CSCI 599 Class Presenta/on. Zach Levine. Markov Chain Monte Carlo (MCMC) HMM Parameter Es/mates

Size: px
Start display at page:

Download "CSCI 599 Class Presenta/on. Zach Levine. Markov Chain Monte Carlo (MCMC) HMM Parameter Es/mates"

Transcription

1 CSCI 599 Class Presenta/on Zach Levine Markov Chain Monte Carlo (MCMC) HMM Parameter Es/mates April 26 th, 2012

2 Topics Covered in this Presenta2on A (Brief) Review of HMMs HMM Parameter Learning Expecta2on- Maximiza2on (EM) Algorithms Baum- Welch Algorithm Viterbi Learning Algorithm Markov Chain Monte Carlo (MCMC) Algorithms Metropolis- Has2ngs Algorithm Gibbs Sampling Algorithm Comparisons of EM and MCMC models. Work in Progress Summary MCMC HMM Parameter Es/mates 2

3 Ques2on Given an HMM (a sequence of noisy observa2ons which come from true hidden states), how do we infer the parameters from this model such that we maximize either the likelihood of the observa2ons (Maximum Likelihood) or the likelihood of the most probable (posterior) sequence (Maximum a Posteriori). MCMC HMM Parameter Es/mates 3

4 Review of Hidden Markov Models (HMMs) A simple binary HMM can be characterized by: Transi2on Matrix Hidden State S Prior S 1 S 2 S 3 S 4 S n Observable O O 1 O 2 O 3 O 4 O n Observa2on Matrix e.g For convenience, we can write the complete parameter set as: λ = (a ij, b ij, π i ) MCMC HMM Parameter Es/mates 4

5 Review of Hidden Markov Models (HMMs) Given λ, one can calculate the probability P(O λ) of some observed sequence O = O 1 O 2 O 3 O N. If we want to maximize the likelihood of the observed sequence O (i.e. maximum likelihood), we need λ to sa/sfy: λ ML = argmax λ p λ (O) Or, if we want instead to maximize the likelihood of the most probable sequence (i.e. maximum a posteriori), then λ must sa/sfy: λ MAP = argmax λ max s p λ (S,O) One can also es/mate the hidden states {S} from P({S} Ο,λ) which can be deduced (for instance) from the Viterbi algorithm. The ques2on again is, how do we op2mize λ? Are some methods bezer than others? MCMC HMM Parameter Es/mates 5

6 Review of Hidden Markov Models (HMMs) Also, can the models we use to deduce λ accommodate observa/ons which follow con/nuous distribu/ons? O 1 O 2 O 3 MCMC HMM Parameter Es/mates 6

7 HMM Parameter Learning Methods of obtaining λ can be broken up into two broad categories METHOD Frequently sample the observa/ons of an HMM un/l some confidence interval is obtained for λ (e.g. aij = 95% of the true aij). Determinis/c. Assumes that with enough sampling, a correct λ will eventually be found. EXAMPLES METHOD Use Bayes Rule on prior probabili/es to con/nuously update the probability of the current state, e.g. the posterior. Furthermore the use of random numbers can allow for quick convergence when es/ma/ng λ. EXAMPLES Expecta/on Maximiza/on (EM) - Baum- Welch Algorithm Viterbi- Training Algorithm Markov- Chain Monte Carlo (MCMC) - Metropolis- Has/ngs - Gibbs Sampling MCMC HMM Parameter Es/mates 7

8 HMM Parameter Learning (EM) EM is not per se a tool for frequen/st (ML) inference, but a framework that can also be used for compu/ng Bayesian (MAP) es/mates. Thus it is considered a method for compu/ng point es/mates, or single- valued results. Recall for instance that EM approaches use a forward- backward algorithm. That is it traverses the Markov- Chain forward and backwards un/l λ converges to some confidence interval. S 1 S 2 S t S 4 S n O 1 O 2 O t O 4 O n MCMC HMM Parameter Es/mates 8

9 HMM Parameter Learning (EM) The Baum- Welch algorithm was the first to implement this method and calculates these probabili/es using: Ini2al Condi2ons β Ν (i) = 1 and Recursion Rela2onship Where a ij = Transi/on Ma/x = P(S t =i S t+1 =j) Where b i (O t ) = Probability of observing O t when S t =i. λ MCMC HMM Parameter Es/mates 9

10 HMM Parameter Learning (EM) The Baum- Welch algorithm was the first to implement this method and calculates these probabili/es using: Ini2al Condi2ons β Ν (i) = 1 and Recursion Rela2onship Where a ij = Transi/on Ma/x = P(S t =i S t+1 =j) Where b i (O t ) = Probability of observing O t when S t =i. λ Make some ini/al guess for a ij and b i. Sample omen. Obtain a convergent λ = (a ij, b i,π) where π i = γ 1 (i) Drawbacks: Poten2ally slow convergence (each itera2on represents a full chain sweep), local maximiza2on of data likelihood rather than global maximiza2on, how big must N be to get some desired precision quickly? 10

11 HMM Parameter Learning (Bayesian) Hidden State S Observable O MCMC HMM Parameter Es/mates 11

12 HMM Parameter Learning (Bayesian) Hidden State S Observable O MCMC HMM Parameter Es/mates 12

13 Markov Chain Monte Carlo Markov Chain Monte Carlo (MCMC) algorithms are a class of Bayesian inference algorithms for sampling probability distribu/ons by construc/ng a Markov chain (hidden states) that has some desired distribu/on as it s equilibrium distribu/on. For example, suppose we sample observa/ons {O} χ N and we re given some standard distribu/on P (S t ) for each state (e.g. N(µ=0, σ 2 =0.2)). The total mixed system P(s)is very complex when N is large because there are many ways to construct it. Sample Distribu2on of {O} S 1 S 2 S 3 S 4 S n O 1 O 2 O 3 O 4 O n Eventually the Markov Chain {S} will converge with distribu/on P(S), in which case λ = (a ij,b i,π) can be extracted. Sample Distribu2on of {O} P(x) Markov Chain Monte Carlo methods can observe {O} and itera/vely construct a Markov Chain {S} such that it s equilibrium distribu/on = P(S). {S} (- 2,0,2) MCMC HMM Parameter Es/mates 13

14 Markov Chain Monte Carlo Many separate MCMC random- walk algorithms exists such as: - Metropolis- Has/ngs Algorithm - Gibbs Sampling Algorithm - Mul/ple- Try Metropolis Algorithm All of these methods try and sample the en/re state- space in order to reproduce the equilibrium distribu/on. For example: Metropolis- Has/ngs for a simple Markov Chain. Suppose we want to construct a Markov chain with a probability distribu/on P(S). 1.) Pick an arbitrary probability density Q(S S t ) which suggests a new state S from S t. Note that Q(S S t ) must be symmetric (e.g. Q(S S t ) = Q(S t S ) such as a gaussian) 2.) For each state S t, propose the next state a value S t+1 which is generated from Q(S S t ) 3.) Calculate an acceptance ra2o a = P(S )/P(S t ) 4.) If a 1, accept S as S t+1. Else, accept S as S t+1 if rand(0,1) a. Else return to (2) 5.) With S t+1 updated, move forward and repeat steps (2-5). MCMC HMM Parameter Es/mates 14

15 Markov Chain Monte Carlo For Bayesian inference in an HMM, the Gibbs Sampling Algorithm is commonly used to extract λ = (a ij, b i, π) which is a special case of Metropolis- Has/ngs for mul/variate distribu/ons. This procedure also allows us to extract credibility intervals for mul/ple parameters λ, rather than one (local) point es/mate from EM. For a simple HMM, studies have compared EM models to MCMC. X 1 X 2 X 3 X 4 X n Y 1 Y 2 Y 3 Y 4 Y n MCMC HMM Parameter Es/mates 15

16 Markov Chain Monte Carlo MCMC HMM Parameter Es/mates 16

17 Markov Chain Monte Carlo The Gibbs Sampling Algorithm used in this paper is as follows: Backward Probabili2es 17

18 Markov Chain Monte Carlo The Gibbs Sampling Algorithm used in this paper is as follows: MCMC HMM Parameter Es/mates 18

19 Comparisons between EM and MCMC For a Markov Chain of n = 1000 for three different values of σ 2, the authors found: EM σ 2 = 0.5,1,2.5 Comparisons MCMC is faster. To reach 95% confidence of the true mean values (and thus a ij ), EM took 2177 sec to complete whereas MCMC took 237 sec. Means MCMC can be noisy when the variance is high EM may not always obtain the global solu2on MCMC σ 2 = 0.5 MCMC σ 2 = 1 MCMC σ 2 = 1.5 Means MCMC HMM Parameter Es/mates 19

20 Work in Progress Implemen2ng MCMC by hand in MATLAB. (nontrivial) Comparing EM versus MCMC as a func2on of chain length. What about chains which don t adequately sample the state space? Does this affect the speed of obtaining λ with MCMC? At what observa2onal variances does the random noise in MCMC overtake quick convergence to an op2mal parameter set? Are there data uncertainty thresholds which impede progress using MCMC algorithms? MCMC HMM Parameter Es/mates 20

21 Summary Markov Chain Monte Carlo (MCMC) algorithms are useful Bayesian inference tools in Hidden Markov Models (HMMs), and can be used to quickly extract an HMM parameter set. MCMC algorithms can be quicker and less computa2onally complex than EM algorithms, however their implementa2on and setup can also be much more complex. MCMC convergence appears strongly dependent on the amount of data uncertainty. EM shows some dependence on data uncertainty, but con2nuous sampling always improves inference. When MCMC does converge on an op2mized parameter set λ, it is guaranteed to have a globally maximized likelihood. EM/MLE techniques however may only find parameter sets which are locally maximized. MCMC HMM Parameter Es/mates 21

22 Thank you for your Attention

CS 6140: Machine Learning Spring 2016

CS 6140: Machine Learning Spring 2016 CS 6140: Machine Learning Spring 2016 Instructor: Lu Wang College of Computer and Informa?on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Logis?cs Exam

More information

Lecture 24 EM Wrapup and VARIATIONAL INFERENCE

Lecture 24 EM Wrapup and VARIATIONAL INFERENCE Lecture 24 EM Wrapup and VARIATIONAL INFERENCE Latent variables instead of bayesian vs frequen2st, think hidden vs not hidden key concept: full data likelihood vs par2al data likelihood probabilis2c model

More information

ECE521: Week 11, Lecture March 2017: HMM learning/inference. With thanks to Russ Salakhutdinov

ECE521: Week 11, Lecture March 2017: HMM learning/inference. With thanks to Russ Salakhutdinov ECE521: Week 11, Lecture 20 27 March 2017: HMM learning/inference With thanks to Russ Salakhutdinov Examples of other perspectives Murphy 17.4 End of Russell & Norvig 15.2 (Artificial Intelligence: A Modern

More information

STA 4273H: Sta-s-cal Machine Learning

STA 4273H: Sta-s-cal Machine Learning STA 4273H: Sta-s-cal Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! h0p://www.cs.toronto.edu/~rsalakhu/ Lecture 3 Parametric Distribu>ons We want model the probability

More information

Ensemble- Based Characteriza4on of Uncertain Features Dennis McLaughlin, Rafal Wojcik

Ensemble- Based Characteriza4on of Uncertain Features Dennis McLaughlin, Rafal Wojcik Ensemble- Based Characteriza4on of Uncertain Features Dennis McLaughlin, Rafal Wojcik Hydrology TRMM TMI/PR satellite rainfall Neuroscience - - MRI Medicine - - CAT Geophysics Seismic Material tes4ng Laser

More information

Logis&c Regression. Aar$ Singh & Barnabas Poczos. Machine Learning / Jan 28, 2014

Logis&c Regression. Aar$ Singh & Barnabas Poczos. Machine Learning / Jan 28, 2014 Logis&c Regression Aar$ Singh & Barnabas Poczos Machine Learning 10-701/15-781 Jan 28, 2014 Linear Regression & Linear Classifica&on Weight Height Linear fit Linear decision boundary 2 Naïve Bayes Recap

More information

Introduc)on to Probabilis)c Latent Seman)c Analysis. NYP Predic)ve Analy)cs Meetup June 10, 2010

Introduc)on to Probabilis)c Latent Seman)c Analysis. NYP Predic)ve Analy)cs Meetup June 10, 2010 Introduc)on to Probabilis)c Latent Seman)c Analysis NYP Predic)ve Analy)cs Meetup June 10, 2010 PLSA A type of latent variable model with observed count data and nominal latent variable(s). Despite the

More information

Minimum Redundancy and Maximum Relevance Feature Selec4on. Hang Xiao

Minimum Redundancy and Maximum Relevance Feature Selec4on. Hang Xiao Minimum Redundancy and Maximum Relevance Feature Selec4on Hang Xiao Background Feature a feature is an individual measurable heuris4c property of a phenomenon being observed In character recogni4on: horizontal

More information

TerraSwarm. A Machine Learning and Op0miza0on Toolkit for the Swarm. Ilge Akkaya, Shuhei Emoto, Edward A. Lee. University of California, Berkeley

TerraSwarm. A Machine Learning and Op0miza0on Toolkit for the Swarm. Ilge Akkaya, Shuhei Emoto, Edward A. Lee. University of California, Berkeley TerraSwarm A Machine Learning and Op0miza0on Toolkit for the Swarm Ilge Akkaya, Shuhei Emoto, Edward A. Lee University of California, Berkeley TerraSwarm Tools Telecon 17 November 2014 Sponsored by the

More information

Decision making for autonomous naviga2on. Anoop Aroor Advisor: Susan Epstein CUNY Graduate Center, Computer science

Decision making for autonomous naviga2on. Anoop Aroor Advisor: Susan Epstein CUNY Graduate Center, Computer science Decision making for autonomous naviga2on Anoop Aroor Advisor: Susan Epstein CUNY Graduate Center, Computer science Overview Naviga2on and Mobile robots Decision- making techniques for naviga2on Building

More information

ε-machine Estimation and Forecasting

ε-machine Estimation and Forecasting ε-machine Estimation and Forecasting Comparative Study of Inference Methods D. Shemetov 1 1 Department of Mathematics University of California, Davis Natural Computation, 2014 Outline 1 Motivation ε-machines

More information

Graphical Models & HMMs

Graphical Models & HMMs Graphical Models & HMMs Henrik I. Christensen Robotics & Intelligent Machines @ GT Georgia Institute of Technology, Atlanta, GA 30332-0280 hic@cc.gatech.edu Henrik I. Christensen (RIM@GT) Graphical Models

More information

Overview. Monte Carlo Methods. Statistics & Bayesian Inference Lecture 3. Situation At End Of Last Week

Overview. Monte Carlo Methods. Statistics & Bayesian Inference Lecture 3. Situation At End Of Last Week Statistics & Bayesian Inference Lecture 3 Joe Zuntz Overview Overview & Motivation Metropolis Hastings Monte Carlo Methods Importance sampling Direct sampling Gibbs sampling Monte-Carlo Markov Chains Emcee

More information

Markov chain Monte Carlo methods

Markov chain Monte Carlo methods Markov chain Monte Carlo methods (supplementary material) see also the applet http://www.lbreyer.com/classic.html February 9 6 Independent Hastings Metropolis Sampler Outline Independent Hastings Metropolis

More information

Quantitative Biology II!

Quantitative Biology II! Quantitative Biology II! Lecture 3: Markov Chain Monte Carlo! March 9, 2015! 2! Plan for Today!! Introduction to Sampling!! Introduction to MCMC!! Metropolis Algorithm!! Metropolis-Hastings Algorithm!!

More information

Probabilis)c Temporal Inference on Reconstructed 3D Scenes

Probabilis)c Temporal Inference on Reconstructed 3D Scenes Probabilis)c Temporal Inference on Reconstructed 3D Scenes Grant Schindler Frank Dellaert Georgia Ins)tute of Technology The World Changes Over Time How can we reason about )me in structure from mo)on

More information

Approximate Bayesian Computation. Alireza Shafaei - April 2016

Approximate Bayesian Computation. Alireza Shafaei - April 2016 Approximate Bayesian Computation Alireza Shafaei - April 2016 The Problem Given a dataset, we are interested in. The Problem Given a dataset, we are interested in. The Problem Given a dataset, we are interested

More information

10-701/15-781, Fall 2006, Final

10-701/15-781, Fall 2006, Final -7/-78, Fall 6, Final Dec, :pm-8:pm There are 9 questions in this exam ( pages including this cover sheet). If you need more room to work out your answer to a question, use the back of the page and clearly

More information

RJaCGH, a package for analysis of

RJaCGH, a package for analysis of RJaCGH, a package for analysis of CGH arrays with Reversible Jump MCMC 1. CGH Arrays: Biological problem: Changes in number of DNA copies are associated to cancer activity. Microarray technology: Oscar

More information

Convexization in Markov Chain Monte Carlo

Convexization in Markov Chain Monte Carlo in Markov Chain Monte Carlo 1 IBM T. J. Watson Yorktown Heights, NY 2 Department of Aerospace Engineering Technion, Israel August 23, 2011 Problem Statement MCMC processes in general are governed by non

More information

Lecture 1: Monte Carlo Method

Lecture 1: Monte Carlo Method Lecture 1: Monte Carlo Method Youjin Deng ( 邓友金 ) h>p://staff.ustc.edu.cn/~yjdeng/ University of Science and Technology of China Non- equilibrium Sta1s1cal Physics & Ac1ve Ma;er Systems: School and Workshop

More information

CS839: Probabilistic Graphical Models. Lecture 10: Learning with Partially Observed Data. Theo Rekatsinas

CS839: Probabilistic Graphical Models. Lecture 10: Learning with Partially Observed Data. Theo Rekatsinas CS839: Probabilistic Graphical Models Lecture 10: Learning with Partially Observed Data Theo Rekatsinas 1 Partially Observed GMs Speech recognition 2 Partially Observed GMs Evolution 3 Partially Observed

More information

Assignment 2. Unsupervised & Probabilistic Learning. Maneesh Sahani Due: Monday Nov 5, 2018

Assignment 2. Unsupervised & Probabilistic Learning. Maneesh Sahani Due: Monday Nov 5, 2018 Assignment 2 Unsupervised & Probabilistic Learning Maneesh Sahani Due: Monday Nov 5, 2018 Note: Assignments are due at 11:00 AM (the start of lecture) on the date above. he usual College late assignments

More information

A GENERAL GIBBS SAMPLING ALGORITHM FOR ANALYZING LINEAR MODELS USING THE SAS SYSTEM

A GENERAL GIBBS SAMPLING ALGORITHM FOR ANALYZING LINEAR MODELS USING THE SAS SYSTEM A GENERAL GIBBS SAMPLING ALGORITHM FOR ANALYZING LINEAR MODELS USING THE SAS SYSTEM Jayawant Mandrekar, Daniel J. Sargent, Paul J. Novotny, Jeff A. Sloan Mayo Clinic, Rochester, MN 55905 ABSTRACT A general

More information

1 Methods for Posterior Simulation

1 Methods for Posterior Simulation 1 Methods for Posterior Simulation Let p(θ y) be the posterior. simulation. Koop presents four methods for (posterior) 1. Monte Carlo integration: draw from p(θ y). 2. Gibbs sampler: sequentially drawing

More information

MCMC Methods for data modeling

MCMC Methods for data modeling MCMC Methods for data modeling Kenneth Scerri Department of Automatic Control and Systems Engineering Introduction 1. Symposium on Data Modelling 2. Outline: a. Definition and uses of MCMC b. MCMC algorithms

More information

TerraSwarm. A Machine Learning and Op0miza0on Toolkit for the Swarm. Ilge Akkaya, Shuhei Emoto, Edward A. Lee. University of California, Berkeley

TerraSwarm. A Machine Learning and Op0miza0on Toolkit for the Swarm. Ilge Akkaya, Shuhei Emoto, Edward A. Lee. University of California, Berkeley TerraSwarm A Machine Learning and Op0miza0on Toolkit for the Swarm Ilge Akkaya, Shuhei Emoto, Edward A. Lee University of California, Berkeley TerraSwarm Tools Telecon 17 November 2014 Sponsored by the

More information

Computer vision: models, learning and inference. Chapter 10 Graphical Models

Computer vision: models, learning and inference. Chapter 10 Graphical Models Computer vision: models, learning and inference Chapter 10 Graphical Models Independence Two variables x 1 and x 2 are independent if their joint probability distribution factorizes as Pr(x 1, x 2 )=Pr(x

More information

Expectation Maximization. Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University

Expectation Maximization. Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University Expectation Maximization Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University April 10 th, 2006 1 Announcements Reminder: Project milestone due Wednesday beginning of class 2 Coordinate

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction A Monte Carlo method is a compuational method that uses random numbers to compute (estimate) some quantity of interest. Very often the quantity we want to compute is the mean of

More information

Image Segmentation using Gaussian Mixture Models

Image Segmentation using Gaussian Mixture Models Image Segmentation using Gaussian Mixture Models Rahman Farnoosh, Gholamhossein Yari and Behnam Zarpak Department of Applied Mathematics, University of Science and Technology, 16844, Narmak,Tehran, Iran

More information

Monte Carlo for Spatial Models

Monte Carlo for Spatial Models Monte Carlo for Spatial Models Murali Haran Department of Statistics Penn State University Penn State Computational Science Lectures April 2007 Spatial Models Lots of scientific questions involve analyzing

More information

Time series, HMMs, Kalman Filters

Time series, HMMs, Kalman Filters Classic HMM tutorial see class website: *L. R. Rabiner, "A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition," Proc. of the IEEE, Vol.77, No.2, pp.257--286, 1989. Time series,

More information

Speech Recogni,on using HTK CS4706. Fadi Biadsy April 21 st, 2008

Speech Recogni,on using HTK CS4706. Fadi Biadsy April 21 st, 2008 peech Recogni,on using HTK C4706 Fadi Biadsy April 21 st, 2008 1 Outline peech Recogni,on Feature Extrac,on HMM 3 basic problems HTK teps to Build a speech recognizer 2 peech Recogni,on peech ignal to

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 17 EM CS/CNS/EE 155 Andreas Krause Announcements Project poster session on Thursday Dec 3, 4-6pm in Annenberg 2 nd floor atrium! Easels, poster boards and cookies

More information

Markov Random Fields and Gibbs Sampling for Image Denoising

Markov Random Fields and Gibbs Sampling for Image Denoising Markov Random Fields and Gibbs Sampling for Image Denoising Chang Yue Electrical Engineering Stanford University changyue@stanfoed.edu Abstract This project applies Gibbs Sampling based on different Markov

More information

Regularization and Markov Random Fields (MRF) CS 664 Spring 2008

Regularization and Markov Random Fields (MRF) CS 664 Spring 2008 Regularization and Markov Random Fields (MRF) CS 664 Spring 2008 Regularization in Low Level Vision Low level vision problems concerned with estimating some quantity at each pixel Visual motion (u(x,y),v(x,y))

More information

Bayesian Spatiotemporal Modeling with Hierarchical Spatial Priors for fmri

Bayesian Spatiotemporal Modeling with Hierarchical Spatial Priors for fmri Bayesian Spatiotemporal Modeling with Hierarchical Spatial Priors for fmri Galin L. Jones 1 School of Statistics University of Minnesota March 2015 1 Joint with Martin Bezener and John Hughes Experiment

More information

Discussion on Bayesian Model Selection and Parameter Estimation in Extragalactic Astronomy by Martin Weinberg

Discussion on Bayesian Model Selection and Parameter Estimation in Extragalactic Astronomy by Martin Weinberg Discussion on Bayesian Model Selection and Parameter Estimation in Extragalactic Astronomy by Martin Weinberg Phil Gregory Physics and Astronomy Univ. of British Columbia Introduction Martin Weinberg reported

More information

Image Segmentation! Thresholding Watershed. Hodzic Ernad Seminar Computa9onal Intelligence

Image Segmentation! Thresholding Watershed. Hodzic Ernad Seminar Computa9onal Intelligence Image Segmentation! Thresholding Watershed Seminar Computa9onal Intelligence Outline! Thresholding What is thresholding? How can we find a threshold value? Variable thresholding Local thresholding 2 Outline!

More information

CSCI 360 Introduc/on to Ar/ficial Intelligence Week 2: Problem Solving and Op/miza/on. Instructor: Wei-Min Shen

CSCI 360 Introduc/on to Ar/ficial Intelligence Week 2: Problem Solving and Op/miza/on. Instructor: Wei-Min Shen CSCI 360 Introduc/on to Ar/ficial Intelligence Week 2: Problem Solving and Op/miza/on Instructor: Wei-Min Shen Status Check and Review Status check Have you registered in Piazza? Have you run the Project-1?

More information

Statistical techniques for data analysis in Cosmology

Statistical techniques for data analysis in Cosmology Statistical techniques for data analysis in Cosmology arxiv:0712.3028; arxiv:0911.3105 Numerical recipes (the bible ) Licia Verde ICREA & ICC UB-IEEC http://icc.ub.edu/~liciaverde outline Lecture 1: Introduction

More information

Analysis of Incomplete Multivariate Data

Analysis of Incomplete Multivariate Data Analysis of Incomplete Multivariate Data J. L. Schafer Department of Statistics The Pennsylvania State University USA CHAPMAN & HALL/CRC A CR.C Press Company Boca Raton London New York Washington, D.C.

More information

Object Recognition Using Pictorial Structures. Daniel Huttenlocher Computer Science Department. In This Talk. Object recognition in computer vision

Object Recognition Using Pictorial Structures. Daniel Huttenlocher Computer Science Department. In This Talk. Object recognition in computer vision Object Recognition Using Pictorial Structures Daniel Huttenlocher Computer Science Department Joint work with Pedro Felzenszwalb, MIT AI Lab In This Talk Object recognition in computer vision Brief definition

More information

Machine Learning A W 1sst KU. b) [1 P] Give an example for a probability distributions P (A, B, C) that disproves

Machine Learning A W 1sst KU. b) [1 P] Give an example for a probability distributions P (A, B, C) that disproves Machine Learning A 708.064 11W 1sst KU Exercises Problems marked with * are optional. 1 Conditional Independence I [2 P] a) [1 P] Give an example for a probability distribution P (A, B, C) that disproves

More information

Nested Sampling: Introduction and Implementation

Nested Sampling: Introduction and Implementation UNIVERSITY OF TEXAS AT SAN ANTONIO Nested Sampling: Introduction and Implementation Liang Jing May 2009 1 1 ABSTRACT Nested Sampling is a new technique to calculate the evidence, Z = P(D M) = p(d θ, M)p(θ

More information

CS 6140: Machine Learning Spring Final Exams. What we learned Final Exams 2/26/16

CS 6140: Machine Learning Spring Final Exams. What we learned Final Exams 2/26/16 Logis@cs CS 6140: Machine Learning Spring 2016 Instructor: Lu Wang College of Computer and Informa@on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Assignment

More information

Image analysis. Computer Vision and Classification Image Segmentation. 7 Image analysis

Image analysis. Computer Vision and Classification Image Segmentation. 7 Image analysis 7 Computer Vision and Classification 413 / 458 Computer Vision and Classification The k-nearest-neighbor method The k-nearest-neighbor (knn) procedure has been used in data analysis and machine learning

More information

10.4 Linear interpolation method Newton s method

10.4 Linear interpolation method Newton s method 10.4 Linear interpolation method The next best thing one can do is the linear interpolation method, also known as the double false position method. This method works similarly to the bisection method by

More information

Bayesian Segmentation and Motion Estimation in Video Sequences using a Markov-Potts Model

Bayesian Segmentation and Motion Estimation in Video Sequences using a Markov-Potts Model Bayesian Segmentation and Motion Estimation in Video Sequences using a Markov-Potts Model Patrice BRAULT and Ali MOHAMMAD-DJAFARI LSS, Laboratoire des Signaux et Systemes, CNRS UMR 8506, Supelec, Plateau

More information

This chapter explains two techniques which are frequently used throughout

This chapter explains two techniques which are frequently used throughout Chapter 2 Basic Techniques This chapter explains two techniques which are frequently used throughout this thesis. First, we will introduce the concept of particle filters. A particle filter is a recursive

More information

Hierarchical Bayesian Modeling with Ensemble MCMC. Eric B. Ford (Penn State) Bayesian Computing for Astronomical Data Analysis June 12, 2014

Hierarchical Bayesian Modeling with Ensemble MCMC. Eric B. Ford (Penn State) Bayesian Computing for Astronomical Data Analysis June 12, 2014 Hierarchical Bayesian Modeling with Ensemble MCMC Eric B. Ford (Penn State) Bayesian Computing for Astronomical Data Analysis June 12, 2014 Simple Markov Chain Monte Carlo Initialise chain with θ 0 (initial

More information

Hidden Markov Models. Slides adapted from Joyce Ho, David Sontag, Geoffrey Hinton, Eric Xing, and Nicholas Ruozzi

Hidden Markov Models. Slides adapted from Joyce Ho, David Sontag, Geoffrey Hinton, Eric Xing, and Nicholas Ruozzi Hidden Markov Models Slides adapted from Joyce Ho, David Sontag, Geoffrey Hinton, Eric Xing, and Nicholas Ruozzi Sequential Data Time-series: Stock market, weather, speech, video Ordered: Text, genes Sequential

More information

An Efficient Model Selection for Gaussian Mixture Model in a Bayesian Framework

An Efficient Model Selection for Gaussian Mixture Model in a Bayesian Framework IEEE SIGNAL PROCESSING LETTERS, VOL. XX, NO. XX, XXX 23 An Efficient Model Selection for Gaussian Mixture Model in a Bayesian Framework Ji Won Yoon arxiv:37.99v [cs.lg] 3 Jul 23 Abstract In order to cluster

More information

Biology 644: Bioinformatics

Biology 644: Bioinformatics A statistical Markov model in which the system being modeled is assumed to be a Markov process with unobserved (hidden) states in the training data. First used in speech and handwriting recognition In

More information

Markov chain Monte Carlo sampling

Markov chain Monte Carlo sampling Markov chain Monte Carlo sampling If you are trying to estimate the best values and uncertainties of a many-parameter model, or if you are trying to compare two models with multiple parameters each, fair

More information

A Fast Learning Algorithm for Deep Belief Nets

A Fast Learning Algorithm for Deep Belief Nets A Fast Learning Algorithm for Deep Belief Nets Geoffrey E. Hinton, Simon Osindero Department of Computer Science University of Toronto, Toronto, Canada Yee-Whye Teh Department of Computer Science National

More information

Laboratorio di Problemi Inversi Esercitazione 4: metodi Bayesiani e importance sampling

Laboratorio di Problemi Inversi Esercitazione 4: metodi Bayesiani e importance sampling Laboratorio di Problemi Inversi Esercitazione 4: metodi Bayesiani e importance sampling Luca Calatroni Dipartimento di Matematica, Universitá degli studi di Genova May 19, 2016. Luca Calatroni (DIMA, Unige)

More information

Bootstrapping Methods

Bootstrapping Methods Bootstrapping Methods example of a Monte Carlo method these are one Monte Carlo statistical method some Bayesian statistical methods are Monte Carlo we can also simulate models using Monte Carlo methods

More information

Estimation of Item Response Models

Estimation of Item Response Models Estimation of Item Response Models Lecture #5 ICPSR Item Response Theory Workshop Lecture #5: 1of 39 The Big Picture of Estimation ESTIMATOR = Maximum Likelihood; Mplus Any questions? answers Lecture #5:

More information

Machine Learning. Sourangshu Bhattacharya

Machine Learning. Sourangshu Bhattacharya Machine Learning Sourangshu Bhattacharya Bayesian Networks Directed Acyclic Graph (DAG) Bayesian Networks General Factorization Curve Fitting Re-visited Maximum Likelihood Determine by minimizing sum-of-squares

More information

Rapid Extraction and Updating Road Network from LIDAR Data

Rapid Extraction and Updating Road Network from LIDAR Data Rapid Extraction and Updating Road Network from LIDAR Data Jiaping Zhao, Suya You, Jing Huang Computer Science Department University of Southern California October, 2011 Research Objec+ve Road extrac+on

More information

Mini-project 2 CMPSCI 689 Spring 2015 Due: Tuesday, April 07, in class

Mini-project 2 CMPSCI 689 Spring 2015 Due: Tuesday, April 07, in class Mini-project 2 CMPSCI 689 Spring 2015 Due: Tuesday, April 07, in class Guidelines Submission. Submit a hardcopy of the report containing all the figures and printouts of code in class. For readability

More information

CS 6140: Machine Learning Spring 2016

CS 6140: Machine Learning Spring 2016 CS 6140: Machine Learning Spring 2016 Instructor: Lu Wang College of Computer and Informa?on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Logis?cs Assignment

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University April 1, 2019 Today: Inference in graphical models Learning graphical models Readings: Bishop chapter 8 Bayesian

More information

Using Sequen+al Run+me Distribu+ons for the Parallel Speedup Predic+on of SAT Local Search

Using Sequen+al Run+me Distribu+ons for the Parallel Speedup Predic+on of SAT Local Search Using Sequen+al Run+me Distribu+ons for the Parallel Speedup Predic+on of SAT Local Search Alejandro Arbelaez - CharloBe Truchet - Philippe Codognet JFLI University of Tokyo LINA, UMR 6241 University of

More information

Informa(on Retrieval

Informa(on Retrieval Introduc*on to Informa(on Retrieval CS276: Informa*on Retrieval and Web Search Pandu Nayak and Prabhakar Raghavan Lecture 12: Clustering Today s Topic: Clustering Document clustering Mo*va*ons Document

More information

Bayesian estimation of optical properties of the human head via 3D structural MRI p.1

Bayesian estimation of optical properties of the human head via 3D structural MRI p.1 Bayesian estimation of optical properties of the human head via 3D structural MRI June 23, 2003 at ECBO 2003 Alex Barnett Courant Institute, New York University Collaborators (NMR Center, Mass. Gen. Hosp.,

More information

Hidden Markov Models in the context of genetic analysis

Hidden Markov Models in the context of genetic analysis Hidden Markov Models in the context of genetic analysis Vincent Plagnol UCL Genetics Institute November 22, 2012 Outline 1 Introduction 2 Two basic problems Forward/backward Baum-Welch algorithm Viterbi

More information

K-Means and Gaussian Mixture Models

K-Means and Gaussian Mixture Models K-Means and Gaussian Mixture Models David Rosenberg New York University June 15, 2015 David Rosenberg (New York University) DS-GA 1003 June 15, 2015 1 / 43 K-Means Clustering Example: Old Faithful Geyser

More information

The Multi Stage Gibbs Sampling: Data Augmentation Dutch Example

The Multi Stage Gibbs Sampling: Data Augmentation Dutch Example The Multi Stage Gibbs Sampling: Data Augmentation Dutch Example Rebecca C. Steorts Bayesian Methods and Modern Statistics: STA 360/601 Module 8 1 Example: Data augmentation / Auxiliary variables A commonly-used

More information

Digital Image Processing Laboratory: MAP Image Restoration

Digital Image Processing Laboratory: MAP Image Restoration Purdue University: Digital Image Processing Laboratories 1 Digital Image Processing Laboratory: MAP Image Restoration October, 015 1 Introduction This laboratory explores the use of maximum a posteriori

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Learning without Class Labels (or correct outputs) Density Estimation Learn P(X) given training data for X Clustering Partition data into clusters Dimensionality Reduction Discover

More information

Modeling Criminal Careers as Departures From a Unimodal Population Age-Crime Curve: The Case of Marijuana Use

Modeling Criminal Careers as Departures From a Unimodal Population Age-Crime Curve: The Case of Marijuana Use Modeling Criminal Careers as Departures From a Unimodal Population Curve: The Case of Marijuana Use Donatello Telesca, Elena A. Erosheva, Derek A. Kreader, & Ross Matsueda April 15, 2014 extends Telesca

More information

Bayesian Methods. David Rosenberg. April 11, New York University. David Rosenberg (New York University) DS-GA 1003 April 11, / 19

Bayesian Methods. David Rosenberg. April 11, New York University. David Rosenberg (New York University) DS-GA 1003 April 11, / 19 Bayesian Methods David Rosenberg New York University April 11, 2017 David Rosenberg (New York University) DS-GA 1003 April 11, 2017 1 / 19 Classical Statistics Classical Statistics David Rosenberg (New

More information

Module: Sequence Alignment Theory and Applica8ons Session: BLAST

Module: Sequence Alignment Theory and Applica8ons Session: BLAST Module: Sequence Alignment Theory and Applica8ons Session: BLAST Learning Objec8ves and Outcomes v Understand the principles of the BLAST algorithm v Understand the different BLAST algorithms, parameters

More information

NOVEL HYBRID GENETIC ALGORITHM WITH HMM BASED IRIS RECOGNITION

NOVEL HYBRID GENETIC ALGORITHM WITH HMM BASED IRIS RECOGNITION NOVEL HYBRID GENETIC ALGORITHM WITH HMM BASED IRIS RECOGNITION * Prof. Dr. Ban Ahmed Mitras ** Ammar Saad Abdul-Jabbar * Dept. of Operation Research & Intelligent Techniques ** Dept. of Mathematics. College

More information

Practical Course WS12/13 Introduction to Monte Carlo Localization

Practical Course WS12/13 Introduction to Monte Carlo Localization Practical Course WS12/13 Introduction to Monte Carlo Localization Cyrill Stachniss and Luciano Spinello 1 State Estimation Estimate the state of a system given observations and controls Goal: 2 Bayes Filter

More information

Modeling time series with hidden Markov models

Modeling time series with hidden Markov models Modeling time series with hidden Markov models Advanced Machine learning 2017 Nadia Figueroa, Jose Medina and Aude Billard Time series data Barometric pressure Temperature Data Humidity Time What s going

More information

ADAPTIVE METROPOLIS-HASTINGS SAMPLING, OR MONTE CARLO KERNEL ESTIMATION

ADAPTIVE METROPOLIS-HASTINGS SAMPLING, OR MONTE CARLO KERNEL ESTIMATION ADAPTIVE METROPOLIS-HASTINGS SAMPLING, OR MONTE CARLO KERNEL ESTIMATION CHRISTOPHER A. SIMS Abstract. A new algorithm for sampling from an arbitrary pdf. 1. Introduction Consider the standard problem of

More information

Lecture 5: Markov models

Lecture 5: Markov models Master s course Bioinformatics Data Analysis and Tools Lecture 5: Markov models Centre for Integrative Bioinformatics Problem in biology Data and patterns are often not clear cut When we want to make a

More information

Short-Cut MCMC: An Alternative to Adaptation

Short-Cut MCMC: An Alternative to Adaptation Short-Cut MCMC: An Alternative to Adaptation Radford M. Neal Dept. of Statistics and Dept. of Computer Science University of Toronto http://www.cs.utoronto.ca/ radford/ Third Workshop on Monte Carlo Methods,

More information

DPP: Reference documentation. version Luis M. Avila, Mike R. May and Jeffrey Ross-Ibarra 17th November 2017

DPP: Reference documentation. version Luis M. Avila, Mike R. May and Jeffrey Ross-Ibarra 17th November 2017 DPP: Reference documentation version 0.1.2 Luis M. Avila, Mike R. May and Jeffrey Ross-Ibarra 17th November 2017 1 Contents 1 DPP: Introduction 3 2 DPP: Classes and methods 3 2.1 Class: NormalModel.........................

More information

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin Clustering K-means Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, 2014 Carlos Guestrin 2005-2014 1 Clustering images Set of Images [Goldberger et al.] Carlos Guestrin 2005-2014

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Overview of Part Two Probabilistic Graphical Models Part Two: Inference and Learning Christopher M. Bishop Exact inference and the junction tree MCMC Variational methods and EM Example General variational

More information

Modeling and Reasoning with Bayesian Networks. Adnan Darwiche University of California Los Angeles, CA

Modeling and Reasoning with Bayesian Networks. Adnan Darwiche University of California Los Angeles, CA Modeling and Reasoning with Bayesian Networks Adnan Darwiche University of California Los Angeles, CA darwiche@cs.ucla.edu June 24, 2008 Contents Preface 1 1 Introduction 1 1.1 Automated Reasoning........................

More information

Package atmcmc. February 19, 2015

Package atmcmc. February 19, 2015 Type Package Package atmcmc February 19, 2015 Title Automatically Tuned Markov Chain Monte Carlo Version 1.0 Date 2014-09-16 Author Jinyoung Yang Maintainer Jinyoung Yang

More information

Genome 559. Hidden Markov Models

Genome 559. Hidden Markov Models Genome 559 Hidden Markov Models A simple HMM Eddy, Nat. Biotech, 2004 Notes Probability of a given a state path and output sequence is just product of emission/transition probabilities If state path is

More information

A problem - too many features. TDA 231 Dimension Reduction: PCA. Features. Making new features

A problem - too many features. TDA 231 Dimension Reduction: PCA. Features. Making new features A problem - too many features TDA 1 Dimension Reduction: Aim: To build a classifier that can diagnose leukaemia using Gene expression data. Data: 7 healthy samples,11 leukaemia samples (N = 8). Each sample

More information

MCMC Diagnostics. Yingbo Li MATH Clemson University. Yingbo Li (Clemson) MCMC Diagnostics MATH / 24

MCMC Diagnostics. Yingbo Li MATH Clemson University. Yingbo Li (Clemson) MCMC Diagnostics MATH / 24 MCMC Diagnostics Yingbo Li Clemson University MATH 9810 Yingbo Li (Clemson) MCMC Diagnostics MATH 9810 1 / 24 Convergence to Posterior Distribution Theory proves that if a Gibbs sampler iterates enough,

More information

An Introduction to Markov Chain Monte Carlo

An Introduction to Markov Chain Monte Carlo An Introduction to Markov Chain Monte Carlo Markov Chain Monte Carlo (MCMC) refers to a suite of processes for simulating a posterior distribution based on a random (ie. monte carlo) process. In other

More information

Clustering Relational Data using the Infinite Relational Model

Clustering Relational Data using the Infinite Relational Model Clustering Relational Data using the Infinite Relational Model Ana Daglis Supervised by: Matthew Ludkin September 4, 2015 Ana Daglis Clustering Data using the Infinite Relational Model September 4, 2015

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 5 Inference

More information

Unsupervised Texture Image Segmentation Using MRF- EM Framework

Unsupervised Texture Image Segmentation Using MRF- EM Framework Journal of Advances in Computer Research Quarterly ISSN: 2008-6148 Sari Branch, Islamic Azad University, Sari, I.R.Iran (Vol. 4, No. 2, May 2013), Pages: 1-13 www.jacr.iausari.ac.ir Unsupervised Texture

More information

Decision Trees, Random Forests and Random Ferns. Peter Kovesi

Decision Trees, Random Forests and Random Ferns. Peter Kovesi Decision Trees, Random Forests and Random Ferns Peter Kovesi What do I want to do? Take an image. Iden9fy the dis9nct regions of stuff in the image. Mark the boundaries of these regions. Recognize and

More information

Rolling Markov Chain Monte Carlo

Rolling Markov Chain Monte Carlo Rolling Markov Chain Monte Carlo Din-Houn Lau Imperial College London Joint work with Axel Gandy 4 th July 2013 Predict final ranks of the each team. Updates quick update of predictions. Accuracy control

More information

Extending Heuris.c Search

Extending Heuris.c Search Extending Heuris.c Search Talk at Hebrew University, Cri.cal MAS group Roni Stern Department of Informa.on System Engineering, Ben Gurion University, Israel 1 Heuris.c search 2 Outline Combining lookahead

More information

Statistical Matching using Fractional Imputation

Statistical Matching using Fractional Imputation Statistical Matching using Fractional Imputation Jae-Kwang Kim 1 Iowa State University 1 Joint work with Emily Berg and Taesung Park 1 Introduction 2 Classical Approaches 3 Proposed method 4 Application:

More information

Informa(on Retrieval

Informa(on Retrieval Introduc*on to Informa(on Retrieval Clustering Chris Manning, Pandu Nayak, and Prabhakar Raghavan Today s Topic: Clustering Document clustering Mo*va*ons Document representa*ons Success criteria Clustering

More information