Complex Features on a Surface. CITS4241 Visualisation Lectures 22 & 23. Texture mapping techniques. Texture mapping techniques

Size: px
Start display at page:

Download "Complex Features on a Surface. CITS4241 Visualisation Lectures 22 & 23. Texture mapping techniques. Texture mapping techniques"

Transcription

1 Complex Features on a Surface CITS4241 Visualisation Lectures 22 & 23 Texture Mapping Rendering all surfaces as blocks of colour Not very realistic result! Even with shading Many objects have detailed surface features Grain on wood Ripples on water Construct many polygons? One for each micro "feature"? Explosion in polygon numbers! Long rendering times Texture Mapping Realistic results Reasonable computation times CITS Lectures 22 & 23 2 Texture mapping techniques We restrict ourselves to the class of texture mapping techniques which are mappings R 3 R 2 Basic idea: Given a 2D image (or texture pattern), find the mapping that maps this texture onto a 3D object (x, y, z) mapping (u, v) Texture mapping techniques There are 3 general categories of these techniques: 1. General texture mapping Pasting of a 2D texture pattern onto an object 2. View dependent mapping Known colloquially as chrome mapping a cheap form of environment mapping Environment surrounding an object is pasted on to it Pattern seen will be dependent on viewing angle 3. Bump mapping Creates apparent alterations to geometry of object surface Can simulate ripples or rough textured materials such as leather CITS Lectures 22 & 23 3 CITS Lectures 22 &

2 Differences among these techniques In general texture mapping: A flat texture pattern is pasted onto an object in 3D Object s surface geometry is unchanged Pattern at a point is independent of viewing direction of observer Texture now becomes part of the object database When a texture mapped sphere rotates about its centre, the texture moves with it In chrome or environment mapping: Similar to general texture mapping, but pattern seen at a point is dependent on viewing direction of observer E.g. Reflecting the surrounding environment in a shiny object Object's geometry unchanged Flat texture pattern When an environment mapped sphere rotates, the texture map is not changed Differences among these techniques In bump mapping: Object s surface geometry is unchanged, but surface may appear dimpled or wrinkled Trick the reflection model, I.e. surface normals are perturbed with a bump map giving local variations to surface Simulating 3D micro-structure on the surface Wrinkles Ripples CITS Lectures 22 & 23 5 CITS Lectures 22 & 23 6 Done in Matrox hardware All of the three mapping approaches are displayed ripple texture of water is environment mapped bump mapping Example 1 This version is without bump mapping Example 2 CITS Lectures 22 & 23 7 CITS Lectures 22 &

3 General texture mapping For all the texture mapping techniques in the 3 categories, the texture projection function must be determined Mapping a 2D texture onto an analytically defined object, e.g. a sphere or cylinder, is easy as the projection function can be determined analytically E.g. A cylinder of radius r and height h in parametric coordinates (θ, z) is: (r cos(θ), r sin(θ), hz) where 0 <= θ < 2π and 0 <= z <= 1. The texture projection function is then (u, v) = f(θ, z) = (θ θ / 2π, z) for (u, v) elements in the unit square E.g. Mapping a texture pattern onto a sphere is similar, except that needs to avoid regions near the poles Distortion? See the book by Kellaway General texture mapping (cont.) Mapping a 2D texture onto an arbitrary polygonal is more we need to derive a projection function in some ad hoc manner A common approach for mapping onto a polygon consists of two steps: 1. Determine a projection function, f, for mapping the vertices of the polygon onto the (u, v) coordinates in the texture pattern, I.e. find f such that (u, v) = f(x, y, z) 2. Derive a method whereby the renderer can associate texture values internal to the polygon ( see later) using the information obtained from Step 1. CITS Lectures 22 & 23 9 CITS Lectures 22 & Practical mapping The objects onto which we wish to paste a texture are not, in general, cylinder or spherical we need to look for strategies that enable us to use a cylindrical or spherical mapping. There are two strategies: 1. If the object approximates a cylinder or sphere then first, paste the pattern onto the approximating object, then apply the necessary transformation to shape the approximating object to the final object Eg. Mapping texture onto a banana (see Plate 8 of Watt and Watt) the second strategy 2. If the object does not fall in the above class then we can use a two-staged mapping process: i. The first stage is known as the S-mapping Find a mapping from the 2D texture space to a simple 3D intermediate surface, e.g. cylinder: T (u,v) T (x i, y i, z i ) One can imagine that this might be a useful step to create a texture pattern that can completely surround the actual object ii. The second stage is known as the O-mapping Find a mapping from the 3D texture pattern onto the actual object surface, I.e. T (x i, y i, z i ) O(x, y, z) We can see that strategy 2 is not dissimilar to strategy 1 CITS Lectures 22 & CITS Lectures 22 &

4 the second strategy (cont.) There are 4 intermediate surfaces that are commonly used for the second strategy: 1. Plane at any orientation 2. The curved surface of a cylinder 3. The faces of a cube, and 4. The surface of a sphere Which intermediate surface to use? Depends on the geometric form of the object onto which you want to map texture O-mapping 1: Intersection of reflected view ray with intermediate surface T CITS Lectures 22 & CITS Lectures 22 & O-mapping 2: Intersection of surface normal at (x, y, z) with T O-mapping 3: Intersection of the line through (x, y, z) and the object centroid with T CITS Lectures 22 & CITS Lectures 22 &

5 O-mapping 4: Intersection of the line through (x, y, z) to T whose orientation is given by the normal at (x i, y i, z i ) Mapping interior points We mentioned earlier that, given the projection mapping, f, for texture coordinates at vertices of a polygon, the renderer needs to associate texture values internal to the polygon. The question is: how does the renderer produce the textures for the interior polygon points? The most obvious solution: apply an interpolation technique this is analogous to Phong shading. Problems? Yes Edge interpolation in perspective case is always prone to inconsistency Interior interpolation is ill-defined for polygons of more than 4 vertices CITS Lectures 22 & CITS Lectures 22 & Mapping interior points (cont.) There are two better solutions: Solution 1: suitable for applications where the projection function is known Projection function is taken along as polygon is clipped by the renderer Vertices of the pixel-clipped polygon are then transformed back into the space in which the projection function is invoked (usually the object space) and Projection function is applied to the transformed clipped coordinates Mapping interior points (cont.) There are two better solutions: Solution 2: suitable for applications where the projection function is not known First, need to assume that texture coordinates vary linearly across the plane of the polygon subdivision of polygon into smaller polygons may be required Next, let the variation of the u-coordinates be defined as u = T. (x x 0 ) + u 0 Vector of length 3 scalar T is the direction along which u varies most rapidly. T, which is the gradient operation of f, is referred to as the texture vector u 0 is the value of u at x 0 CITS Lectures 22 & CITS Lectures 22 &

6 That is, f f f T = f = x y z The problem then reduces to: Compute T from a given sequence of quadruples (x 0, u 0 ), (x 1, u 1 ), Ł Mapping interior points (cont.) Obtain T by solving the simultaneous equations: u a = T. (x a - x 0 ) + u 0 Obtain x a and x b from the u b = T. (x b - x 0 ) + u 0 T. n = 0 n is the normal to the plane of the polygon sequence of quadruples. Ensure that x a is far way from x 0, and x b is far away from both x a and x 0. Also, x 0, x a, and x b should not be collinear or nearly so. CITS Lectures 22 & Bump mapping A brief introduction Aim: To make a surface appear wrinkled or dimpled without having to geometrically vary the surface of object Bump mapping is proposed by Blinn Basic idea: Angularly perturb the surface normals according to some desired bump model, I.e. we trick the local reflection model Computation details are a bit complicated CITS Lectures 22 & Environment mapping Case study: Images where detailed reflections of the environment can be seen in a highly reflective object Classic - lunar landscape reflected off the visor of an Apollo astronaut. Creating this reflection detail by ray tracing would be computationally prohibitive. Environment mapping produces these reflections more cheaply, with an acceptable loss of accuracy See Plates 16 and 18 of Watt and Watt Environment mapping (cont.) Object surrounded by a closed 3D surface onto which the environment is projected Reflected rays are traced from the object, hits the 3D surface, and then index into the environment map The environment map is an image of the environment as seen from the object of interest in its centre of space Enables pre-computation of a 3D environment as a 2D projection onto a surface References: Watt and Watt, Section 6.1, pages ; Sections , pages CITS Lectures 22 & CITS Lectures 22 &

CPSC / Texture Mapping

CPSC / Texture Mapping CPSC 599.64 / 601.64 Introduction and Motivation so far: detail through polygons & materials example: brick wall problem: many polygons & materials needed for detailed structures inefficient for memory

More information

Surface Rendering. Surface Rendering

Surface Rendering. Surface Rendering Surface Rendering Surface Rendering Introduce Mapping Methods - Texture Mapping - Environmental Mapping - Bump Mapping Go over strategies for - Forward vs backward mapping 2 1 The Limits of Geometric Modeling

More information

CSE528 Computer Graphics: Theory, Algorithms, and Applications

CSE528 Computer Graphics: Theory, Algorithms, and Applications CSE528 Computer Graphics: Theory, Algorithms, and Applications Hong Qin State University of New York at Stony Brook (Stony Brook University) Stony Brook, New York 11794--4400 Tel: (631)632-8450; Fax: (631)632-8334

More information

Texture. Texture Mapping. Texture Mapping. CS 475 / CS 675 Computer Graphics. Lecture 11 : Texture

Texture. Texture Mapping. Texture Mapping. CS 475 / CS 675 Computer Graphics. Lecture 11 : Texture Texture CS 475 / CS 675 Computer Graphics Add surface detail Paste a photograph over a surface to provide detail. Texture can change surface colour or modulate surface colour. Lecture 11 : Texture http://en.wikipedia.org/wiki/uv_mapping

More information

CS 475 / CS 675 Computer Graphics. Lecture 11 : Texture

CS 475 / CS 675 Computer Graphics. Lecture 11 : Texture CS 475 / CS 675 Computer Graphics Lecture 11 : Texture Texture Add surface detail Paste a photograph over a surface to provide detail. Texture can change surface colour or modulate surface colour. http://en.wikipedia.org/wiki/uv_mapping

More information

Computer Graphics. - Texturing Methods -

Computer Graphics. - Texturing Methods - Computer Graphics - Texturing Methods - Overview Last time BRDFs Shading Today Texturing Texture parameterization Procedural methods Procedural textures Fractal landscapes Next lecture Texture filtering

More information

Einführung in Visual Computing

Einführung in Visual Computing Einführung in Visual Computing 186.822 Textures Werner Purgathofer Surface-Rendering Methods polygon rendering methods ray tracing global illumination environment mapping texture mapping bump mapping Werner

More information

CS 5600 Spring

CS 5600 Spring Objectives From: Ed Angel University of New Mexico Introduce Mapping Methods - - Environment Mapping -Bump Mapping Consider basic strategies - Forward vs backward mapping - Point sampling vs area averaging

More information

CS 431/636 Advanced Rendering Techniques

CS 431/636 Advanced Rendering Techniques CS 431/636 Advanced Rendering Techniques Dr. David Breen Matheson 308 Thursday 6PM 8:50PM Presentation 7 5/23/06 Questions from Last Time? Hall Shading Model Shadows Reflections Refractions Slide Credits

More information

Homework #2. Hidden Surfaces, Projections, Shading and Texture, Ray Tracing, and Parametric Curves

Homework #2. Hidden Surfaces, Projections, Shading and Texture, Ray Tracing, and Parametric Curves Computer Graphics Instructor: Brian Curless CSE 457 Spring 2013 Homework #2 Hidden Surfaces, Projections, Shading and Texture, Ray Tracing, and Parametric Curves Assigned: Sunday, May 12 th Due: Thursday,

More information

Computer Graphics I Lecture 11

Computer Graphics I Lecture 11 15-462 Computer Graphics I Lecture 11 Midterm Review Assignment 3 Movie Midterm Review Midterm Preview February 26, 2002 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/

More information

Lecture 3 Sections 2.2, 4.4. Mon, Aug 31, 2009

Lecture 3 Sections 2.2, 4.4. Mon, Aug 31, 2009 Model s Lecture 3 Sections 2.2, 4.4 World s Eye s Clip s s s Window s Hampden-Sydney College Mon, Aug 31, 2009 Outline Model s World s Eye s Clip s s s Window s 1 2 3 Model s World s Eye s Clip s s s Window

More information

Textures and normals in ray tracing

Textures and normals in ray tracing Textures and normals in ray tracing CS 4620 Lecture 7 1 Texture mapping Objects have properties that vary across the surface 2 Texture Mapping So we make the shading parameters vary across the surface

More information

Texturas. Objectives. ! Introduce Mapping Methods. ! Consider two basic strategies. Computação Gráfica

Texturas. Objectives. ! Introduce Mapping Methods. ! Consider two basic strategies. Computação Gráfica Texturas Computação Gráfica Objectives! Introduce Mapping Methods! Texture Mapping! Environmental Mapping! Bump Mapping! Light Mapping! Consider two basic strategies! Manual coordinate specification! Two-stage

More information

The University of Calgary

The University of Calgary The University of Calgary Department of Computer Science Final Examination, Questions ENEL/CPSC 555 Computer Graphics Time: 2 Hours Closed Book, calculators are permitted. The questions carry equal weight.

More information

3D Rasterization II COS 426

3D Rasterization II COS 426 3D Rasterization II COS 426 3D Rendering Pipeline (for direct illumination) 3D Primitives Modeling Transformation Lighting Viewing Transformation Projection Transformation Clipping Viewport Transformation

More information

Computer Graphics. Illumination Models and Surface-Rendering Methods. Somsak Walairacht, Computer Engineering, KMITL

Computer Graphics. Illumination Models and Surface-Rendering Methods. Somsak Walairacht, Computer Engineering, KMITL Computer Graphics Chapter 10 llumination Models and Surface-Rendering Methods Somsak Walairacht, Computer Engineering, KMTL Outline Light Sources Surface Lighting Effects Basic llumination Models Polygon

More information

CS 130 Final. Fall 2015

CS 130 Final. Fall 2015 CS 130 Final Fall 2015 Name Student ID Signature You may not ask any questions during the test. If you believe that there is something wrong with a question, write down what you think the question is trying

More information

Barycentric Coordinates and Parameterization

Barycentric Coordinates and Parameterization Barycentric Coordinates and Parameterization Center of Mass Geometric center of object Center of Mass Geometric center of object Object can be balanced on CoM How to calculate? Finding the Center of Mass

More information

Chapter 10. Surface-Rendering Methods. Somsak Walairacht, Computer Engineering, KMITL

Chapter 10. Surface-Rendering Methods. Somsak Walairacht, Computer Engineering, KMITL Computer Graphics Chapter 10 llumination Models and Surface-Rendering Methods Somsak Walairacht, Computer Engineering, KMTL 1 Outline Light Sources Surface Lighting Effects Basic llumination Models Polygon

More information

Pipeline Operations. CS 4620 Lecture 10

Pipeline Operations. CS 4620 Lecture 10 Pipeline Operations CS 4620 Lecture 10 2008 Steve Marschner 1 Hidden surface elimination Goal is to figure out which color to make the pixels based on what s in front of what. Hidden surface elimination

More information

Computer Graphics. Lecture 9 Environment mapping, Mirroring

Computer Graphics. Lecture 9 Environment mapping, Mirroring Computer Graphics Lecture 9 Environment mapping, Mirroring Today Environment Mapping Introduction Cubic mapping Sphere mapping refractive mapping Mirroring Introduction reflection first stencil buffer

More information

CS 4620 Midterm, March 21, 2017

CS 4620 Midterm, March 21, 2017 CS 460 Midterm, March 1, 017 This 90-minute exam has 4 questions worth a total of 100 points. Use the back of the pages if you need more space. Academic Integrity is expected of all students of Cornell

More information

Texture-Mapping Tricks. How Bad Does it Look? We've Seen this Sort of Thing Before. Sampling Texture Maps

Texture-Mapping Tricks. How Bad Does it Look? We've Seen this Sort of Thing Before. Sampling Texture Maps Texture-Mapping Tricks Filtering Textures Textures and Shading Bump Mapping Solid Textures How Bad Does it Look? Let's take a look at what oversampling looks like: Click and drag the texture to rotate

More information

Computer Graphics. Lecture 14 Bump-mapping, Global Illumination (1)

Computer Graphics. Lecture 14 Bump-mapping, Global Illumination (1) Computer Graphics Lecture 14 Bump-mapping, Global Illumination (1) Today - Bump mapping - Displacement mapping - Global Illumination Radiosity Bump Mapping - A method to increase the realism of 3D objects

More information

Graphics and Interaction Surface rendering and shading

Graphics and Interaction Surface rendering and shading 433-324 Graphics and Interaction Surface rendering and shading Department of Computer Science and Software Engineering The Lecture outline Introduction Surface rendering and shading Gouraud shading Phong

More information

Lecture outline Graphics and Interaction Surface rendering and shading. Shading techniques. Introduction. Surface rendering and shading

Lecture outline Graphics and Interaction Surface rendering and shading. Shading techniques. Introduction. Surface rendering and shading Lecture outline 433-324 Graphics and Interaction Surface rendering and shading Department of Computer Science and Software Engineering The Introduction Surface rendering and shading Gouraud shading Phong

More information

CS 325 Computer Graphics

CS 325 Computer Graphics CS 325 Computer Graphics 04 / 02 / 2012 Instructor: Michael Eckmann Today s Topics Questions? Comments? Illumination modelling Ambient, Diffuse, Specular Reflection Surface Rendering / Shading models Flat

More information

Efficient Rendering of Glossy Reflection Using Graphics Hardware

Efficient Rendering of Glossy Reflection Using Graphics Hardware Efficient Rendering of Glossy Reflection Using Graphics Hardware Yoshinori Dobashi Yuki Yamada Tsuyoshi Yamamoto Hokkaido University Kita-ku Kita 14, Nishi 9, Sapporo 060-0814, Japan Phone: +81.11.706.6530,

More information

Vectors and the Geometry of Space

Vectors and the Geometry of Space Vectors and the Geometry of Space In Figure 11.43, consider the line L through the point P(x 1, y 1, z 1 ) and parallel to the vector. The vector v is a direction vector for the line L, and a, b, and c

More information

Topics and things to know about them:

Topics and things to know about them: Practice Final CMSC 427 Distributed Tuesday, December 11, 2007 Review Session, Monday, December 17, 5:00pm, 4424 AV Williams Final: 10:30 AM Wednesday, December 19, 2007 General Guidelines: The final will

More information

9. Three Dimensional Object Representations

9. Three Dimensional Object Representations 9. Three Dimensional Object Representations Methods: Polygon and Quadric surfaces: For simple Euclidean objects Spline surfaces and construction: For curved surfaces Procedural methods: Eg. Fractals, Particle

More information

Computer Graphics 7 - Texture mapping, bump mapping and antialiasing

Computer Graphics 7 - Texture mapping, bump mapping and antialiasing Computer Graphics 7 - Texture mapping, bump mapping and antialiasing Tom Thorne Slides courtesy of Taku Komura www.inf.ed.ac.uk/teaching/courses/cg Overview Texture mapping and bump mapping Anti-aliasing

More information

Introduction to Computer Graphics 7. Shading

Introduction to Computer Graphics 7. Shading Introduction to Computer Graphics 7. Shading National Chiao Tung Univ, Taiwan By: I-Chen Lin, Assistant Professor Textbook: Hearn and Baker, Computer Graphics, 3rd Ed., Prentice Hall Ref: E.Angel, Interactive

More information

Computer Graphics 7: Viewing in 3-D

Computer Graphics 7: Viewing in 3-D Computer Graphics 7: Viewing in 3-D In today s lecture we are going to have a look at: Transformations in 3-D How do transformations in 3-D work? Contents 3-D homogeneous coordinates and matrix based transformations

More information

+ = To Do. Texture Mapping. Adding Visual Detail. Parameterization. Option: Varieties of projections. Computer Graphics. geometry

+ = To Do. Texture Mapping. Adding Visual Detail. Parameterization. Option: Varieties of projections. Computer Graphics. geometry Computer Graphics CSE 167 [Win 17], Lecture 18: Texture Mapping Ravi Ramamoorthi To Do Prepare for final push on HW 4 We may have a brief written assignment http://viscomp.ucsd.edu/classes/cse167/wi17

More information

+ = To Do. Adding Visual Detail. Texture Mapping. Parameterization. Option: Varieties of projections. Foundations of Computer Graphics (Fall 2012)

+ = To Do. Adding Visual Detail. Texture Mapping. Parameterization. Option: Varieties of projections. Foundations of Computer Graphics (Fall 2012) Foundations of Computer Graphics (Fall 2012) CS 184, Lecture 23: Texture Mapping http://inst.eecs.berkeley.edu/~cs184 Submit HW5 milestone To Do Prepare for final push on HW 5, HW 6 Many slides from Greg

More information

CS451Real-time Rendering Pipeline

CS451Real-time Rendering Pipeline 1 CS451Real-time Rendering Pipeline JYH-MING LIEN DEPARTMENT OF COMPUTER SCIENCE GEORGE MASON UNIVERSITY Based on Tomas Akenine-Möller s lecture note You say that you render a 3D 2 scene, but what does

More information

Complex Shading Algorithms

Complex Shading Algorithms Complex Shading Algorithms CPSC 414 Overview So far Rendering Pipeline including recent developments Today Shading algorithms based on the Rendering Pipeline Arbitrary reflection models (BRDFs) Bump mapping

More information

Homework #2. Shading, Projections, Texture Mapping, Ray Tracing, and Bezier Curves

Homework #2. Shading, Projections, Texture Mapping, Ray Tracing, and Bezier Curves Computer Graphics Instructor: Brian Curless CSEP 557 Autumn 2016 Homework #2 Shading, Projections, Texture Mapping, Ray Tracing, and Bezier Curves Assigned: Wednesday, Nov 16 th Due: Wednesday, Nov 30

More information

COMP environment mapping Mar. 12, r = 2n(n v) v

COMP environment mapping Mar. 12, r = 2n(n v) v Rendering mirror surfaces The next texture mapping method assumes we have a mirror surface, or at least a reflectance function that contains a mirror component. Examples might be a car window or hood,

More information

Homework #2. Shading, Ray Tracing, and Texture Mapping

Homework #2. Shading, Ray Tracing, and Texture Mapping Computer Graphics Prof. Brian Curless CSE 457 Spring 2000 Homework #2 Shading, Ray Tracing, and Texture Mapping Prepared by: Doug Johnson, Maya Widyasari, and Brian Curless Assigned: Monday, May 8, 2000

More information

Images from 3D Creative Magazine. 3D Modelling Systems

Images from 3D Creative Magazine. 3D Modelling Systems Images from 3D Creative Magazine 3D Modelling Systems Contents Reference & Accuracy 3D Primitives Transforms Move (Translate) Rotate Scale Mirror Align 3D Booleans Deforms Bend Taper Skew Twist Squash

More information

03 Vector Graphics. Multimedia Systems. 2D and 3D Graphics, Transformations

03 Vector Graphics. Multimedia Systems. 2D and 3D Graphics, Transformations Multimedia Systems 03 Vector Graphics 2D and 3D Graphics, Transformations Imran Ihsan Assistant Professor, Department of Computer Science Air University, Islamabad, Pakistan www.imranihsan.com Lectures

More information

You can select polygons that use per-poly UVs by choosing the Select by Polymap command ( View > Selection > Maps > Select by Polygon Map).

You can select polygons that use per-poly UVs by choosing the Select by Polymap command ( View > Selection > Maps > Select by Polygon Map). UV Texture What is UV Mapping? Sometimes, when mapping textures onto objects, you will find that the normal projection mapping just doesn t work. This usually happens when the object is organic, or irregular

More information

Announcements. Written Assignment 2 is out see the web page. Computer Graphics

Announcements. Written Assignment 2 is out see the web page. Computer Graphics Announcements Written Assignment 2 is out see the web page 1 Texture and other Mappings Shadows Texture Mapping Bump Mapping Displacement Mapping Environment Mapping Watt Chapter 8 COMPUTER GRAPHICS 15-462

More information

Mach band effect. The Mach band effect increases the visual unpleasant representation of curved surface using flat shading.

Mach band effect. The Mach band effect increases the visual unpleasant representation of curved surface using flat shading. Mach band effect The Mach band effect increases the visual unpleasant representation of curved surface using flat shading. A B 320322: Graphics and Visualization 456 Mach band effect The Mach band effect

More information

CHAPTER 1 Graphics Systems and Models 3

CHAPTER 1 Graphics Systems and Models 3 ?????? 1 CHAPTER 1 Graphics Systems and Models 3 1.1 Applications of Computer Graphics 4 1.1.1 Display of Information............. 4 1.1.2 Design.................... 5 1.1.3 Simulation and Animation...........

More information

Objectives. Shading II. Distance Terms. The Phong Reflection Model

Objectives. Shading II. Distance Terms. The Phong Reflection Model Shading II Objectives Introduce distance terms to the shading model. More details about the Phong model (lightmaterial interaction). Introduce the Blinn lighting model (also known as the modified Phong

More information

Orthogonal Projection Matrices. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015

Orthogonal Projection Matrices. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015 Orthogonal Projection Matrices 1 Objectives Derive the projection matrices used for standard orthogonal projections Introduce oblique projections Introduce projection normalization 2 Normalization Rather

More information

dq dt I = Irradiance or Light Intensity is Flux Φ per area A (W/m 2 ) Φ =

dq dt I = Irradiance or Light Intensity is Flux Φ per area A (W/m 2 ) Φ = Radiometry (From Intro to Optics, Pedrotti -4) Radiometry is measurement of Emag radiation (light) Consider a small spherical source Total energy radiating from the body over some time is Q total Radiant

More information

Recollection. Models Pixels. Model transformation Viewport transformation Clipping Rasterization Texturing + Lights & shadows

Recollection. Models Pixels. Model transformation Viewport transformation Clipping Rasterization Texturing + Lights & shadows Recollection Models Pixels Model transformation Viewport transformation Clipping Rasterization Texturing + Lights & shadows Can be computed in different stages 1 So far we came to Geometry model 3 Surface

More information

Topic 12: Texture Mapping. Motivation Sources of texture Texture coordinates Bump mapping, mip-mapping & env mapping

Topic 12: Texture Mapping. Motivation Sources of texture Texture coordinates Bump mapping, mip-mapping & env mapping Topic 12: Texture Mapping Motivation Sources of texture Texture coordinates Bump mapping, mip-mapping & env mapping Texture sources: Photographs Texture sources: Procedural Texture sources: Solid textures

More information

CS 354R: Computer Game Technology

CS 354R: Computer Game Technology CS 354R: Computer Game Technology Texture and Environment Maps Fall 2018 Texture Mapping Problem: colors, normals, etc. are only specified at vertices How do we add detail between vertices without incurring

More information

Illumination & Shading: Part 1

Illumination & Shading: Part 1 Illumination & Shading: Part 1 Light Sources Empirical Illumination Shading Local vs Global Illumination Lecture 10 Comp 236 Spring 2005 Computer Graphics Jargon: Illumination Models Illumination - the

More information

Topic 11: Texture Mapping 11/13/2017. Texture sources: Solid textures. Texture sources: Synthesized

Topic 11: Texture Mapping 11/13/2017. Texture sources: Solid textures. Texture sources: Synthesized Topic 11: Texture Mapping Motivation Sources of texture Texture coordinates Bump mapping, mip mapping & env mapping Texture sources: Photographs Texture sources: Procedural Texture sources: Solid textures

More information

Assignment #2. (Due date: 11/6/2012)

Assignment #2. (Due date: 11/6/2012) Computer Vision I CSE 252a, Fall 2012 David Kriegman Assignment #2 (Due date: 11/6/2012) Name: Student ID: Email: Problem 1 [1 pts] Calculate the number of steradians contained in a spherical wedge with

More information

Topic 11: Texture Mapping 10/21/2015. Photographs. Solid textures. Procedural

Topic 11: Texture Mapping 10/21/2015. Photographs. Solid textures. Procedural Topic 11: Texture Mapping Motivation Sources of texture Texture coordinates Bump mapping, mip mapping & env mapping Topic 11: Photographs Texture Mapping Motivation Sources of texture Texture coordinates

More information

Computer Graphics Introduction. Taku Komura

Computer Graphics Introduction. Taku Komura Computer Graphics Introduction Taku Komura What s this course all about? We will cover Graphics programming and algorithms Graphics data structures Applied geometry, modeling and rendering Not covering

More information

Data Representation in Visualisation

Data Representation in Visualisation Data Representation in Visualisation Visualisation Lecture 4 Taku Komura Institute for Perception, Action & Behaviour School of Informatics Taku Komura Data Representation 1 Data Representation We have

More information

Ray Tracing COMP575/COMP770

Ray Tracing COMP575/COMP770 Ray Tracing COMP575/COMP770 1 Ray tracing idea 2 Ray Tracing: Example (from [Whitted80]) Ray Tracing: Example Ray Tracing for Highly Realistic Images Volkswagen Beetle with correct shadows and (multi-)reflections

More information

Animation & Rendering

Animation & Rendering 7M836 Animation & Rendering Introduction, color, raster graphics, modeling, transformations Arjan Kok, Kees Huizing, Huub van de Wetering h.v.d.wetering@tue.nl 1 Purpose Understand 3D computer graphics

More information

Shading, Advanced Rendering. Week 7, Wed Feb 28

Shading, Advanced Rendering. Week 7, Wed Feb 28 University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2007 Tamara Munzner Shading, Advanced Rendering Week 7, Wed Feb 28 http://www.ugrad.cs.ubc.ca/~cs314/vjan2007 Reading for Today and Tomorrow

More information

Computer Graphics. Illumination and Shading

Computer Graphics. Illumination and Shading () Illumination and Shading Dr. Ayman Eldeib Lighting So given a 3-D triangle and a 3-D viewpoint, we can set the right pixels But what color should those pixels be? If we re attempting to create a realistic

More information

Introduction Ray tracing basics Advanced topics (shading) Advanced topics (geometry) Graphics 2010/2011, 4th quarter. Lecture 11: Ray tracing

Introduction Ray tracing basics Advanced topics (shading) Advanced topics (geometry) Graphics 2010/2011, 4th quarter. Lecture 11: Ray tracing Lecture 11 Ray tracing Introduction Projection vs. ray tracing Projection Ray tracing Rendering Projection vs. ray tracing Projection Ray tracing Basic methods for image generation Major areas of computer

More information

Texture. Detail Representation

Texture. Detail Representation Page 1 Texture Procedural shading and texturing Applied and projected textures Material / light properties Shadow maps Spherical and higher order textures Spherical mappings Environment and irradiance

More information

Topic 9: Lighting & Reflection models 9/10/2016. Spot the differences. Terminology. Two Components of Illumination. Ambient Light Source

Topic 9: Lighting & Reflection models 9/10/2016. Spot the differences. Terminology. Two Components of Illumination. Ambient Light Source Topic 9: Lighting & Reflection models Lighting & reflection The Phong reflection model diffuse component ambient component specular component Spot the differences Terminology Illumination The transport

More information

Texture Mapping. CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science

Texture Mapping. CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science Texture Mapping CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science 1 Objectives Introduce Mapping Methods - Texture Mapping - Environment Mapping - Bump Mapping Consider

More information

Topic 9: Lighting & Reflection models. Lighting & reflection The Phong reflection model diffuse component ambient component specular component

Topic 9: Lighting & Reflection models. Lighting & reflection The Phong reflection model diffuse component ambient component specular component Topic 9: Lighting & Reflection models Lighting & reflection The Phong reflection model diffuse component ambient component specular component Spot the differences Terminology Illumination The transport

More information

Blue colour text questions Black colour text sample answers Red colour text further explanation or references for the sample answers

Blue colour text questions Black colour text sample answers Red colour text further explanation or references for the sample answers Blue colour text questions Black colour text sample answers Red colour text further explanation or references for the sample answers Question 1. a) (5 marks) Explain the OpenGL synthetic camera model,

More information

CS 498 VR. Lecture 19-4/9/18. go.illinois.edu/vrlect19

CS 498 VR. Lecture 19-4/9/18. go.illinois.edu/vrlect19 CS 498 VR Lecture 19-4/9/18 go.illinois.edu/vrlect19 Review from previous lectures Image-order Rendering and Object-order Rendering Image-order Rendering: - Process: Ray Generation, Ray Intersection, Assign

More information

CS559 Computer Graphics Fall 2015

CS559 Computer Graphics Fall 2015 CS559 Computer Graphics Fall 2015 Practice Final Exam Time: 2 hrs 1. [XX Y Y % = ZZ%] MULTIPLE CHOICE SECTION. Circle or underline the correct answer (or answers). You do not need to provide a justification

More information

v. T u. Textures. Perlin, SIGGRAPH85. Werner Purgathofer

v. T u. Textures. Perlin, SIGGRAPH85. Werner Purgathofer Perlin, SIGGRAPH85 Einführung in Visual Computing 186.822 v Textures T u Werner Purgathofer Surface Rendering Methods polygon rendering methods ray tracing global illumination environment mapping texture

More information

Computer Graphics and Image Processing Ray Tracing I

Computer Graphics and Image Processing Ray Tracing I Computer Graphics and Image Processing Ray Tracing I Part 1 Lecture 9 1 Today s Outline Introduction to Ray Tracing Ray Casting Intersecting Rays with Primitives Intersecting Rays with Transformed Primitives

More information

Texture. Texture Maps

Texture. Texture Maps Texture Texture maps! Surface color and transparency! Environment and irradiance maps! Reflectance maps! Shadow maps! Displacement and bump maps Level of detail hierarchy Procedural shading and texturing

More information

More Texture Mapping. Texture Mapping 1/46

More Texture Mapping. Texture Mapping 1/46 More Texture Mapping Texture Mapping 1/46 Perturbing Normals Texture Mapping 2/46 Perturbing Normals Instead of fetching a texture for color, fetch a new perturbed normal vector Creates the appearance

More information

Scalar Data. Visualization Torsten Möller. Weiskopf/Machiraju/Möller

Scalar Data. Visualization Torsten Möller. Weiskopf/Machiraju/Möller Scalar Data Visualization Torsten Möller Weiskopf/Machiraju/Möller Overview Basic strategies Function plots and height fields Isolines Color coding Volume visualization (overview) Classification Segmentation

More information

Institutionen för systemteknik

Institutionen för systemteknik Code: Day: Lokal: M7002E 19 March E1026 Institutionen för systemteknik Examination in: M7002E, Computer Graphics and Virtual Environments Number of sections: 7 Max. score: 100 (normally 60 is required

More information

Texture Mapping. Brian Curless CSE 457 Spring 2016

Texture Mapping. Brian Curless CSE 457 Spring 2016 Texture Mapping Brian Curless CSE 457 Spring 2016 1 Reading Required Angel, 7.4-7.10 Recommended Paul S. Heckbert. Survey of texture mapping. IEEE Computer Graphics and Applications 6(11): 56--67, November

More information

1999, Denis Zorin. Ray tracing

1999, Denis Zorin. Ray tracing Ray tracing Ray tracing shadow rays normal reflected ray pixel ray camera normal Ray casting/ray tracing Iterate over pixels, not objects. Effects that are difficult with Z-buffer, are easy with ray tracing:

More information

L1 - Introduction. Contents. Introduction of CAD/CAM system Components of CAD/CAM systems Basic concepts of graphics programming

L1 - Introduction. Contents. Introduction of CAD/CAM system Components of CAD/CAM systems Basic concepts of graphics programming L1 - Introduction Contents Introduction of CAD/CAM system Components of CAD/CAM systems Basic concepts of graphics programming 1 Definitions Computer-Aided Design (CAD) The technology concerned with the

More information

PARAMETRIC EQUATIONS AND POLAR COORDINATES

PARAMETRIC EQUATIONS AND POLAR COORDINATES 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES PARAMETRIC EQUATIONS & POLAR COORDINATES A coordinate system represents a point in the plane by an ordered pair of numbers called coordinates. PARAMETRIC EQUATIONS

More information

Spring 2012 Final. CS184 - Foundations of Computer Graphics. University of California at Berkeley

Spring 2012 Final. CS184 - Foundations of Computer Graphics. University of California at Berkeley Spring 2012 Final CS184 - Foundations of Computer Graphics University of California at Berkeley Write your name HERE: Write your login HERE: Closed book. You may not use any notes or printed/electronic

More information

SPECIAL TECHNIQUES-II

SPECIAL TECHNIQUES-II SPECIAL TECHNIQUES-II Lecture 19: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Method of Images for a spherical conductor Example :A dipole near aconducting sphere The

More information

Illumination and Shading

Illumination and Shading Illumination and Shading Computer Graphics COMP 770 (236) Spring 2007 Instructor: Brandon Lloyd 2/14/07 1 From last time Texture mapping overview notation wrapping Perspective-correct interpolation Texture

More information

w Foley, Section16.1 Reading

w Foley, Section16.1 Reading Shading w Foley, Section16.1 Reading Introduction So far, we ve talked exclusively about geometry. w What is the shape of an object? w How do I place it in a virtual 3D space? w How do I know which pixels

More information

LIGHTING AND SHADING

LIGHTING AND SHADING DH2323 DGI15 INTRODUCTION TO COMPUTER GRAPHICS AND INTERACTION LIGHTING AND SHADING Christopher Peters HPCViz, KTH Royal Institute of Technology, Sweden chpeters@kth.se http://kth.academia.edu/christopheredwardpeters

More information

Reflection & Mirrors

Reflection & Mirrors Reflection & Mirrors Geometric Optics Using a Ray Approximation Light travels in a straight-line path in a homogeneous medium until it encounters a boundary between two different media A ray of light is

More information

CS452/552; EE465/505. Intro to Lighting

CS452/552; EE465/505. Intro to Lighting CS452/552; EE465/505 Intro to Lighting 2-10 15 Outline! Projection Normalization! Introduction to Lighting (and Shading) Read: Angel Chapter 5., sections 5.4-5.7 Parallel Projections Chapter 6, sections

More information

CMSC427 Final Practice v2 Fall 2017

CMSC427 Final Practice v2 Fall 2017 CMSC427 Final Practice v2 Fall 2017 This is to represent the flow of the final and give you an idea of relative weighting. No promises that knowing this will predict how you ll do on the final. Some questions

More information

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved.

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved. 10 Conics, Parametric Equations, and Polar Coordinates Copyright Cengage Learning. All rights reserved. 10.5 Area and Arc Length in Polar Coordinates Copyright Cengage Learning. All rights reserved. Objectives

More information

Input Nodes. Surface Input. Surface Input Nodal Motion Nodal Displacement Instance Generator Light Flocking

Input Nodes. Surface Input. Surface Input Nodal Motion Nodal Displacement Instance Generator Light Flocking Input Nodes Surface Input Nodal Motion Nodal Displacement Instance Generator Light Flocking The different Input nodes, where they can be found, what their outputs are. Surface Input When editing a surface,

More information

The Bricks2D texture has axial projection methods available such as spherical, cubic, planar, front, cylindrical and UV.

The Bricks2D texture has axial projection methods available such as spherical, cubic, planar, front, cylindrical and UV. 2D Textures 2D textures consist of images or procedurals that can be mapped to the object surface during the shading computation. An algorithm is used for wrapping the texture around the object s surface

More information

An Effective Hardware Architecture for Bump Mapping Using Angular Operation

An Effective Hardware Architecture for Bump Mapping Using Angular Operation An Effective Hardware Architecture for Bump Mapping Using Angular Operation Seung-Gi Lee, Woo-Chan Park, Won-Jong Lee, Tack-Don Han, and Sung-Bong Yang Media System Lab. (National Research Lab.) Dept.

More information

Graphics Hardware and Display Devices

Graphics Hardware and Display Devices Graphics Hardware and Display Devices CSE328 Lectures Graphics/Visualization Hardware Many graphics/visualization algorithms can be implemented efficiently and inexpensively in hardware Facilitates interactive

More information

Lets assume each object has a defined colour. Hence our illumination model is looks unrealistic.

Lets assume each object has a defined colour. Hence our illumination model is looks unrealistic. Shading Models There are two main types of rendering that we cover, polygon rendering ray tracing Polygon rendering is used to apply illumination models to polygons, whereas ray tracing applies to arbitrary

More information

Topics in Analytic Geometry Part II

Topics in Analytic Geometry Part II Name Chapter 9 Topics in Analytic Geometry Part II Section 9.4 Parametric Equations Objective: In this lesson you learned how to evaluate sets of parametric equations for given values of the parameter

More information

CS 428: Fall Introduction to. Texture mapping and filtering. Andrew Nealen, Rutgers, /18/2010 1

CS 428: Fall Introduction to. Texture mapping and filtering. Andrew Nealen, Rutgers, /18/2010 1 CS 428: Fall 2010 Introduction to Computer Graphics Texture mapping and filtering 10/18/2010 1 Topic overview Image formation and OpenGL Transformations and viewing Polygons and polygon meshes 3D model/mesh

More information

Pipeline Operations. CS 4620 Lecture 14

Pipeline Operations. CS 4620 Lecture 14 Pipeline Operations CS 4620 Lecture 14 2014 Steve Marschner 1 Pipeline you are here APPLICATION COMMAND STREAM 3D transformations; shading VERTEX PROCESSING TRANSFORMED GEOMETRY conversion of primitives

More information

Reading. 12. Texture Mapping. Texture mapping. Non-parametric texture mapping. Required. w Watt, intro to Chapter 8 and intros to 8.1, 8.4, 8.6, 8.8.

Reading. 12. Texture Mapping. Texture mapping. Non-parametric texture mapping. Required. w Watt, intro to Chapter 8 and intros to 8.1, 8.4, 8.6, 8.8. Reading Required Watt, intro to Chapter 8 and intros to 8.1, 8.4, 8.6, 8.8. Optional 12. Texture Mapping Watt, the rest of Chapter 8 Woo, Neider, & Davis, Chapter 9 James F. Blinn and Martin E. Neell.

More information