challenging Mathematics c Copyright 2008 2018 Integrated Mathematics 3 Geometry (Part 2) Summer 2018 Zuming Feng Phillips Exeter cademy and IDE Math zfeng@exeter.edu Copyright c 2008 2018 IDE

More information

pine cone Ratio = 13:8 or 8:5

pine cone Ratio = 13:8 or 8:5 Chapter 10: Introducing Geometry 10.1 Basic Ideas of Geometry Geometry is everywhere o Road signs o Carpentry o Architecture o Interior design o Advertising o Art o Science Understanding and appreciating

More information

STANDARDS OF LEARNING CONTENT REVIEW NOTES GEOMETRY. 3 rd Nine Weeks,

STANDARDS OF LEARNING CONTENT REVIEW NOTES GEOMETRY. 3 rd Nine Weeks, STANDARDS OF LEARNING CONTENT REVIEW NOTES GEOMETRY 3 rd Nine Weeks, 2016-2017 1 OVERVIEW Geometry Content Review Notes are designed by the High School Mathematics Steering Committee as a resource for

More information

Ice-Creams and Wedge Graphs

Ice-Creams and Wedge Graphs Ice-Creams and Wedge Graphs Eyal Ackerman Tsachik Gelander Rom Pinchasi Abstract What is the minimum angle α > such that given any set of α-directional antennas (that is, antennas each of which can communicate

More information

Voronoi Diagrams and Delaunay Triangulations. O Rourke, Chapter 5

Voronoi Diagrams and Delaunay Triangulations. O Rourke, Chapter 5 Voronoi Diagrams and Delaunay Triangulations O Rourke, Chapter 5 Outline Preliminaries Properties and Applications Computing the Delaunay Triangulation Preliminaries Given a function f: R 2 R, the tangent

More information

Curriculum Catalog

Curriculum Catalog 2017-2018 Curriculum Catalog 2017 Glynlyon, Inc. Table of Contents GEOMETRY COURSE OVERVIEW...1 UNIT 1: INTRODUCTION... 1 UNIT 2: LOGIC... 1 UNIT 3: ANGLES AND PARALLELS... 2 UNIT 4: CONGRUENT TRIANGLES

More information

ds dt ds 1 dt 1 dt v v v dt ds and the normal vector is given by N

ds dt ds 1 dt 1 dt v v v dt ds and the normal vector is given by N Normal Vectors and Curvature In the last section, we stated that reparameterization by arc length would help us analyze the twisting and turning of a curve. In this section, we ll see precisely how to

More information

Surfaces: notes on Geometry & Topology

Surfaces: notes on Geometry & Topology Surfaces: notes on Geometry & Topology 1 Surfaces A 2-dimensional region of 3D space A portion of space having length and breadth but no thickness 2 Defining Surfaces Analytically... Parametric surfaces

More information

Example 1. Find the angle measure of angle b, using opposite angles.

Example 1. Find the angle measure of angle b, using opposite angles. 2..1 Exploring Parallel Lines Vertically opposite angles are equal When two lines intersect, the opposite angles are equal. Supplementary angles add to 180 Two (or more) adjacent angles on the same side

More information

Mathematics Curriculum

Mathematics Curriculum 8 GRADE Mathematics Curriculum GRADE 8 MODULE 2 Table of Contents 1... 2 Topic A: Definitions and Properties of the Basic Rigid Motions (8.G.A.1)... 8 Lesson 1: Why Move Things Around?... 10 Lesson 2:

More information

Generalized barycentric coordinates

Generalized barycentric coordinates Generalized barycentric coordinates Michael S. Floater August 20, 2012 In this lecture, we review the definitions and properties of barycentric coordinates on triangles, and study generalizations to convex,

More information

Ma/CS 6b Class 11: Kuratowski and Coloring

Ma/CS 6b Class 11: Kuratowski and Coloring Ma/CS 6b Class 11: Kuratowski and Coloring By Adam Sheffer Kuratowski's Theorem Theorem. A graph is planar if and only if it does not have K 5 and K 3,3 as topological minors. We know that if a graph contains

More information

Geometry Unit 6 Properties of Quadrilaterals Classifying Polygons Review

Geometry Unit 6 Properties of Quadrilaterals Classifying Polygons Review Geometry Unit 6 Properties of Quadrilaterals Classifying Polygons Review Polygon a closed plane figure with at least 3 sides that are segments -the sides do not intersect except at the vertices N-gon -

More information

Counting Double Tangents of Closed Curves Without Inflection Points

Counting Double Tangents of Closed Curves Without Inflection Points Counting Double Tangents of Closed Curves Without Inflection Points EMILY SUSAN MACWAY UNDERGRADUATE HONORS THESIS FACULTY ADVISOR: ABIGAIL THOMPSON JUNE 2014 UNIVERSITY OF CALIFORNIA, DAVIS COLLEGE OF

More information

Three applications of Euler s formula. Chapter 10

Three applications of Euler s formula. Chapter 10 Three applications of Euler s formula Chapter 10 A graph is planar if it can be drawn in the plane R without crossing edges (or, equivalently, on the -dimensional sphere S ). We talk of a plane graph if

More information

Ma/CS 6b Class 26: Art Galleries and Politicians

Ma/CS 6b Class 26: Art Galleries and Politicians Ma/CS 6b Class 26: Art Galleries and Politicians By Adam Sheffer The Art Gallery Problem Problem. We wish to place security cameras at a gallery, such that they cover it completely. Every camera can cover

More information

Computational Geometry

Computational Geometry Lecture 1: Introduction and convex hulls Geometry: points, lines,... Geometric objects Geometric relations Combinatorial complexity Computational geometry Plane (two-dimensional), R 2 Space (three-dimensional),

More information

Polygon Triangulation

Polygon Triangulation Polygon Triangulation Definition Simple Polygons 1. A polygon is the region of a plane bounded by a finite collection of line segments forming a simple closed curve. 2. Simple closed curve means a certain

More information

NEW YORK GEOMETRY TABLE OF CONTENTS

NEW YORK GEOMETRY TABLE OF CONTENTS NEW YORK GEOMETRY TABLE OF CONTENTS CHAPTER 1 POINTS, LINES, & PLANES {G.G.21, G.G.27} TOPIC A: Concepts Relating to Points, Lines, and Planes PART 1: Basic Concepts and Definitions...1 PART 2: Concepts

More information

1/25 Warm Up Find the value of the indicated measure

1/25 Warm Up Find the value of the indicated measure 1/25 Warm Up Find the value of the indicated measure. 1. 2. 3. 4. Lesson 7.1(2 Days) Angles of Polygons Essential Question: What is the sum of the measures of the interior angles of a polygon? What you

More information

COURSE OBJECTIVES LIST: GEOMETRY

COURSE OBJECTIVES LIST: GEOMETRY COURSE OBJECTIVES LIST: GEOMETRY Geometry Honors is offered. PREREQUISITES: All skills from Algebra I are assumed. A prerequisites test is given during the first week of class to assess knowledge of these

More information

A technique for adding range restrictions to. August 30, Abstract. In a generalized searching problem, a set S of n colored geometric objects

A technique for adding range restrictions to. August 30, Abstract. In a generalized searching problem, a set S of n colored geometric objects A technique for adding range restrictions to generalized searching problems Prosenjit Gupta Ravi Janardan y Michiel Smid z August 30, 1996 Abstract In a generalized searching problem, a set S of n colored

More information