Grids containment and treewidth, PTASs

Size: px
Start display at page:

Download "Grids containment and treewidth, PTASs"

Transcription

1 Lecture 8 (30..0) Grids containment and treewidth, PTASs Author: Jakub Oćwieja Definition. A graph G is a t t grid if it consists of t vertices forming a square t t such that every two consecutive vertices in a row or in a colum are connected. As a result of previous excercises we know that a treewidth of a t t grid is t. A treewidth of a graph can only decrease as a result of taking minors so we can conclude that if a graph contain a t t grid as a minor it s treewidth is at least t. Following series of theorems gives us a symetric dependence. Theorem. (Robertson, Seymour [6]) ] c R [tw(g) > c t5 G contains a t t grid as a minor Theorem 3. (Robertson, Seymour [7], Grigoriev [4]) Given a planar graph G, V (G) = n and a number t it is posibble to find a t t grid as a minor of G or produce a decomposition of G of width 5t 6 in O(n log n) time. Theorem 4. (Demaine, Hajiaghayi []) graph H c(h) R graph G t if H minor G then G contains a t t grid as a minor or tw(g) c(h) t Definition 5. A graph G is an apex graph if there exists a vertex v such that G \ v is planar. Theorem 6. (Fomin, Golovach, Thilikos [3]) apex graph H c(h) R graph G t if G cannot be contracted to H then G can be contracted to one of each of size t t, or tw(g) c(h) t It is worthy to mention that there exists algorithm which for a given planar graph G construct its planar embedding in linear time [5]. From now we will assume a planar graph comes with its embedding.

2 or Proof of Theorem 3. To avoid technical parts of the proof we will only prove 5t boundary. We will give an algorithm that construct a tree decomposition recursively. If on some stage of recursion it fails we will produce a representation of a t t grid minor of a graph. In each step of recursion a created vertex T of tree decomposition will satisfy following condition: each vertex associated to T lies on the outer face of the remaining subgraph G. We will call this property circular cuts. Moreover, T 4t. To create a decomposition it is enough to consider following cases:. G is not biconnected Let v be a vertex which splits G into two disconnected subgraphs G and G, G G = {v}. There are two cases: G T and G T If so, v must lie on the outer face of G. v G G In this case we can create a decomposition vertex T = T {v} and then split it into two vertices: T G and T G, each consisting of no more than 4t vertices of G. G T = We can simply continue decomposing G using our algorithm. The same way we can decompose G using {v} as the beginning vertex of decomposition. As v is included in some vertex of the first decomposition we can easily merge these decompositions to get satisfactory result.. G is biconnected and T < 4t T contains all vertices of the outer face of G. In this case we can forget about (remove) some edge of the outer face of G as it connects two vertices of T.

3 v G G Otherwise. Let v be a vertex of the outer face such that v T. We can then create a new decomposition vertex T = T {v}. 3. G is biconnected and T = 4t We may split T into subsets N, E, S, W using clockwise order such that N = E = S = W = t. There exists vertex cut X between sets N and S such that < t. N W X G G E S Assume that X splits graph G into G and G such that G G = X. We can extend T of X ( T X 5t ) and create two tree decomposition subvertices: G (T X) and G (T X). Moreover G (T X) N E X W 4 t and the same inequality holds for the second created vertex. There exists vertex cut X between sets E and W such that < t. Analogously to the previous case. There exists t disjoint paths ( ) t i= connecting pairwise vertices of N and S and t disjoint paths (Q i ) t i= connecting pairwise vertices of W and E. In this case we will finally find a t t subgrid with respect to minors.

4 Consider sets of paths minimalizing M = Q i. We will prove this paths induces a t t subgrid. We have to prove that s intersects only with Q i s and each pair intersects exactly once. From the construction of paths the first property holds and it should be obvious that each pair (, Q j ) intersects at least one time. If any of such pairs intersects more than once, we will show a transformation to another set of paths with lesser value of M. Consider some and its intersections with paths (Q j ) t j=. If intersects path Q j twice in a row we can perform following transformation: Q j+ Q j+ Q j Q j Q j Q j Assume now that is the first (counting from the left) path that intersects some Q j more than once. Then there exists Q j such that intersects it, but doesn t cross it. Depending on the case we can perform one of the following transformations (there always exists j that fit one of these situations): Q j Q j Q j Q j As each of given transformations decrease value of M contradicting minimality of the selection, thus none of these cases occures. To sumarize, the choice of paths ( ) and (Q i ) induces a t t subgrid Q.E.D. Using these theorems we can solve many problems using the same idea combining grids containment and treewidth. Theorem 7. Vertex cover problem for a planar graph G can be solved in O ( O( k) ) time.

5 Q j + Q j + Q j Q j Proof. Using Theorem 3 for t = k + we get that either G contains a t t grid as a minor or has O( k) treewidth. In the first case, a t t grid contains a subset of t disjoint edges and thus minimal vertex cover s size cannot be less than t k+ = k +. As taking minors only shrink a minimal vertex cover we can simply answer no. In the second case, with bounded treewidth we can use a dynamic programming to achieve the goal in the assumed time. Theorem 8. K-path problem for a planar graph G can be solved in O ( O( k) ) time. Proof. Using Theorem 3 for t = k we find a t t grid minor representation of G or construct tree decomposition of width O( k). In the first case the subgrid contains t t k vertices and there obviously exists a path of length k. In the second case we can use bounded treewidth and a dynamic programming to construct O ( O( k log k) ) algorithm. To achieve O ( O(k) ) we have to be more precise and use a construction of tree decomposition - circular cuts. During dynamic programming the form of circular cats limit the space of states for each vertex of decomposition. Specifically, in each state it is enough to remember pairs of vertices which are already connected by a path. In this case connections between vertices creates a parenthesis over a cyclic set of vertices. There always exists a vertex that lies on the outer face of the embedding of a graph of connections (image above). Starting from it and moving clockwise it is enough to tell for each vertex if it is already connected with some other vertex and remember the direction (left, right) of this connection. This observation limits the size of the space of states to O(t 3 t ) = O( O( k) ) and thus dynamic programming can perform in O ( O( k) ) time Q.E.D.

6 At the end of this lecture we will focus on Baker s technique, which is a method for designing polynomial-time approximation schemes for problems on planar graphs. Theorem 9. (Baker []) For ɛ > 0 there exists a polynomial time algorithm which gives ( ɛ)-approximation of independent set for planar graphs. Proof. For a given ɛ let l = ɛ. Consider a partitioning of vertices of a planar graph G into layers given by bfs search starting from a vertex of the outer face of G. Let L i (for 0 i < l) be sum of layers which depth equals i modulo l. V = L i thus there exists j such that L j OP T ɛ OP T, where OP T is maximal stable set for G. Otherwise l l OP T = OP T V = OP T L i > ɛ OP T = l ɛ OP T > OP T i=0 Given j focus on H = G[V \ L j ]. H consists of l of l layer groups of a planar G and thus its treewidth is O(l). Thus, we can run a polynomial algorithm of finding maximal independent set for H running in polynomial time. The result RES holds RES OP T (V \ L j ) = OP T OP T L j ( ɛ) OP T i=0 Theorem 0. (Baker []) For ɛ > 0 there exists a polynomial time algotihm which gives ( + ɛ)-approximation of vertex cover for planar graphs. Proof. Given a vertex cover X of a planar graph G and ɛ > 0 we will construct a Y V (G) such that Y ɛ tw(g \ Y ) = O( ɛ ) Using this construction we will find ( + ɛ)-approximation by. Find a -approximation X of a minimal vertex cover of G. Use the construction to obtain Y, Y ɛ 3. Using dynamic programming find an optimal solution Z in G \ Y 4. Return Z Y Assume we are given a vertex cover X of a planar graph G and ɛ > 0. From Theorem 6 for any appex graph H and t = 7 + we can construct in polynomial time a t t almost subgrid of G with respect to contractions (as G is planar only one type of presented grids is possible) or a tree decomposition of width t.

7 However, a size of minimal vertex cover can only shrink during contractions and a grid s of size t t minimal vertex cover contains at least (t ) vertices which is in contradiction with a given vertex cover. Thus G has treewidth O( ). Given a tree decomposition of G we can find its vertex T such that its removal leaves components which vertices contain less than vertices of. For such T we can add T to Y, remove T form G and run the procedure recursively for each connected component of G. For each component branching procedure induces its vertex cover of size less than and we can recalculate tree ( ) decomposition of width O. We stop our recursion when each of connected components contains a part of X of size factor than ɛ. ɛ ɛ ɛ ɛ ( Obviously, the algorithm returns such Y, that tw(g \ Y ) O of Y can be bouded by the sum of geometric sequence ɛ ) = O ( ɛ ). Moreover, size Y i i i = i X i = O ( X : ɛ X ) = O (ɛ ) Balancing a value of ɛ we can remove a factor of O() from this boundary. It is easy to check that procedure given at the beginning of the proof returns (+ɛ)-approximation of the optimal solution of vertex cover problem. References [] Brenda S. Baker. Approximation algorithms for np-complete problems on planar graphs. J. ACM, 4():53 80, 994. [] Erik D. Demaine and MohammadTaghi Hajiaghayi. Linearity of grid minors in treewidth with applications through bidimensionality. Combinatorica, 8():9 36, 008. [3] Fedor V. Fomin, Petr A. Golovach, and Dimitrios M. Thilikos. Contraction obstructions for treewidth. J. Comb. Theory, Ser. B, 0(5):30 34, 0.

8 [4] Alexander Grigoriev. Tree-width and large grid minors in planar graphs. Discrete Mathematics & Theoretical Computer Science, 3():3 0, 0. [5] John Hopcroft and Robert Tarjan. Efficient planarity testing. J. ACM, (4): , October 974. [6] Neil Robertson and Paul D. Seymour. Graph minors. x. obstructions to tree-decomposition. J. Comb. Theory, Ser. B, 5():53 90, 99. [7] Neil Robertson, Paul D. Seymour, and Robin Thomas. Quickly excluding a planar graph. J. Comb. Theory, Ser. B, 6():33 348, 994.

Approximation Schemes for Planar Graph Problems (1983, 1994; Baker)

Approximation Schemes for Planar Graph Problems (1983, 1994; Baker) Approximation Schemes for Planar Graph Problems (1983, 1994; Baker) Erik D. Demaine, MIT, theory.csail.mit.edu/ edemaine MohammadTaghi Hajiaghayi, MIT, www.mit.edu/ hajiagha INDEX TERMS: approximation

More information

Bidimensionality Theory and Algorithmic Graph Minor Theory

Bidimensionality Theory and Algorithmic Graph Minor Theory Bidimensionality Theory and Algorithmic Graph Minor Theory Lecture Notes for MohammadTaghi Hajiaghayi s Tutorial Mareike Massow, Jens Schmidt, Daria Schymura, Siamak Tazari MDS Fall School Blankensee October

More information

FEDOR V. FOMIN. Lectures on treewidth. The Parameterized Complexity Summer School 1-3 September 2017 Vienna, Austria

FEDOR V. FOMIN. Lectures on treewidth. The Parameterized Complexity Summer School 1-3 September 2017 Vienna, Austria FEDOR V. FOMIN Lectures on treewidth The Parameterized Complexity Summer School 1-3 September 2017 Vienna, Austria Why treewidth? Very general idea in science: large structures can be understood by breaking

More information

Contraction Bidimensionality: the Accurate Picture

Contraction Bidimensionality: the Accurate Picture Contraction Bidimensionality: the Accurate Picture Fedor V. Fomin 1, Petr Golovach 1, and Dimitrios M. Thilikos 2 1 Department of Informatics, University of Bergen, N-5020 Bergen, Norway, {fomin,peter.golovach}@ii.uib.no

More information

PLANAR GRAPH BIPARTIZATION IN LINEAR TIME

PLANAR GRAPH BIPARTIZATION IN LINEAR TIME PLANAR GRAPH BIPARTIZATION IN LINEAR TIME SAMUEL FIORINI, NADIA HARDY, BRUCE REED, AND ADRIAN VETTA Abstract. For each constant k, we present a linear time algorithm that, given a planar graph G, either

More information

Treewidth and graph minors

Treewidth and graph minors Treewidth and graph minors Lectures 9 and 10, December 29, 2011, January 5, 2012 We shall touch upon the theory of Graph Minors by Robertson and Seymour. This theory gives a very general condition under

More information

Connecting face hitting sets in planar graphs

Connecting face hitting sets in planar graphs Connecting face hitting sets in planar graphs Pascal Schweitzer and Patrick Schweitzer Max-Planck-Institute for Computer Science Campus E1 4, D-66123 Saarbrücken, Germany pascal@mpi-inf.mpg.de University

More information

Bidimensional Parameters and Local Treewidth

Bidimensional Parameters and Local Treewidth Bidimensional Parameters and Local Treewidth Erik D. Demaine 1, Fedor V. Fomin 2, MohammadTaghi Hajiaghayi 1, and Dimitrios M. Thilikos 3 1 MIT Laboratory for Computer Science, 200 Technology Square, Cambridge,

More information

Subexponential Algorithms for Partial Cover Problems

Subexponential Algorithms for Partial Cover Problems LIPIcs Leibniz International Proceedings in Informatics Subexponential Algorithms for Partial Cover Problems Fedor V. Fomin 1, Daniel Lokshtanov 1, Venkatesh Raman 2 and Saket Saurabh 2 1 Department of

More information

Subexponential Algorithms for Partial Cover Problems

Subexponential Algorithms for Partial Cover Problems Subexponential Algorithms for Partial Cover Problems Fedor V. Fomin Daniel Lokshtanov Venkatesh Raman Saket Saurabh July 4, 2009 Abstract Partial Cover problems are optimization versions of fundamental

More information

Embedded Width, A Variation of Treewidth for Planar Graphs

Embedded Width, A Variation of Treewidth for Planar Graphs Embedded Width, A Variation of Treewidth for Planar Graphs Robert Weber Advisor: Glencora Borradaile Abstract A commonly studied property of graphs is treewidth, a measure of how tree-like a graph is.

More information

BIDIMENSIONAL PARAMETERS AND LOCAL TREEWIDTH

BIDIMENSIONAL PARAMETERS AND LOCAL TREEWIDTH BIDIMENSIONAL PARAMETERS AND LOCAL TREEWIDTH ERIK D. DEMAINE, FEDOR V. FOMIN, MOHAMMADTAGHI HAJIAGHAYI, AND DIMITRIOS M. THILIKOS Abstract. For several graph-theoretic parameters such as vertex cover and

More information

The Square Root Phenomenon in Planar Graphs

The Square Root Phenomenon in Planar Graphs 1 The Square Root Phenomenon in Planar Graphs Survey and New Results Dániel Marx Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary Satisfiability

More information

The Bidimensionality Theory and Its Algorithmic Applications

The Bidimensionality Theory and Its Algorithmic Applications c The Author 2006. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved. For Permissions, please email: journals.permissions@oupjournals.org doi:10.1093/comjnl/bxm033

More information

Planarity allowing few error vertices in linear time

Planarity allowing few error vertices in linear time Planarity allowing few error vertices in linear time Ken-ichi Kawarabayashi National Institute of Informatics 2-1-2, Hitotsubashi, Chiyoda-ku Tokyo 101-8430, Japan k keniti@nii.ac.jp Abstract We show that

More information

A note on Baker s algorithm

A note on Baker s algorithm A note on Baker s algorithm Iyad A. Kanj, Ljubomir Perković School of CTI, DePaul University, 243 S. Wabash Avenue, Chicago, IL 60604-2301. Abstract We present a corrected version of Baker s algorithm

More information

Parameterized graph separation problems

Parameterized graph separation problems Parameterized graph separation problems Dániel Marx Department of Computer Science and Information Theory, Budapest University of Technology and Economics Budapest, H-1521, Hungary, dmarx@cs.bme.hu Abstract.

More information

An Effective Upperbound on Treewidth Using Partial Fill-in of Separators

An Effective Upperbound on Treewidth Using Partial Fill-in of Separators An Effective Upperbound on Treewidth Using Partial Fill-in of Separators Boi Faltings Martin Charles Golumbic June 28, 2009 Abstract Partitioning a graph using graph separators, and particularly clique

More information

1 Introduction and Results

1 Introduction and Results On the Structure of Graphs with Large Minimum Bisection Cristina G. Fernandes 1,, Tina Janne Schmidt,, and Anusch Taraz, 1 Instituto de Matemática e Estatística, Universidade de São Paulo, Brazil, cris@ime.usp.br

More information

Lecture 1: TSP on graphs of bounded branch width

Lecture 1: TSP on graphs of bounded branch width CS523: Advanced Algorithms Spring 2014 Lecture 1: TSP on graphs of bounded branch width Lecturer: Glencora Borradaile Scribes: Hung Le 1.1 Branch Decomposition Let G = (V (G), E(G)) be an undirected graph.

More information

On Structural Parameterizations of the Matching Cut Problem

On Structural Parameterizations of the Matching Cut Problem On Structural Parameterizations of the Matching Cut Problem N. R. Aravind, Subrahmanyam Kalyanasundaram, and Anjeneya Swami Kare Department of Computer Science and Engineering, IIT Hyderabad, Hyderabad,

More information

Linearity of Grid Minors in Treewidth with Applications through Bidimensionality

Linearity of Grid Minors in Treewidth with Applications through Bidimensionality Linearity of Grid Minors in Treewidth with Applications through Bidimensionality Erik D. Demaine MohammadTaghi Hajiaghayi Abstract We prove that any H-minor-free graph, for a fixed graph H, of treewidth

More information

Equivalence of Local Treewidth and Linear Local Treewidth and its Algorithmic Applications (extended abstract)

Equivalence of Local Treewidth and Linear Local Treewidth and its Algorithmic Applications (extended abstract) Equivalence of Local Treewidth and Linear Local Treewidth and its Algorithmic Applications (extended abstract) Erik D. Demaine and MohammadTaghi Hajiaghayi Laboratory for Computer Science, Massachusetts

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Subexponential algorithms for rectilinear Steiner tree and arborescence problems

Subexponential algorithms for rectilinear Steiner tree and arborescence problems Subexponential algorithms for rectilinear Steiner tree and arborescence problems Fedor V. Fomin Sudeshna Kolay Daniel Lokshtanov Fahad Panolan Saket Saurabh Abstract A rectilinear Steiner tree for a set

More information

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings On the Relationships between Zero Forcing Numbers and Certain Graph Coverings Fatemeh Alinaghipour Taklimi, Shaun Fallat 1,, Karen Meagher 2 Department of Mathematics and Statistics, University of Regina,

More information

Improved induced matchings in sparse graphs

Improved induced matchings in sparse graphs Improved induced matchings in sparse graphs Rok Erman 1, Lukasz Kowalik 2, Matjaž Krnc 1, Tomasz Waleń 2 August 31, 2009 1 Department of Mathematics, University of Ljubljana Jadranska 21, 1111 Ljubljana,

More information

Faces in the Crowd: On the Algorithmic Utility of Disks and Covers

Faces in the Crowd: On the Algorithmic Utility of Disks and Covers Faces in the Crowd: On the Algorithmic Utility of Disks and Covers Faisal N. Abu-Khzam and Michael A. Langston University of Tennessee, Knoxville, TN 3793, USA Abstract. We study a pair of N P-hard problems

More information

Vertex Cover is Fixed-Parameter Tractable

Vertex Cover is Fixed-Parameter Tractable Vertex Cover is Fixed-Parameter Tractable CS 511 Iowa State University November 28, 2010 CS 511 (Iowa State University) Vertex Cover is Fixed-Parameter Tractable November 28, 2010 1 / 18 The Vertex Cover

More information

Approximation Algorithms via Structural Results for Apex-Minor-Free Graphs

Approximation Algorithms via Structural Results for Apex-Minor-Free Graphs Approximation Algorithms via Structural Results for Apex-Minor-Free Graphs Erik D. Demaine 1, MohammadTaghi Hajiaghayi 2, and Ken-ichi Kawarabayashi 3 1 MIT Computer Science and Artificial Intelligence

More information

Beyond Bidimensionality: Parameterized Subexponential Algorithms on Directed Graphs

Beyond Bidimensionality: Parameterized Subexponential Algorithms on Directed Graphs Beyond Bidimensionality: Parameterized Subexponential Algorithms on Directed Graphs Frederic Dorn Fedor V. Fomin Daniel Lokshtanov Venkatesh Raman Saket Saurabh Abstract In this paper we make the first

More information

Tutte s Theorem: How to draw a graph

Tutte s Theorem: How to draw a graph Spectral Graph Theory Lecture 15 Tutte s Theorem: How to draw a graph Daniel A. Spielman October 22, 2018 15.1 Overview We prove Tutte s theorem [Tut63], which shows how to use spring embeddings to obtain

More information

arxiv: v1 [cs.dm] 14 Jan 2019

arxiv: v1 [cs.dm] 14 Jan 2019 A lower bound on the tree-width of graphs with irrelevant vertices Isolde Adler a, Philipp Klaus Krause b arxiv:1901.04325v1 [cs.dm] 14 Jan 2019 Abstract a School of Computing, University of Leeds b Albert-Ludwigs-Universität

More information

Subexponential Parameterized Odd Cycle Transversal on Planar Graphs

Subexponential Parameterized Odd Cycle Transversal on Planar Graphs Subexponential Parameterized Odd Cycle Transversal on Planar Graphs Daniel Lokshtanov 1, Saket Saurabh 2, and Magnus Wahlström 3 1 Department of Computer Science and Engineering, University of California,

More information

Lift Contractions. Petr Golovach 1 Marcin Kamiński 2 Daniël Paulusma 1 Dimitrios Thilikos 3. 1 September 2011

Lift Contractions. Petr Golovach 1 Marcin Kamiński 2 Daniël Paulusma 1 Dimitrios Thilikos 3. 1 September 2011 Lift Contractions Petr Golovach 1 Marcin Kamiński 2 Daniël Paulusma 1 Dimitrios Thilikos 3 1 Durham University, UK 2 Université Libre de Bruxelles, Belgium 3 National and Kapodistrian University of Athens,

More information

Graphs and Discrete Structures

Graphs and Discrete Structures Graphs and Discrete Structures Nicolas Bousquet Louis Esperet Fall 2018 Abstract Brief summary of the first and second course. É 1 Chromatic number, independence number and clique number The chromatic

More information

Approximation algorithms for Euler genus and related problems

Approximation algorithms for Euler genus and related problems Approximation algorithms for Euler genus and related problems Chandra Chekuri Anastasios Sidiropoulos February 3, 2014 Slides based on a presentation of Tasos Sidiropoulos Graphs and topology Graphs and

More information

arxiv: v2 [cs.ds] 7 Nov 2011

arxiv: v2 [cs.ds] 7 Nov 2011 Bidimensionality and Geometric Graphs Fedor V. Fomin Daniel Lokshtanov Saket Saurabh arxiv:1107.2221v2 [cs.ds] 7 Nov 2011 Abstract Bidimensionality theory was introduced by Demaine et al. [JACM 2005 ]

More information

The Maximum Independent Set Problem in Planar Graphs

The Maximum Independent Set Problem in Planar Graphs The Maximum Independent Set Problem in Planar Graphs Vladimir E. Alekseev 1, Vadim Lozin 2, Dmitriy Malyshev 3, and Martin Milanič 4 1 Department of Computational Mathematics, Nizhny Novgorod University,

More information

Fast Minor Testing in Planar Graphs

Fast Minor Testing in Planar Graphs Fast Minor Testing in Planar Graphs Isolde Adler 1, Frederic Dorn 2, Fedor V. Fomin 2, Ignasi Sau 3, and Dimitrios M. Thilikos 4 1 Institut für Informatik, Goethe-Universität, Frankfurt, Germany. iadler@informatik.uni-frankfurt.de

More information

[8] that this cannot happen on the projective plane (cf. also [2]) and the results of Robertson, Seymour, and Thomas [5] on linkless embeddings of gra

[8] that this cannot happen on the projective plane (cf. also [2]) and the results of Robertson, Seymour, and Thomas [5] on linkless embeddings of gra Apex graphs with embeddings of face-width three Bojan Mohar Department of Mathematics University of Ljubljana Jadranska 19, 61111 Ljubljana Slovenia bojan.mohar@uni-lj.si Abstract Aa apex graph is a graph

More information

Bidimensionality and Geometric Graphs

Bidimensionality and Geometric Graphs Bidimensionality and Geometric Graphs Fedor V. Fomin Daniel Lokshtanov Saket Saurabh Abstract Bidimensionality theory was introduced by Demaine et al. [JACM 2005 ] as a framework to obtain algorithmic

More information

The Disjoint Paths Problem on Chordal Graphs

The Disjoint Paths Problem on Chordal Graphs The Disjoint Paths Problem on Chordal Graphs Frank Kammer and Torsten Tholey Institut für Informatik, Universität Augsburg, D-86135 Augsburg, Germany {kammer,tholey}@informatik.uni-augsburg.de Abstract.

More information

Fixed-Parameter Algorithms, IA166

Fixed-Parameter Algorithms, IA166 Fixed-Parameter Algorithms, IA166 Sebastian Ordyniak Faculty of Informatics Masaryk University Brno Spring Semester 2013 Introduction Outline 1 Introduction Algorithms on Locally Bounded Treewidth Layer

More information

CPSC 536N: Randomized Algorithms Term 2. Lecture 10

CPSC 536N: Randomized Algorithms Term 2. Lecture 10 CPSC 536N: Randomized Algorithms 011-1 Term Prof. Nick Harvey Lecture 10 University of British Columbia In the first lecture we discussed the Max Cut problem, which is NP-complete, and we presented a very

More information

Vertical decomposition of a lattice using clique separators

Vertical decomposition of a lattice using clique separators Vertical decomposition of a lattice using clique separators Anne Berry, Romain Pogorelcnik, Alain Sigayret LIMOS UMR CNRS 6158 Ensemble Scientifique des Cézeaux Université Blaise Pascal, F-63 173 Aubière,

More information

Exact algorithm for the Maximum Induced Planar Subgraph Problem

Exact algorithm for the Maximum Induced Planar Subgraph Problem Exact algorithm for the Maximum Induced Planar Subgraph Problem Fedor Fomin Ioan Todinca Yngve Villanger University of Bergen, Université d Orléans Workshop on Graph Decompositions, CIRM, October 19th,

More information

Geometric Unique Set Cover on Unit Disks and Unit Squares

Geometric Unique Set Cover on Unit Disks and Unit Squares CCCG 2016, Vancouver, British Columbia, August 3 5, 2016 Geometric Unique Set Cover on Unit Disks and Unit Squares Saeed Mehrabi Abstract We study the Unique Set Cover problem on unit disks and unit squares.

More information

Math 443/543 Graph Theory Notes 11: Graph minors and Kuratowski s Theorem

Math 443/543 Graph Theory Notes 11: Graph minors and Kuratowski s Theorem Math 443/543 Graph Theory Notes 11: Graph minors and Kuratowski s Theorem David Glickenstein November 26, 2008 1 Graph minors Let s revisit some de nitions. Let G = (V; E) be a graph. De nition 1 Removing

More information

Lecture 5 February 26, 2007

Lecture 5 February 26, 2007 6.851: Advanced Data Structures Spring 2007 Prof. Erik Demaine Lecture 5 February 26, 2007 Scribe: Katherine Lai 1 Overview In the last lecture we discussed the link-cut tree: a dynamic tree that achieves

More information

Reachability in K 3,3 -free and K 5 -free Graphs is in Unambiguous Logspace

Reachability in K 3,3 -free and K 5 -free Graphs is in Unambiguous Logspace CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2014, Article 2, pages 1 29 http://cjtcs.cs.uchicago.edu/ Reachability in K 3,3 -free and K 5 -free Graphs is in Unambiguous Logspace Thomas Thierauf Fabian

More information

LARGE 6-CONNECTED GRAPHS WITH NO K 6 MINOR. Robin Thomas. School of Mathematics Georgia Institute of Technology

LARGE 6-CONNECTED GRAPHS WITH NO K 6 MINOR. Robin Thomas. School of Mathematics Georgia Institute of Technology LARGE 6-CONNECTED GRAPHS WITH NO K 6 MINOR Robin Thomas School of Mathematics Georgia Institute of Technology http://math.gatech.edu/~thomas Joint work with Matthew DeVos Rajneesh Hegde Kenichi Kawarabayashi

More information

A note on the subgraphs of the (2 )-grid

A note on the subgraphs of the (2 )-grid A note on the subgraphs of the (2 )-grid Josep Díaz a,2,1 a Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya Campus Nord, Edifici Ω, c/ Jordi Girona Salgado 1-3,

More information

Recent Advances in FPT and Exact Algorithms for NP-Complete Problems

Recent Advances in FPT and Exact Algorithms for NP-Complete Problems 1 Fine-Grained Complexity and Algorithm Design Boot Camp Recent Advances in FPT and Exact Algorithms for NP-Complete Problems Dániel Marx Institute for Computer Science and Control, Hungarian Academy of

More information

Matching Algorithms. Proof. If a bipartite graph has a perfect matching, then it is easy to see that the right hand side is a necessary condition.

Matching Algorithms. Proof. If a bipartite graph has a perfect matching, then it is easy to see that the right hand side is a necessary condition. 18.433 Combinatorial Optimization Matching Algorithms September 9,14,16 Lecturer: Santosh Vempala Given a graph G = (V, E), a matching M is a set of edges with the property that no two of the edges have

More information

Treewidth. Kai Wang, Zheng Lu, and John Hicks. April 1 st, 2015

Treewidth. Kai Wang, Zheng Lu, and John Hicks. April 1 st, 2015 Treewidth Kai Wang, Zheng Lu, and John Hicks April 1 st, 2015 Outline Introduction Definitions Examples History Algorithms and Implementations Theorems Pseudocode Heuristics Implementations Results Regression

More information

Approximation Algorithms for Geometric Intersection Graphs

Approximation Algorithms for Geometric Intersection Graphs Approximation Algorithms for Geometric Intersection Graphs Subhas C. Nandy (nandysc@isical.ac.in) Advanced Computing and Microelectronics Unit Indian Statistical Institute Kolkata 700108, India. Outline

More information

Computing Linkless and Flat Embeddings of Graphs in R 3

Computing Linkless and Flat Embeddings of Graphs in R 3 Computing Linkless and Flat Embeddings of Graphs in R 3 Stephan Kreutzer Technical University Berlin based on joint work with Ken-ichi Kawarabayashi, Bojan Mohar and Bruce Reed Graph Theory @ Georgie Tech

More information

Linear Kernel for Planar Connected Dominating Set

Linear Kernel for Planar Connected Dominating Set Linear Kernel for Planar Connected Dominating Set Daniel Lokshtanov Matthias Mnich Saket Saurabh Abstract We provide polynomial time data reduction rules for Connected Dominating Set on planar graphs and

More information

Nesting points in the sphere. Dan Archdeacon. University of Vermont. Feliu Sagols.

Nesting points in the sphere. Dan Archdeacon. University of Vermont.   Feliu Sagols. Nesting points in the sphere Dan Archdeacon Dept. of Computer Science University of Vermont Burlington, VT, USA 05405 e-mail: dan.archdeacon@uvm.edu Feliu Sagols Dept. of Computer Science University of

More information

Distributed Graph Algorithms for Planar Networks

Distributed Graph Algorithms for Planar Networks Bernhard Haeupler CMU joint work with Mohsen Ghaffari (MIT) ADGA, Austin, October 12th 2014 Distributed: CONGEST(log n) model Distributed: CONGEST(log n) model Network Optimization Problems: shortest path

More information

COLORING EDGES AND VERTICES OF GRAPHS WITHOUT SHORT OR LONG CYCLES

COLORING EDGES AND VERTICES OF GRAPHS WITHOUT SHORT OR LONG CYCLES Volume 2, Number 1, Pages 61 66 ISSN 1715-0868 COLORING EDGES AND VERTICES OF GRAPHS WITHOUT SHORT OR LONG CYCLES MARCIN KAMIŃSKI AND VADIM LOZIN Abstract. Vertex and edge colorability are two graph problems

More information

On Exploring Temporal Graphs of Small Pathwidth

On Exploring Temporal Graphs of Small Pathwidth On Exploring Temporal Graphs of Small Pathwidth Hans L. Bodlaender Tom C. van der Zanden arxiv:1807.11869v1 [cs.ds] 31 Jul 2018 Abstract We show that the Temporal Graph Exploration Problem is NP-complete,

More information

Immersion in four-edge-connected graphs

Immersion in four-edge-connected graphs Immersion in four-edge-connected graphs Maria Chudnovsky 1 Princeton University, Princeton, NJ 08544, USA Zdeněk Dvořák 2 Charles University, Prague, Czech Republic Tereza Klimošová 3 University of Warwick,

More information

CONTRACTIONS OF PLANAR GRAPHS

CONTRACTIONS OF PLANAR GRAPHS Marcin Kamiński Brussels Daniël Paulusma Durham Dimitrios Thilikos Athens ESA 2010 CONTAINMENT RELATIONS \v \e /e 2 CONTAINMENT RELATIONS \v \e /e induced subgraph subgraph minor contraction induced minor

More information

The k-in-a-path problem for claw-free graphs

The k-in-a-path problem for claw-free graphs The k-in-a-path problem for claw-free graphs Jiří Fiala Univerzita Karlova v Praze Bernard Lidický Univerzita Karlova v Praze Marcin Kamiński Université Libre de Bruxelles Daniël Paulusma University of

More information

Coloring edges and vertices of graphs without short or long cycles

Coloring edges and vertices of graphs without short or long cycles Coloring edges and vertices of graphs without short or long cycles Marcin Kamiński and Vadim Lozin Abstract Vertex and edge colorability are two graph problems that are NPhard in general. We show that

More information

Every DFS Tree of a 3-Connected Graph Contains a Contractible Edge

Every DFS Tree of a 3-Connected Graph Contains a Contractible Edge Every DFS Tree of a 3-Connected Graph Contains a Contractible Edge Amr Elmasry Kurt Mehlhorn Jens M. Schmidt Abstract Let G be a 3-connected graph on more than 4 vertices. We show that every depth-first-search

More information

Vertex 3-colorability of claw-free graphs

Vertex 3-colorability of claw-free graphs Algorithmic Operations Research Vol.2 (27) 5 2 Vertex 3-colorability of claw-free graphs Marcin Kamiński a Vadim Lozin a a RUTCOR - Rutgers University Center for Operations Research, 64 Bartholomew Road,

More information

Fixed-parameter tractable canonization and isomorphism test for graphs of bounded treewidth

Fixed-parameter tractable canonization and isomorphism test for graphs of bounded treewidth Fixed-parameter tractable canonization and isomorphism test for graphs of bounded treewidth Micha l Pilipczuk Institute of Informatics, University of Warsaw, Poland Workshop on Exact Algorithms and Lower

More information

Contractions of graphs on surfaces in polynomial time

Contractions of graphs on surfaces in polynomial time Contractions of graphs on surfaces in polynomial time Marcin Kamiński Daniël Paulusma Dimitrios M. Thilikos December 20, 2010 Abstract We prove that for every integer g 0 and graph H, there exists a polynomial-time

More information

Bidimensionality and Kernels

Bidimensionality and Kernels Bidimensionality and Kernels Fedor V. Fomin Daniel Lokshtanov Saket Saurabh Dimitrios M. Thilikos Abstract Bidimensionality theory appears to be a powerful framework in the development of meta-algorithmic

More information

Necessary edges in k-chordalizations of graphs

Necessary edges in k-chordalizations of graphs Necessary edges in k-chordalizations of graphs Hans L. Bodlaender Abstract In this note, we look at which edges must always be added to a given graph G = (V, E), when we want to make it a chordal graph

More information

On the subgraphs of the (2 )-grid

On the subgraphs of the (2 )-grid R u t c o r Research R e p o r t On the subgraphs of the (2 )-grid Josep Díaz a Marcin Kamiński b Dimitrios M. Thilikos c RRR 18 2007, May 2007 RUTCOR Rutgers Center for Operations Research Rutgers University

More information

Number Theory and Graph Theory

Number Theory and Graph Theory 1 Number Theory and Graph Theory Chapter 6 Basic concepts and definitions of graph theory By A. Satyanarayana Reddy Department of Mathematics Shiv Nadar University Uttar Pradesh, India E-mail: satya8118@gmail.com

More information

FOUR EDGE-INDEPENDENT SPANNING TREES 1

FOUR EDGE-INDEPENDENT SPANNING TREES 1 FOUR EDGE-INDEPENDENT SPANNING TREES 1 Alexander Hoyer and Robin Thomas School of Mathematics Georgia Institute of Technology Atlanta, Georgia 30332-0160, USA ABSTRACT We prove an ear-decomposition theorem

More information

Exponential time algorithms for the minimum dominating set problem on some graph classes

Exponential time algorithms for the minimum dominating set problem on some graph classes Exponential time algorithms for the minimum dominating set problem on some graph classes Serge Gaspers University of Bergen Department of Informatics N-500 Bergen, Norway. gaspers@ii.uib.no Dieter Kratsch

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

A simple algorithm for 4-coloring 3-colorable planar graphs

A simple algorithm for 4-coloring 3-colorable planar graphs A simple algorithm for 4-coloring 3-colorable planar graphs Ken-ichi Kawarabayashi 1 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan Kenta Ozeki 2 Department of

More information

Math 777 Graph Theory, Spring, 2006 Lecture Note 1 Planar graphs Week 1 Weak 2

Math 777 Graph Theory, Spring, 2006 Lecture Note 1 Planar graphs Week 1 Weak 2 Math 777 Graph Theory, Spring, 006 Lecture Note 1 Planar graphs Week 1 Weak 1 Planar graphs Lectured by Lincoln Lu Definition 1 A drawing of a graph G is a function f defined on V (G) E(G) that assigns

More information

Simultaneous Diagonal Flips in Plane Triangulations

Simultaneous Diagonal Flips in Plane Triangulations @ _ d j 5 6 5 6 Simultaneous Diagonal Flips in Plane Triangulations Prosenjit Bose Jurek Czyzowicz Zhicheng Gao Pat Morin David R. Wood Abstract Simultaneous diagonal flips in plane triangulations are

More information

Constructions of k-critical P 5 -free graphs

Constructions of k-critical P 5 -free graphs 1 2 Constructions of k-critical P 5 -free graphs Chính T. Hoàng Brian Moore Daniel Recoskie Joe Sawada Martin Vatshelle 3 January 2, 2013 4 5 6 7 8 Abstract With respect to a class C of graphs, a graph

More information

Cyclic base orders of matroids

Cyclic base orders of matroids Cyclic base orders of matroids Doug Wiedemann May 9, 2006 Abstract This is a typewritten version, with many corrections, of a handwritten note, August 1984, for a course taught by Jack Edmonds. The purpose

More information

Solving Dominating Set in Larger Classes of Graphs: FPT Algorithms and Polynomial Kernels

Solving Dominating Set in Larger Classes of Graphs: FPT Algorithms and Polynomial Kernels Solving Dominating Set in Larger Classes of Graphs: FPT Algorithms and Polynomial Kernels Geevarghese Philip, Venkatesh Raman, and Somnath Sikdar The Institute of Mathematical Sciences, Chennai, India.

More information

Increasing the Minimum Degree of a Graph by Contractions

Increasing the Minimum Degree of a Graph by Contractions Increasing the Minimum Degree of a Graph by Contractions Petr A. Golovach 1, Marcin Kamiński 2, Daniël Paulusma 1, and Dimitrios M. Thilikos 3 1 School of Engineering and Computing Sciences, Durham University,

More information

Hamiltonian cycles in bipartite quadrangulations on the torus

Hamiltonian cycles in bipartite quadrangulations on the torus Hamiltonian cycles in bipartite quadrangulations on the torus Atsuhiro Nakamoto and Kenta Ozeki Abstract In this paper, we shall prove that every bipartite quadrangulation G on the torus admits a simple

More information

1. Meshes. D7013E Lecture 14

1. Meshes. D7013E Lecture 14 D7013E Lecture 14 Quadtrees Mesh Generation 1. Meshes Input: Components in the form of disjoint polygonal objects Integer coordinates, 0, 45, 90, or 135 angles Output: A triangular mesh Conforming: A triangle

More information

arxiv: v1 [cs.dm] 21 Dec 2015

arxiv: v1 [cs.dm] 21 Dec 2015 The Maximum Cardinality Cut Problem is Polynomial in Proper Interval Graphs Arman Boyacı 1, Tinaz Ekim 1, and Mordechai Shalom 1 Department of Industrial Engineering, Boğaziçi University, Istanbul, Turkey

More information

Branchwidth of Graphs

Branchwidth of Graphs B Branchwidth of Graphs 101 boosting approach, applied to them, minimizes the output size. These pages have provided convincing evidence that the Burrows Wheeler Transform is an elegant and efficient permutation

More information

FPT Algorithms for Connected Feedback Vertex Set

FPT Algorithms for Connected Feedback Vertex Set FPT Algorithms for Connected Feedback Vertex Set Neeldhara Misra, Geevarghese Philip, Venkatesh Raman, Saket Saurabh, and Somnath Sikdar The Institute of Mathematical Sciences, India. {neeldhara gphilip

More information

Fast Skew Partition Recognition

Fast Skew Partition Recognition Fast Skew Partition Recognition William S. Kennedy 1, and Bruce Reed 2, 1 Department of Mathematics and Statistics, McGill University, Montréal, Canada, H3A2K6 kennedy@math.mcgill.ca 2 School of Computer

More information

arxiv: v1 [math.co] 21 Aug 2017

arxiv: v1 [math.co] 21 Aug 2017 ON MINIMUM BISECTION AND RELATED CUT PROBLEMS IN TREES AND TREE-LIKE GRAPHS CRISTINA G. FERNANDES, TINA JANNE SCHMIDT, AND ANUSCH TARAZ arxiv:1708.06411v1 [math.co] 21 Aug 2017 Abstract. Minimum Bisection

More information

On Merging Straight Skeletons

On Merging Straight Skeletons On Merging Straight Skeletons Franz Aurenhammer 1 and Michael Steinkogler 2 1 Institute for Theoretical Computer Science, University of Technology, Graz, Austria auren@igi.tugraz.at 2 Institute for Theoretical

More information

Analysis of an ( )-Approximation Algorithm for the Maximum Edge-Disjoint Paths Problem with Congestion Two

Analysis of an ( )-Approximation Algorithm for the Maximum Edge-Disjoint Paths Problem with Congestion Two Analysis of an ( )-Approximation Algorithm for the Maximum Edge-Disjoint Paths Problem with Congestion Two Nabiha Asghar Department of Combinatorics & Optimization University of Waterloo, Ontario, Canada

More information

Characterizations of Graphs Without Certain Small Minors. J. Zachary Gaslowitz. Dissertation. Submitted to the Faculty of the

Characterizations of Graphs Without Certain Small Minors. J. Zachary Gaslowitz. Dissertation. Submitted to the Faculty of the Characterizations of Graphs Without Certain Small Minors By J. Zachary Gaslowitz Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements

More information

Minimum Cycle Bases of Halin Graphs

Minimum Cycle Bases of Halin Graphs Minimum Cycle Bases of Halin Graphs Peter F. Stadler INSTITUTE FOR THEORETICAL CHEMISTRY AND MOLECULAR STRUCTURAL BIOLOGY, UNIVERSITY OF VIENNA WÄHRINGERSTRASSE 17, A-1090 VIENNA, AUSTRIA, & THE SANTA

More information

Algorithmic graph structure theory

Algorithmic graph structure theory 1 Algorithmic graph structure theory Dániel Marx 1 1 Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary 14th Max Planck Advanced Course on the Foundations

More information

Small Survey on Perfect Graphs

Small Survey on Perfect Graphs Small Survey on Perfect Graphs Michele Alberti ENS Lyon December 8, 2010 Abstract This is a small survey on the exciting world of Perfect Graphs. We will see when a graph is perfect and which are families

More information

arxiv: v1 [cs.dm] 13 Apr 2012

arxiv: v1 [cs.dm] 13 Apr 2012 A Kuratowski-Type Theorem for Planarity of Partially Embedded Graphs Vít Jelínek, Jan Kratochvíl, Ignaz Rutter arxiv:1204.2915v1 [cs.dm] 13 Apr 2012 Abstract A partially embedded graph (or Peg) is a triple

More information

Approximation Algorithms for Unit Disk Graphs

Approximation Algorithms for Unit Disk Graphs Approximation Algorithms for Unit Disk Graphs Erik Jan van Leeuwen institute of information and computing sciences, utrecht university technical report UU-CS-2004-066 www.cs.uu.nl Approximation Algorithms

More information