Camera calibration. Robotic vision. Ville Kyrki

Size: px
Start display at page:

Download "Camera calibration. Robotic vision. Ville Kyrki"

Transcription

1 Camera calibration Robotic vision

2 Where are we? Images, imaging Image enhancement Feature extraction and matching Image-based tracking Camera models and calibration Pose estimation Motion analysis and visual servoing Stereo vision 3-D reconstruction

3 This week Camera calibration Needed for Euclidean measurements Problem: Estimate Intrinsic parameters, Extrinsic parameters, or Both Use a calibration target with known structure

4 Calibration Idea 3-D locations of points on a calibration target known 2-D locations of the same points can be measured from an image Use these correspondences to find camera parameters

5 Calibration options Alternative possibilities: Direct parameter calibration Estimate single parameter at a time Projection matrix calibration Estimate the projection matrix Parameters can be found later Direct parameter calibration by optimization Estimate all parameters simultaneously by iterative optimization Needs an initial guess

6 Projection matrix x=m X Contains all necessary information (extrinsic + intrinsic parameters) about a camera. except lens distortion Projection matrix can be solved, instead of individual parameters. In many cases, knowledge of projection matrix is sufficient. Projection matrix can also be decomposed to intrinsic and extrinsic parts. camera location in world M=K [ R C t W ]=K [ R R W t C ]

7 Solving projection matrix Assume: are set of homogeneous 3-D points, x i are corresponding homogeneous 2-D points How many points?

8 Solving projection matrix Assume: are set of homogeneous 3-D points, x i are corresponding homogeneous 2-D points How many points? 11 degrees of freedom in M (3x4 matrix, with unknown scale) -> at least 6 points in practice, there are errors in measurements many more points needed for good result Solution: write x i =M for all of the points

9 Solving projection matrix (cont'd) Projection can be written x i = u i w i = m 11 +m 12 Y i +m 13 Z i +m 14 m 31 +m 32 Y i +m 33 Z i +m 34 y i = v i w i = m 21 +m 22 Y i +m 23 Z i +m 24 m 31 +m 32 Y i +m 33 Z i +m 34 Method called Direct linear transform (DLT)

10 Solving projection matrix (cont'd) Projection can be written x i = u i w i = m 11 +m 12 Y i +m 13 Z i +m 14 m 31 +m 32 Y i +m 33 Z i +m 34 y i = v i w i = m 21 +m 22 Y i +m 23 Z i +m 24 m 31 +m 32 Y i +m 33 Z i +m 34 Method called Direct linear transform (DLT) (m 31 +m 32 Y i +m 33 Z i +m 34 )x i =m 11 +m 12 Y i +m 13 Z i +m 14 (m 31 +m 32 Y i +m 33 Z i +m 34 )y i =m 21 +m 22 Y i +m 23 Z i +m 24

11 Solving projection matrix (cont'd) Projection can be written x i = u i w i = m 11 +m 12 Y i +m 13 Z i +m 14 m 31 +m 32 Y i +m 33 Z i +m 34 y i = v i w i = m 21 +m 22 Y i +m 23 Z i +m 24 m 31 +m 32 Y i +m 33 Z i +m 34 Method called Direct linear transform (DLT) (m 31 +m 32 Y i +m 33 Z i +m 34 )x i =m 11 +m 12 Y i +m 13 Z i +m 14 (m 31 +m 32 Y i +m 33 Z i +m 34 )y i =m 21 +m 22 Y i +m 23 Z i +m 24 m 11 +Y i m 12 + Z i m 13 +m 14 x i m 31 x i Y i m 32 x i Z i m 33 x i m 34 =0 m 21 +Y i m 22 +Z i m 23 +m 24 y i m 31 y i Y i m 32 y i Z i m 33 y i m 34 =0

12 Solving projection matrix (cont'd) We can write the previous as A m=0 where X1 Y 1 Z x1 X 1 x1 Y 1 x1 Z 1 x X 1 Y 1 Z 1 1 y 1 X 1 y 1 Y 1 y 1 Z 1 y A=( X N Y N Z N x N X N x N Y N x N Z N x N X N Y N Z N 1 y N X N y N Y N y N Z N y N ) m=(m 11, m 12,, m 33, m 34 ) T How to solve?

13 Solving projection matrix (cont'd) Minimize: min m A m 2

14 Solving projection matrix (cont'd) Minimize: min m A m 2 Solution: Null-space of A Can be found by singular value decomposition Calculate the SVD A=UDV T Solution is the column of V corresponding to the smallest singular value of A Problems: not possible to estimate lens distortion parameters sensitive to errors (considers algebraic error) Trivial solution m=0. The other solution homogeneous. Matlab: [U,D,V]=svd(A);

15 Decreasing error sensitivity Data normalization increases numerical stability also called pre-conditioning required because units are different for image and model homogeneous coordinate has little effect, e.g. (100,100,1) arithmetic has limited precision

16 Normalization in DLT Idea: Compute similarity transformation (translation and scaling) which makes the centroid of points zero, and average absolute coordinate value 1 Avg abs coordinate value 1 corresponds to average distance from origin: for 2-D (image) points for 3-D (model) points 2 3 Normalizing transformation can be represented by a matrix acting on homogeneous coordinates

17 Normalization for image points The normalizing transformation T for image is =( 2 / d 0 2 x/ d ) T 0 2 / d 2 y/ d x=1/ N i x i y=1 /N i y i d=1/n i ( x i x) 2 +(y i y) 2 Point after normalization is then got from: normalized x i =T x i original

18 Normalization for model points In a similar fashion, normalizing transformation U for model is D X / D U=( 3/ ) 0 3/ D 0 3 Ȳ / D / D 3 Z / D where X,Ȳ, Z are the average coordinates, and D is the average length similar to previous slide =U

19 Normalization in nutshell 1) Normalization: Determine and use similarity transform T to normalize image points. Determine and use similarity transform U to normalize model points. 2) Perform DLT: Use SVD to solve the projection matrix, using the normalized points. 3) Denormalization: Determine the projection matrix for unnormalized coordinates from M=T 1 M U M

20 So far How to estimate M Next How to decompose M Decomposition = Finding out the calibration parameters from the matrix camera center orientation intrinsic parameters

21 Camera center Camera center C=(X,Y,Z,W) T is point for which MC=0. Can be solved either from SVD of M or from equations: homogeneous coordinates X =det( m 2 m 3 m 4 ) Y = det (m 1 m 3 m 4 ) Z =det( m 1 m 2 m 4 ) W = det (m 1 m 2 m 3 ) determinant m i i:th column of M

22 Orientation and intrinsics 3x3 matrix M=K [ R R C ]=[KR KR C] M=K [ R R C ]=[KR KR C] KR can be decomposed using RQ-decomposition Any non-singular matrix can be decomposed into product RQ where R is upper triangular, Q is orthogonal, similar to QR-decomposition with reversed order Q is then the camera rotation (R) R is the intrinsic calibration matrix (K) Note: R,Q not unique (mirror image)

23 Intrinsics revisited scale factor in x skew K =(α x s o x 0 α y o y ) origin (principal point)

24 Degenerate configurations Projection matrix can only be uniquely determined when the points are in general configuration Degenerate configuration = projection matrix is not unique several (2, infinite) solutions Two most important degenerate configurations camera and all points on a twisted cubic points on union of plane and a line containing camera 3-D analogue of 2-D conic

25 2-D examples of degeneracy points camera centers CAMERA AND POINTS ON CONIC CAMERA AND POINTS ON TWO LINES

26 3-D example of degeneracy NOTE: ALL POINTS ON A PLANE IS A DEGENERATE CONFIGURATION.

27 Geometric error Assume that model points are known very accurately compared to image measurements Geometric error function can then be defined as E= i d ( x i, ; p) 2 d ( x i, ; p) 2 = x i f (, p) 2 d(.,.) is the image-space Euclidean distance between the 2-D point x and 3-D point X projected using parameters p also known as reprojection error Minimization of geometric error requires iterative methods such as gradient descent or Gauss-Newtonmethod. Can you explain gradient descent?

28 Gradient descent Problem: Find the vector p for which a given function E(.) reaches a minimum, or min p E ( p) Solution: Starting with an initial guess p 0, iterate the following update until convergence p t + 1 = p t ρ E ( p ) t p ρ where is the step length (constant or variable) Gradient of E In practice, other methods such as conjugate gradient method are superior in multi-dimensional problems. Can we do better?

29 Minimization for sums of squares Error functions often sums of squares. Structure can be exploited. Write problem using residuals E ( p)= i d (x i, ; p) 2 = i d i ( p) 2 = d ( p) 2 Problem is then min d ( p) 2

30 Gauss-Newton method Approximate residual d by 1st order Taylor series d ( p t + 1 ) d ( p t )+ d p p= p t ( p t + 1 p t ) =d ( p t )+ J Δ J is the Jacobian of d, delta is the step from current to next p Minimize the length of residual vector arg min d ( p t +1 ) 2 arg min d ( p t )+ J Δ 2 Right-hand-side is now a linear least squares problem, with solution Δ = (J T J ) 1 J T Gauss-Newton d ( p i ) solution p t + 1 = p t +Δ

31 Gauss-Newton method Approximate residual d by 1st order Taylor series d ( p t + 1 )=d ( p t )+ d p p= p t (d( p t + 1 ) d ( p t )) =d ( p t )+ J Δ J is the Jacobian of d, delta is the step from current to next p Minimize the length of residual vector arg min d ( p t +1 ) 2 arg min d ( p t )+ J Δ 2 Right-hand-side is now a linear least squares problem, with solution Δ = (J T J ) 1 J T Gauss-Newton d ( p i ) solution p t + 1 = p t +Δ That's the theory for now, we will see applications later.

32 Lens distortion parameters Optimization of lens distortion parameters requires iterative methods (numeric minimization) e.g. Gauss-Newton Geometric error is usually minimized Good news: Good camera calibration routines are publicly available (Matlab camera calibration toolbox, etc.)

33 Summary You should know: What is calibration and why it is necessary? What are the parameters that need to be calibrated? How the projection matrix can be estimated? How the parameters can be found from projection matrix? How to create a calibration pattern?

34 References Trucco & Verri, chapter 6 Hartley & Zisserman, chapters 4 and 7 Software OpenCV calibration module

35 Next time: Pose estimation How to determine the pose of a 3-D target?

Vision Review: Image Formation. Course web page:

Vision Review: Image Formation. Course web page: Vision Review: Image Formation Course web page: www.cis.udel.edu/~cer/arv September 10, 2002 Announcements Lecture on Thursday will be about Matlab; next Tuesday will be Image Processing The dates some

More information

Geometric camera models and calibration

Geometric camera models and calibration Geometric camera models and calibration http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 13 Course announcements Homework 3 is out. - Due October

More information

Chapter 7: Computation of the Camera Matrix P

Chapter 7: Computation of the Camera Matrix P Chapter 7: Computation of the Camera Matrix P Arco Nederveen Eagle Vision March 18, 2008 Arco Nederveen (Eagle Vision) The Camera Matrix P March 18, 2008 1 / 25 1 Chapter 7: Computation of the camera Matrix

More information

Index. 3D reconstruction, point algorithm, point algorithm, point algorithm, point algorithm, 263

Index. 3D reconstruction, point algorithm, point algorithm, point algorithm, point algorithm, 263 Index 3D reconstruction, 125 5+1-point algorithm, 284 5-point algorithm, 270 7-point algorithm, 265 8-point algorithm, 263 affine point, 45 affine transformation, 57 affine transformation group, 57 affine

More information

calibrated coordinates Linear transformation pixel coordinates

calibrated coordinates Linear transformation pixel coordinates 1 calibrated coordinates Linear transformation pixel coordinates 2 Calibration with a rig Uncalibrated epipolar geometry Ambiguities in image formation Stratified reconstruction Autocalibration with partial

More information

Index. 3D reconstruction, point algorithm, point algorithm, point algorithm, point algorithm, 253

Index. 3D reconstruction, point algorithm, point algorithm, point algorithm, point algorithm, 253 Index 3D reconstruction, 123 5+1-point algorithm, 274 5-point algorithm, 260 7-point algorithm, 255 8-point algorithm, 253 affine point, 43 affine transformation, 55 affine transformation group, 55 affine

More information

CS231A Course Notes 4: Stereo Systems and Structure from Motion

CS231A Course Notes 4: Stereo Systems and Structure from Motion CS231A Course Notes 4: Stereo Systems and Structure from Motion Kenji Hata and Silvio Savarese 1 Introduction In the previous notes, we covered how adding additional viewpoints of a scene can greatly enhance

More information

Hartley - Zisserman reading club. Part I: Hartley and Zisserman Appendix 6: Part II: Zhengyou Zhang: Presented by Daniel Fontijne

Hartley - Zisserman reading club. Part I: Hartley and Zisserman Appendix 6: Part II: Zhengyou Zhang: Presented by Daniel Fontijne Hartley - Zisserman reading club Part I: Hartley and Zisserman Appendix 6: Iterative estimation methods Part II: Zhengyou Zhang: A Flexible New Technique for Camera Calibration Presented by Daniel Fontijne

More information

Camera models and calibration

Camera models and calibration Camera models and calibration Read tutorial chapter 2 and 3. http://www.cs.unc.edu/~marc/tutorial/ Szeliski s book pp.29-73 Schedule (tentative) 2 # date topic Sep.8 Introduction and geometry 2 Sep.25

More information

Pin Hole Cameras & Warp Functions

Pin Hole Cameras & Warp Functions Pin Hole Cameras & Warp Functions Instructor - Simon Lucey 16-423 - Designing Computer Vision Apps Today Pinhole Camera. Homogenous Coordinates. Planar Warp Functions. Motivation Taken from: http://img.gawkerassets.com/img/18w7i1umpzoa9jpg/original.jpg

More information

Agenda. Rotations. Camera models. Camera calibration. Homographies

Agenda. Rotations. Camera models. Camera calibration. Homographies Agenda Rotations Camera models Camera calibration Homographies D Rotations R Y = Z r r r r r r r r r Y Z Think of as change of basis where ri = r(i,:) are orthonormal basis vectors r rotated coordinate

More information

The real voyage of discovery consists not in seeking new landscapes, but in having new eyes.

The real voyage of discovery consists not in seeking new landscapes, but in having new eyes. The real voyage of discovery consists not in seeking new landscapes, but in having new eyes. - Marcel Proust University of Texas at Arlington Camera Calibration (or Resectioning) CSE 4392-5369 Vision-based

More information

Multiple View Geometry in Computer Vision Second Edition

Multiple View Geometry in Computer Vision Second Edition Multiple View Geometry in Computer Vision Second Edition Richard Hartley Australian National University, Canberra, Australia Andrew Zisserman University of Oxford, UK CAMBRIDGE UNIVERSITY PRESS Contents

More information

Humanoid Robotics. Least Squares. Maren Bennewitz

Humanoid Robotics. Least Squares. Maren Bennewitz Humanoid Robotics Least Squares Maren Bennewitz Goal of This Lecture Introduction into least squares Use it yourself for odometry calibration, later in the lecture: camera and whole-body self-calibration

More information

Computer Vision: Lecture 3

Computer Vision: Lecture 3 Computer Vision: Lecture 3 Carl Olsson 2019-01-29 Carl Olsson Computer Vision: Lecture 3 2019-01-29 1 / 28 Todays Lecture Camera Calibration The inner parameters - K. Projective vs. Euclidean Reconstruction.

More information

Homogeneous Coordinates. Lecture18: Camera Models. Representation of Line and Point in 2D. Cross Product. Overall scaling is NOT important.

Homogeneous Coordinates. Lecture18: Camera Models. Representation of Line and Point in 2D. Cross Product. Overall scaling is NOT important. Homogeneous Coordinates Overall scaling is NOT important. CSED44:Introduction to Computer Vision (207F) Lecture8: Camera Models Bohyung Han CSE, POSTECH bhhan@postech.ac.kr (",, ) ()", ), )) ) 0 It is

More information

Computer Vision. Geometric Camera Calibration. Samer M Abdallah, PhD

Computer Vision. Geometric Camera Calibration. Samer M Abdallah, PhD Computer Vision Samer M Abdallah, PhD Faculty of Engineering and Architecture American University of Beirut Beirut, Lebanon Geometric Camera Calibration September 2, 2004 1 Computer Vision Geometric Camera

More information

Pin Hole Cameras & Warp Functions

Pin Hole Cameras & Warp Functions Pin Hole Cameras & Warp Functions Instructor - Simon Lucey 16-423 - Designing Computer Vision Apps Today Pinhole Camera. Homogenous Coordinates. Planar Warp Functions. Example of SLAM for AR Taken from:

More information

Two-view geometry Computer Vision Spring 2018, Lecture 10

Two-view geometry Computer Vision Spring 2018, Lecture 10 Two-view geometry http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 10 Course announcements Homework 2 is due on February 23 rd. - Any questions about the homework? - How many of

More information

Lecture 3: Camera Calibration, DLT, SVD

Lecture 3: Camera Calibration, DLT, SVD Computer Vision Lecture 3 23--28 Lecture 3: Camera Calibration, DL, SVD he Inner Parameters In this section we will introduce the inner parameters of the cameras Recall from the camera equations λx = P

More information

Structure from motion

Structure from motion Structure from motion Structure from motion Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates?? R 1,t 1 R 2,t 2 R 3,t 3 Camera 1 Camera

More information

Unit 3 Multiple View Geometry

Unit 3 Multiple View Geometry Unit 3 Multiple View Geometry Relations between images of a scene Recovering the cameras Recovering the scene structure http://www.robots.ox.ac.uk/~vgg/hzbook/hzbook1.html 3D structure from images Recover

More information

Lecture 9: Epipolar Geometry

Lecture 9: Epipolar Geometry Lecture 9: Epipolar Geometry Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Why is stereo useful? Epipolar constraints Essential and fundamental matrix Estimating F (Problem Set 2

More information

METR Robotics Tutorial 2 Week 2: Homogeneous Coordinates

METR Robotics Tutorial 2 Week 2: Homogeneous Coordinates METR4202 -- Robotics Tutorial 2 Week 2: Homogeneous Coordinates The objective of this tutorial is to explore homogenous transformations. The MATLAB robotics toolbox developed by Peter Corke might be a

More information

Interlude: Solving systems of Equations

Interlude: Solving systems of Equations Interlude: Solving systems of Equations Solving Ax = b What happens to x under Ax? The singular value decomposition Rotation matrices Singular matrices Condition number Null space Solving Ax = 0 under

More information

Rectification and Distortion Correction

Rectification and Distortion Correction Rectification and Distortion Correction Hagen Spies March 12, 2003 Computer Vision Laboratory Department of Electrical Engineering Linköping University, Sweden Contents Distortion Correction Rectification

More information

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry 55:148 Digital Image Processing Chapter 11 3D Vision, Geometry Topics: Basics of projective geometry Points and hyperplanes in projective space Homography Estimating homography from point correspondence

More information

Camera Model and Calibration. Lecture-12

Camera Model and Calibration. Lecture-12 Camera Model and Calibration Lecture-12 Camera Calibration Determine extrinsic and intrinsic parameters of camera Extrinsic 3D location and orientation of camera Intrinsic Focal length The size of the

More information

Euclidean Reconstruction Independent on Camera Intrinsic Parameters

Euclidean Reconstruction Independent on Camera Intrinsic Parameters Euclidean Reconstruction Independent on Camera Intrinsic Parameters Ezio MALIS I.N.R.I.A. Sophia-Antipolis, FRANCE Adrien BARTOLI INRIA Rhone-Alpes, FRANCE Abstract bundle adjustment techniques for Euclidean

More information

Multiview Stereo COSC450. Lecture 8

Multiview Stereo COSC450. Lecture 8 Multiview Stereo COSC450 Lecture 8 Stereo Vision So Far Stereo and epipolar geometry Fundamental matrix captures geometry 8-point algorithm Essential matrix with calibrated cameras 5-point algorithm Intersect

More information

Structure from motion

Structure from motion Structure from motion Structure from motion Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates?? R 1,t 1 R 2,t R 2 3,t 3 Camera 1 Camera

More information

Project 2: Structure from Motion

Project 2: Structure from Motion Project 2: Structure from Motion CIS 580, Machine Perception, Spring 2015 Preliminary report due: 2015.04.27. 11:59AM Final Due: 2015.05.06. 11:59AM This project aims to reconstruct a 3D point cloud and

More information

Part I: Single and Two View Geometry Internal camera parameters

Part I: Single and Two View Geometry Internal camera parameters !! 43 1!???? Imaging eometry Multiple View eometry Perspective projection Richard Hartley Andrew isserman O p y VPR June 1999 where image plane This can be written as a linear mapping between homogeneous

More information

CS201 Computer Vision Camera Geometry

CS201 Computer Vision Camera Geometry CS201 Computer Vision Camera Geometry John Magee 25 November, 2014 Slides Courtesy of: Diane H. Theriault (deht@bu.edu) Question of the Day: How can we represent the relationships between cameras and the

More information

Robot Mapping. Least Squares Approach to SLAM. Cyrill Stachniss

Robot Mapping. Least Squares Approach to SLAM. Cyrill Stachniss Robot Mapping Least Squares Approach to SLAM Cyrill Stachniss 1 Three Main SLAM Paradigms Kalman filter Particle filter Graphbased least squares approach to SLAM 2 Least Squares in General Approach for

More information

Graphbased. Kalman filter. Particle filter. Three Main SLAM Paradigms. Robot Mapping. Least Squares Approach to SLAM. Least Squares in General

Graphbased. Kalman filter. Particle filter. Three Main SLAM Paradigms. Robot Mapping. Least Squares Approach to SLAM. Least Squares in General Robot Mapping Three Main SLAM Paradigms Least Squares Approach to SLAM Kalman filter Particle filter Graphbased Cyrill Stachniss least squares approach to SLAM 1 2 Least Squares in General! Approach for

More information

An idea which can be used once is a trick. If it can be used more than once it becomes a method

An idea which can be used once is a trick. If it can be used more than once it becomes a method An idea which can be used once is a trick. If it can be used more than once it becomes a method - George Polya and Gabor Szego University of Texas at Arlington Rigid Body Transformations & Generalized

More information

Computer Vision CSCI-GA Assignment 1.

Computer Vision CSCI-GA Assignment 1. Computer Vision CSCI-GA.2272-001 Assignment 1. September 22, 2017 Introduction This assignment explores various methods for aligning images and feature extraction. There are four parts to the assignment:

More information

Computer Vision. 2. Projective Geometry in 3D. Lars Schmidt-Thieme

Computer Vision. 2. Projective Geometry in 3D. Lars Schmidt-Thieme Computer Vision 2. Projective Geometry in 3D Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim, Germany 1 / 26 Syllabus Mon.

More information

Epipolar geometry. x x

Epipolar geometry. x x Two-view geometry Epipolar geometry X x x Baseline line connecting the two camera centers Epipolar Plane plane containing baseline (1D family) Epipoles = intersections of baseline with image planes = projections

More information

Camera model and calibration

Camera model and calibration and calibration AVIO tristan.moreau@univ-rennes1.fr Laboratoire de Traitement du Signal et des Images (LTSI) Université de Rennes 1. Mardi 21 janvier 1 AVIO tristan.moreau@univ-rennes1.fr and calibration

More information

Camera Models and Image Formation. Srikumar Ramalingam School of Computing University of Utah

Camera Models and Image Formation. Srikumar Ramalingam School of Computing University of Utah Camera Models and Image Formation Srikumar Ramalingam School of Computing University of Utah srikumar@cs.utah.edu VisualFunHouse.com 3D Street Art Image courtesy: Julian Beaver (VisualFunHouse.com) 3D

More information

Structure from Motion

Structure from Motion Structure from Motion Outline Bundle Adjustment Ambguities in Reconstruction Affine Factorization Extensions Structure from motion Recover both 3D scene geoemetry and camera positions SLAM: Simultaneous

More information

Two-View Geometry (Course 23, Lecture D)

Two-View Geometry (Course 23, Lecture D) Two-View Geometry (Course 23, Lecture D) Jana Kosecka Department of Computer Science George Mason University http://www.cs.gmu.edu/~kosecka General Formulation Given two views of the scene recover the

More information

COS429: COMPUTER VISON CAMERAS AND PROJECTIONS (2 lectures)

COS429: COMPUTER VISON CAMERAS AND PROJECTIONS (2 lectures) COS429: COMPUTER VISON CMERS ND PROJECTIONS (2 lectures) Pinhole cameras Camera with lenses Sensing nalytical Euclidean geometry The intrinsic parameters of a camera The extrinsic parameters of a camera

More information

Camera Model and Calibration

Camera Model and Calibration Camera Model and Calibration Lecture-10 Camera Calibration Determine extrinsic and intrinsic parameters of camera Extrinsic 3D location and orientation of camera Intrinsic Focal length The size of the

More information

EECS 442: Final Project

EECS 442: Final Project EECS 442: Final Project Structure From Motion Kevin Choi Robotics Ismail El Houcheimi Robotics Yih-Jye Jeffrey Hsu Robotics Abstract In this paper, we summarize the method, and results of our projective

More information

Stereo II CSE 576. Ali Farhadi. Several slides from Larry Zitnick and Steve Seitz

Stereo II CSE 576. Ali Farhadi. Several slides from Larry Zitnick and Steve Seitz Stereo II CSE 576 Ali Farhadi Several slides from Larry Zitnick and Steve Seitz Camera parameters A camera is described by several parameters Translation T of the optical center from the origin of world

More information

Agenda. Rotations. Camera calibration. Homography. Ransac

Agenda. Rotations. Camera calibration. Homography. Ransac Agenda Rotations Camera calibration Homography Ransac Geometric Transformations y x Transformation Matrix # DoF Preserves Icon translation rigid (Euclidean) similarity affine projective h I t h R t h sr

More information

Recovering structure from a single view Pinhole perspective projection

Recovering structure from a single view Pinhole perspective projection EPIPOLAR GEOMETRY The slides are from several sources through James Hays (Brown); Silvio Savarese (U. of Michigan); Svetlana Lazebnik (U. Illinois); Bill Freeman and Antonio Torralba (MIT), including their

More information

Mysteries of Parameterizing Camera Motion - Part 1

Mysteries of Parameterizing Camera Motion - Part 1 Mysteries of Parameterizing Camera Motion - Part 1 Instructor - Simon Lucey 16-623 - Advanced Computer Vision Apps Today Motivation SO(3) Convex? Exponential Maps SL(3) Group. Adapted from: Computer vision:

More information

CS 231A: Computer Vision (Winter 2018) Problem Set 2

CS 231A: Computer Vision (Winter 2018) Problem Set 2 CS 231A: Computer Vision (Winter 2018) Problem Set 2 Due Date: Feb 09 2018, 11:59pm Note: In this PS, using python2 is recommended, as the data files are dumped with python2. Using python3 might cause

More information

Computational Optical Imaging - Optique Numerique. -- Single and Multiple View Geometry, Stereo matching --

Computational Optical Imaging - Optique Numerique. -- Single and Multiple View Geometry, Stereo matching -- Computational Optical Imaging - Optique Numerique -- Single and Multiple View Geometry, Stereo matching -- Autumn 2015 Ivo Ihrke with slides by Thorsten Thormaehlen Reminder: Feature Detection and Matching

More information

Module 4F12: Computer Vision and Robotics Solutions to Examples Paper 2

Module 4F12: Computer Vision and Robotics Solutions to Examples Paper 2 Engineering Tripos Part IIB FOURTH YEAR Module 4F2: Computer Vision and Robotics Solutions to Examples Paper 2. Perspective projection and vanishing points (a) Consider a line in 3D space, defined in camera-centered

More information

Camera Models and Image Formation. Srikumar Ramalingam School of Computing University of Utah

Camera Models and Image Formation. Srikumar Ramalingam School of Computing University of Utah Camera Models and Image Formation Srikumar Ramalingam School of Computing University of Utah srikumar@cs.utah.edu Reference Most slides are adapted from the following notes: Some lecture notes on geometric

More information

Computer Vision I - Algorithms and Applications: Multi-View 3D reconstruction

Computer Vision I - Algorithms and Applications: Multi-View 3D reconstruction Computer Vision I - Algorithms and Applications: Multi-View 3D reconstruction Carsten Rother 09/12/2013 Computer Vision I: Multi-View 3D reconstruction Roadmap this lecture Computer Vision I: Multi-View

More information

Multi-view geometry problems

Multi-view geometry problems Multi-view geometry Multi-view geometry problems Structure: Given projections o the same 3D point in two or more images, compute the 3D coordinates o that point? Camera 1 Camera 2 R 1,t 1 R 2,t 2 Camera

More information

Project: Camera Rectification and Structure from Motion

Project: Camera Rectification and Structure from Motion Project: Camera Rectification and Structure from Motion CIS 580, Machine Perception, Spring 2018 April 26, 2018 In this project, you will learn how to estimate the relative poses of two cameras and compute

More information

Structure from Motion. Introduction to Computer Vision CSE 152 Lecture 10

Structure from Motion. Introduction to Computer Vision CSE 152 Lecture 10 Structure from Motion CSE 152 Lecture 10 Announcements Homework 3 is due May 9, 11:59 PM Reading: Chapter 8: Structure from Motion Optional: Multiple View Geometry in Computer Vision, 2nd edition, Hartley

More information

Structure from motion

Structure from motion Multi-view geometry Structure rom motion Camera 1 Camera 2 R 1,t 1 R 2,t 2 Camera 3 R 3,t 3 Figure credit: Noah Snavely Structure rom motion? Camera 1 Camera 2 R 1,t 1 R 2,t 2 Camera 3 R 3,t 3 Structure:

More information

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision Multiple View Geometry in Computer Vision Prasanna Sahoo Department of Mathematics University of Louisville 1 Projective 3D Geometry (Back to Chapter 2) Lecture 6 2 Singular Value Decomposition Given a

More information

COMP 558 lecture 19 Nov. 17, 2010

COMP 558 lecture 19 Nov. 17, 2010 COMP 558 lecture 9 Nov. 7, 2 Camera calibration To estimate the geometry of 3D scenes, it helps to know the camera parameters, both external and internal. The problem of finding all these parameters is

More information

3D Geometry and Camera Calibration

3D Geometry and Camera Calibration 3D Geometry and Camera Calibration 3D Coordinate Systems Right-handed vs. left-handed x x y z z y 2D Coordinate Systems 3D Geometry Basics y axis up vs. y axis down Origin at center vs. corner Will often

More information

Stereo and Epipolar geometry

Stereo and Epipolar geometry Previously Image Primitives (feature points, lines, contours) Today: Stereo and Epipolar geometry How to match primitives between two (multiple) views) Goals: 3D reconstruction, recognition Jana Kosecka

More information

Geometry of image formation

Geometry of image formation eometry of image formation Tomáš Svoboda, svoboda@cmp.felk.cvut.cz Czech Technical University in Prague, Center for Machine Perception http://cmp.felk.cvut.cz Last update: November 3, 2008 Talk Outline

More information

Today. Stereo (two view) reconstruction. Multiview geometry. Today. Multiview geometry. Computational Photography

Today. Stereo (two view) reconstruction. Multiview geometry. Today. Multiview geometry. Computational Photography Computational Photography Matthias Zwicker University of Bern Fall 2009 Today From 2D to 3D using multiple views Introduction Geometry of two views Stereo matching Other applications Multiview geometry

More information

Multiple Motion Scene Reconstruction from Uncalibrated Views

Multiple Motion Scene Reconstruction from Uncalibrated Views Multiple Motion Scene Reconstruction from Uncalibrated Views Mei Han C & C Research Laboratories NEC USA, Inc. meihan@ccrl.sj.nec.com Takeo Kanade Robotics Institute Carnegie Mellon University tk@cs.cmu.edu

More information

3D Reconstruction with two Calibrated Cameras

3D Reconstruction with two Calibrated Cameras 3D Reconstruction with two Calibrated Cameras Carlo Tomasi The standard reference frame for a camera C is a right-handed Cartesian frame with its origin at the center of projection of C, its positive Z

More information

C18 Computer Vision. Lecture 1 Introduction: imaging geometry, camera calibration. Victor Adrian Prisacariu.

C18 Computer Vision. Lecture 1 Introduction: imaging geometry, camera calibration. Victor Adrian Prisacariu. C8 Computer Vision Lecture Introduction: imaging geometry, camera calibration Victor Adrian Prisacariu http://www.robots.ox.ac.uk/~victor InfiniTAM Demo Course Content VP: Intro, basic image features,

More information

Improving camera calibration

Improving camera calibration Applying a least squares method to control point measurement 27th May 2005 Master s Thesis in Computing Science, 20 credits Supervisor at CS-UmU: Niclas Börlin Examiner: Per Lindström UmeåUniversity Department

More information

Fundamental Matrix & Structure from Motion

Fundamental Matrix & Structure from Motion Fundamental Matrix & Structure from Motion Instructor - Simon Lucey 16-423 - Designing Computer Vision Apps Today Transformations between images Structure from Motion The Essential Matrix The Fundamental

More information

Quasi-Euclidean Uncalibrated Epipolar Rectification

Quasi-Euclidean Uncalibrated Epipolar Rectification Dipartimento di Informatica Università degli Studi di Verona Rapporto di ricerca Research report September 2006 RR 43/2006 Quasi-Euclidean Uncalibrated Epipolar Rectification L. Irsara A. Fusiello Questo

More information

EECS 4330/7330 Introduction to Mechatronics and Robotic Vision, Fall Lab 1. Camera Calibration

EECS 4330/7330 Introduction to Mechatronics and Robotic Vision, Fall Lab 1. Camera Calibration 1 Lab 1 Camera Calibration Objective In this experiment, students will use stereo cameras, an image acquisition program and camera calibration algorithms to achieve the following goals: 1. Develop a procedure

More information

Camera Geometry II. COS 429 Princeton University

Camera Geometry II. COS 429 Princeton University Camera Geometry II COS 429 Princeton University Outline Projective geometry Vanishing points Application: camera calibration Application: single-view metrology Epipolar geometry Application: stereo correspondence

More information

Metric Structure from Motion

Metric Structure from Motion CS443 Final Project Metric Structure from Motion Peng Cheng 1 Objective of the Project Given: 1. A static object with n feature points and unknown shape. 2. A camera with unknown intrinsic parameters takes

More information

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry 55:148 Digital Image Processing Chapter 11 3D Vision, Geometry Topics: Basics of projective geometry Points and hyperplanes in projective space Homography Estimating homography from point correspondence

More information

arxiv: v1 [cs.cv] 2 May 2016

arxiv: v1 [cs.cv] 2 May 2016 16-811 Math Fundamentals for Robotics Comparison of Optimization Methods in Optical Flow Estimation Final Report, Fall 2015 arxiv:1605.00572v1 [cs.cv] 2 May 2016 Contents Noranart Vesdapunt Master of Computer

More information

CS 395T Lecture 12: Feature Matching and Bundle Adjustment. Qixing Huang October 10 st 2018

CS 395T Lecture 12: Feature Matching and Bundle Adjustment. Qixing Huang October 10 st 2018 CS 395T Lecture 12: Feature Matching and Bundle Adjustment Qixing Huang October 10 st 2018 Lecture Overview Dense Feature Correspondences Bundle Adjustment in Structure-from-Motion Image Matching Algorithm

More information

Visual Tracking (1) Tracking of Feature Points and Planar Rigid Objects

Visual Tracking (1) Tracking of Feature Points and Planar Rigid Objects Intelligent Control Systems Visual Tracking (1) Tracking of Feature Points and Planar Rigid Objects Shingo Kagami Graduate School of Information Sciences, Tohoku University swk(at)ic.is.tohoku.ac.jp http://www.ic.is.tohoku.ac.jp/ja/swk/

More information

Multiple-View Structure and Motion From Line Correspondences

Multiple-View Structure and Motion From Line Correspondences ICCV 03 IN PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, NICE, FRANCE, OCTOBER 003. Multiple-View Structure and Motion From Line Correspondences Adrien Bartoli Peter Sturm INRIA

More information

Computer Vision Projective Geometry and Calibration. Pinhole cameras

Computer Vision Projective Geometry and Calibration. Pinhole cameras Computer Vision Projective Geometry and Calibration Professor Hager http://www.cs.jhu.edu/~hager Jason Corso http://www.cs.jhu.edu/~jcorso. Pinhole cameras Abstract camera model - box with a small hole

More information

Robust Geometry Estimation from two Images

Robust Geometry Estimation from two Images Robust Geometry Estimation from two Images Carsten Rother 09/12/2016 Computer Vision I: Image Formation Process Roadmap for next four lectures Computer Vision I: Image Formation Process 09/12/2016 2 Appearance-based

More information

Geometry for Computer Vision

Geometry for Computer Vision Geometry for Computer Vision Lecture 5b Calibrated Multi View Geometry Per-Erik Forssén 1 Overview The 5-point Algorithm Structure from Motion Bundle Adjustment 2 Planar degeneracy In the uncalibrated

More information

Camera Calibration with a Simulated Three Dimensional Calibration Object

Camera Calibration with a Simulated Three Dimensional Calibration Object Czech Pattern Recognition Workshop, Tomáš Svoboda (Ed.) Peršlák, Czech Republic, February 4, Czech Pattern Recognition Society Camera Calibration with a Simulated Three Dimensional Calibration Object Hynek

More information

Outline. ETN-FPI Training School on Plenoptic Sensing

Outline. ETN-FPI Training School on Plenoptic Sensing Outline Introduction Part I: Basics of Mathematical Optimization Linear Least Squares Nonlinear Optimization Part II: Basics of Computer Vision Camera Model Multi-Camera Model Multi-Camera Calibration

More information

Minimizing Algebraic Error

Minimizing Algebraic Error Minimizing Algebraic Richard I. Hartley, G.E. Corporate Research and Development Research Circle Niskayuna, NY 39 Abstract This paper gives a widely applicable technique for solving many of the parameter

More information

LUMS Mine Detector Project

LUMS Mine Detector Project LUMS Mine Detector Project Using visual information to control a robot (Hutchinson et al. 1996). Vision may or may not be used in the feedback loop. Visual (image based) features such as points, lines

More information

Prof. Fanny Ficuciello Robotics for Bioengineering Visual Servoing

Prof. Fanny Ficuciello Robotics for Bioengineering Visual Servoing Visual servoing vision allows a robotic system to obtain geometrical and qualitative information on the surrounding environment high level control motion planning (look-and-move visual grasping) low level

More information

Image Rectification (Stereo) (New book: 7.2.1, old book: 11.1)

Image Rectification (Stereo) (New book: 7.2.1, old book: 11.1) Image Rectification (Stereo) (New book: 7.2.1, old book: 11.1) Guido Gerig CS 6320 Spring 2013 Credits: Prof. Mubarak Shah, Course notes modified from: http://www.cs.ucf.edu/courses/cap6411/cap5415/, Lecture

More information

Flexible Calibration of a Portable Structured Light System through Surface Plane

Flexible Calibration of a Portable Structured Light System through Surface Plane Vol. 34, No. 11 ACTA AUTOMATICA SINICA November, 2008 Flexible Calibration of a Portable Structured Light System through Surface Plane GAO Wei 1 WANG Liang 1 HU Zhan-Yi 1 Abstract For a portable structured

More information

Linear Multi View Reconstruction and Camera Recovery Using a Reference Plane

Linear Multi View Reconstruction and Camera Recovery Using a Reference Plane International Journal of Computer Vision 49(2/3), 117 141, 2002 c 2002 Kluwer Academic Publishers. Manufactured in The Netherlands. Linear Multi View Reconstruction and Camera Recovery Using a Reference

More information

Multiple View Reconstruction of Calibrated Images using Singular Value Decomposition

Multiple View Reconstruction of Calibrated Images using Singular Value Decomposition Multiple View Reconstruction of Calibrated Images using Singular Value Decomposition Ayan Chaudhury, Abhishek Gupta, Sumita Manna, Subhadeep Mukherjee, Amlan Chakrabarti Abstract Calibration in a multi

More information

Nonlinear State Estimation for Robotics and Computer Vision Applications: An Overview

Nonlinear State Estimation for Robotics and Computer Vision Applications: An Overview Nonlinear State Estimation for Robotics and Computer Vision Applications: An Overview Arun Das 05/09/2017 Arun Das Waterloo Autonomous Vehicles Lab Introduction What s in a name? Arun Das Waterloo Autonomous

More information

Structure from motion

Structure from motion Structure from motion Structure from motion Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates?? R 1,t 1 R 2,t 2 R 3,t 3 Camera 1 Camera

More information

Camera Calibration. Schedule. Jesus J Caban. Note: You have until next Monday to let me know. ! Today:! Camera calibration

Camera Calibration. Schedule. Jesus J Caban. Note: You have until next Monday to let me know. ! Today:! Camera calibration Camera Calibration Jesus J Caban Schedule! Today:! Camera calibration! Wednesday:! Lecture: Motion & Optical Flow! Monday:! Lecture: Medical Imaging! Final presentations:! Nov 29 th : W. Griffin! Dec 1

More information

Numerical Linear Algebra

Numerical Linear Algebra Numerical Linear Algebra Probably the simplest kind of problem. Occurs in many contexts, often as part of larger problem. Symbolic manipulation packages can do linear algebra "analytically" (e.g. Mathematica,

More information

Computer Vision I - Robust Geometry Estimation from two Cameras

Computer Vision I - Robust Geometry Estimation from two Cameras Computer Vision I - Robust Geometry Estimation from two Cameras Carsten Rother 16/01/2015 Computer Vision I: Image Formation Process FYI Computer Vision I: Image Formation Process 16/01/2015 2 Microsoft

More information

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science. Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Bundle Adjustment 2 Example Application A vehicle needs to map its environment that it is moving

More information

Multi-View Geometry Part II (Ch7 New book. Ch 10/11 old book)

Multi-View Geometry Part II (Ch7 New book. Ch 10/11 old book) Multi-View Geometry Part II (Ch7 New book. Ch 10/11 old book) Guido Gerig CS-GY 6643, Spring 2016 gerig@nyu.edu Credits: M. Shah, UCF CAP5415, lecture 23 http://www.cs.ucf.edu/courses/cap6411/cap5415/,

More information

Stereo Vision System for Real Time Inspection and 3D Reconstruction

Stereo Vision System for Real Time Inspection and 3D Reconstruction Stereo Vision System for Real Time Inspection and 3D Reconstruction Lenildo C. SILVA 1, Antonio PETRAGLIA 2, Senior Member, IEEE, Mariane R. PETRAGLIA 3, Member, IEEE 1 PEE/COPPE, UFRJ, Cidade Universitária,

More information