Effect of Ground Control points Location and Distribution on Geometric Correction Accuracy of Remote Sensing Satellite Images

Size: px
Start display at page:

Download "Effect of Ground Control points Location and Distribution on Geometric Correction Accuracy of Remote Sensing Satellite Images"

Transcription

1 13 th International Conference on AEROSPACE SCIENCES & AVIATION TECHNOLOGY, ASAT- 13, May 26 28, 2009, Military Technical College, Kobry Elkobbah, Cairo, Egypt Tel : +(202) , Fax: +(202) Paper: ASAT-13-RS06 Effect of Ground Control points Location and Distribution on Geometric Correction Accuracy of Remote Sensing Satellite Images F. ELtohamy *, E. H. Hamza ** Abstract: Remote sensing imagery, from satellites, is inherently subjected to geometric distortions. Therefore geometric corrections, as preprocessing operations, are normally required prior to imagery analysis and extraction of information. The most common approach for geometric correction is the use of mapping polynomial.. It depends on selection of several clearly discernible points, called ground control points (GCPs), in the distorted image, and map them either to their true positions in ground coordinates (e.g. latitude, longitude) measured from a map, or to georeferenced image (corrected before), coordinates of corresponding points, through a mathematical transformation, that will convert the raw image coordinates into the desired coordinates. The accuracy of the geometric correction process depends mainly on the number of selected GCPs (polynomial order), the identified features on the image (road intersections, airport runway intersections, bends in rivers features and the like), and on the distribution of the selected GCPs over the distorted image area. The effect of number of GCPs on geometric correction accuracy was presented [1] by the authors and others. In this paper the effect of the selected location of GCPs (the identified features on the image: road intersections, airport runway intersections, bends in rivers features and the like or the others), and the way of distribution of the selected GCPs over the distorted image area on geometric correction accuracy are presented. The Root Mean Square Error (RMS), are calculated and used as a measure of accuracy of the obtained results. Keywords: Remote sensing satellite imagery, Geometric correction, Image registration, Ground control points, Resampling. 1- Introduction: All remote sensing images, from satellites, are subjected to geometric distortions. Therefore geometric corrections, as preprocessing operations, are normally required prior to imagery analysis and extraction of information. * Egyptian Armed Forces ** Egyptian Armed Forces, esamhamza@hotmail.com 1/14

2 Geometric distortion in an image means that the image features positions do not accurately relate to scene on ground or on map positions. Earth rotation during imaging acquisition, Earth curvature, and satellite altitude, attitude, and velocity variations are the main sources of geometric distortions [2]. Geometric distortions can be classified into two types [3], [4]: a. Systematic (predictable) distortions. b. Non-systematic (random / unpredictable) distortions Geometric corrections are intended to compensate for these distortions so that the geometric representation of the imagery will be as close as possible to the real world. There are two main approaches [3], [4], for correction of the various types of geometric distortions. a- Systematic distortions can be corrected by applying formulas derived by modeling the sources of the distortions mathematically and use these models to establish correction formulae. These modeling techniques require priori knowledge about the orbit parameters; the nature and the magnitude of the sources of distortion during the scene acquisition time. Sometimes this priori information is not available and consequently these techniques cannot be applied. b- Random distortions and residual unknown systematic distortions are corrected by establishing mathematical relations between the coordinates of pixels in an image and the corresponding coordinates of those points on the ground. These relations can be used to correct the image geometry irrespective of prior information about the source and type of distortion. The second approach is the most commonly used and it is independent of the platform used for image acquisition. This approach involves two steps. First step is registration process. It involves identifying raw image coordinates (i.e. row, column) of several clearly discernible points, called ground control points (GCPs), in the distorted image, and map them either to their true positions in ground coordinates (e.g. latitude, longitude) measured from a map (image-to-map registration), or to georeferenced image (corrected before), coordinates of corresponding points (image-toimage registration), through to mathematical transformation, that will convert the raw image coordinates into the desired coordinates [3]. The second step is the resampling process to recalculate the gray level values for pixels in the transformed output image based on pixel values in the input (uncorrected) image. There are three common methods for resampling: nearest neighbor, bilinear interpolation, and cubic convolution [5]. Many studies have been carried out on the geometric correction of satellite images, either using the first approach, [6], [7], [8], [9], [10], or using the second approach [11], [12], [13], [14]. 2/14

3 2- Satellite images data under study In this paper the effect of the selected location of GCPs and the way of their distribution over the distorted image area on geometric correction accuracy was applied on a sample of two raw (source) satellite images, named image1and image2. These two images are acquired in 1999 by remote sensing satellite LANDSAT 5. They are characterized by the following: a. Image1 and image2 represent the areas of north delta and south delta in Egypt respectively. b. Image1 and image2 are acquired in red ( μm), green ( μm), and blue ( μm) spectral bands. c. The size of image1 is 490 x 697 pixels and the size of image2 is 745 x 939 pixels. Two geometrically corrected mages, of the same area, size, and imaging band, are used as reference images. The reference images are acquired in 1999 by LANDSAT 5. They were geometrically corrected using maps (image-to- map) registration. 3- Geometric correction process using mapping polynomials Mapping polynomials correction approach depends on establishing mathematical relationships (mapping function) between the addresses of pixels in the distorted image and the corresponding coordinates of those points on the ground via a map or pre-corrected image, represented generally as follows: u = f (x, y) where: v = g (x, y) x, y.the location of points in the reference image (or map in image-to-map registration) u, v the location of pixels in the source (distorted) input image f, g..the pair of mapping functions. (1) In fact explicit forms for the mapping functions (1), are not known therefore they are generally chosen as simple polynomials of different degrees. The polynomial equations for a t-degree transformation take this form [4]: where: u v = = u and v are source coordinates (distorted image). x and y are reference coordinates. t is the order (degree) of the polynomial a k and b k are the polynomial coefficients 3/14 t t i = 0 i = 0 i i j = 0 j = 0 a b k k x x i i j j y y j j (2)

4 The minimum number of selected GCPs depends on the polynomial order. The relations between the order of the polynomials; the minimum required number of GCPs; and number of coefficients of the used polynomials, are given by [5]. ( t + 1 )( t + 2 ) (3) N = 2 where: N t M M minimum number of GCPs order of the polynomial number of coefficients ( t + 1 )( + 2 ) = t In this work a polynomial of third order is applied, this means that the minimum required number of GCPs is 10 points. (4) 4- Experimental work The experimental work is conducted using Earth Resources Data Analysis System (ERDAS) Imagine 8.5 Software. A polynomial of 3 rd order (10 GCPs) is used for image-to-image registration. The nearest neighbor resampling method is used to calculate the pixels gray level values of the rectified output image. The accuracy of the correction process is evaluated by calculating the RMS error at every GCP. The RMS error is the difference between the desired output coordinate for a GCP and the actual output coordinate for the same point, when the point is transformed with the geometric transformation. RMS error in X, Y directions and total (T) RMS error at the GCPs are calculated according to the following equations [5]: RMS (in X) = RMS (in Y) = RMS (T) = 1 n i = 1 n i = 1 n i n = 1 ( ΔX ) i ( ΔY ) i ( ΔX i + ΔY i ) (5) where: ΔX i, ΔY i T n i = residuals of point ( i ) in X and Y directions. = total RMS error = number of GCPs = GCP number 4/14

5 5- Results and analysis By a good and a bad location of a selected GCP, we mean it is identified on road intersections, airport runway intersections, bends in rivers features and the like, or it is identified on the others (no clear describable features) respectively. For a good distribution of GCPs, we take into consideration the polynomial order, starting from 1 st order. It means that the first 3 GCPs (min number in case of 1 st order) should be distributed far away from each other. The bad distribution is the opposite, i.e first 3 GCPs are distributed near to each other. Figure 1 (a,b) shows the raw (source) image1, and its reference image. Figure 1 (c,d) shows a good location and bad distribution of the selected 10 GCPs in both source and reference image. Figure 1 (e,f) shows the corrected (output) image and its reference respectively. Table (1) gives the calculated average RMS error value (0.3). Figure 2 (a,b) shows the raw (source) image1, and its reference image. Figure 2 (c,d) shows a good location and good distribution of the selected 10 GCPs in both source and reference image. Figure 2 (e,f) shows the corrected (output) image and its reference respectively. Table (2) gives the calculated average RMS error value (0.2) Figure 3 (a,b) shows the raw (source) image1, and its reference image. Figure 3 (c,d) shows a bad location and good distribution of the selected 10 GCPs in both source and reference image. Figure 3 (e,f) shows the corrected (output) image and its reference respectively. Table (3) gives the calculated average RMS error value (0.78) The raw (source) image2 and its reference image are shown in Fig.4 (a,b). Figure 4 (c,d) shows a good location and bad distribution of the selected 10 GCPs in both source and reference image. The corrected (output) image and its reference are given in Fig.4 (e,f) respectively. Table (4) gives the calculated average RMS error value (0.11). The raw (source) image2 and its reference image are shown in Fig.5 (a,b). Figure 5 (c,d) shows a good location and good distribution of the selected 10 GCPs in both source and reference image. The corrected (output) image and its reference are given in Fig.5 (e,f) respectively. Table (5) gives the calculated average RMS error value (0.05). The raw (source) image2 and its reference image are shown in Fig.6 (a,b). Figure 6 (c,d) shows a bad location and good distribution of the selected 10 GCPs in both source and reference image. The corrected (output) image and its reference are given in Fig.6 (e,f) respectively. Table (6) gives the calculated average RMS error value (0.4). The raw (source) image2 and its reference image are shown in Fig.7 (a,b). Figure 7 (c,d) shows a bad location and good distribution of the selected 10 GCPs in both source and reference image. The corrected (output) image and its reference are given in Fig.7 (e,f) respectively. Table (7) gives the calculated average RMS error value (0.71). 5/14

6 Table (1) Average of RMS error of image 1 No. of GCPs First Second Third Table (2) Average of RMS error of image 2 No. of GCPs First Second Third Table (3) Average of RMS error of image 2 No. of GCPs First Second Third Table (4) Average of RMS error of image 2 No. of GCPs First Second Third Table (5) Average of RMS error of image 1 No. of GCPs First Second Third Table (6) Average of RMS error of image 1 No. of GCPs First Second Third Table (7) Average of RMS error of image 2 No. of GCPs First Second Third /14

7 6- Conclusion The following points conclude the whole paper: a. The bad location and bad distribution of the selected GCPs lead to increase in the average RMS error value of correction of an image b. The effect of bad location of selected GCPs is more sever than that of bad distribution of selected GCPs on the correction accuracy. c. To obtain high accuracy of geometric correction of remote sensing satellite images, the location and distribution of selected GCPs should be taken into consideration as mentioned before. 7- References [1] Fawzy Eltohamy, Gouda Ismail, Essam Hamza, H. Hussien " Geometric Correction of Remote Sensing Satellite Digital Images Using Mapping Polynomial of Different orders" [2] Environmental Remote Sensing Forestry 753 Lab Three: Geometric Correction, (2005). [3] John Richards & Xiuping Jia Remote Sensing Digital Image Analysis An Introduction Springer, 3 rd edition,(1999). [4] Thomas M. Lillesand & Ralph W. Kiefer Remote Sensing and Image Interpretion 4 th edition, John Wiley & Sons, (2000). [5] Erdas Imagine 8.5 Field Guide, (2002). [6] Dowmann I., and Dolloff, J., An evaluation of rational function for Photogrammetric restitution, International Archives of Photogrammetry and Remote Sensing, Amsterdam, The Netherlands, July 16-23, (Amsterdam, The Netherlands: GITC) Vol. 33 (B3), pp (2000). [7] El-Manadili, Y., and Novak, K.,. Precision Rectification of spot Imagery using the direct linear [8] Kratky, V Rigorous Photogrammetric Processing of Spot Images at CCM Canada, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 44, pp (1989). [9] Konecny, G., Lohmann, P., Engel, H., and Kruck, E, Evaluation of SPOT Imagery on Analytical Instruments, Photogrammetric Engineering and Remote Sensing, 53, , (1987). [10] Xutong Niu, Jue Wang, Kaichang Di, Jin-Duk Lee, Ron Li,. Geometric Modelling and Photogrammetric Processing of High Resolution Satellite Imagery Mapping and GIS Laboratory, CEEGS, The Ohio State University. (2004). [11] Hafez Abbas Afify,. Planimetric Accuracy of Rectified Spot Imagery Lecturer, Dpt. Of Transportation Engineering, Faculty of Engineering, Tanta University, Tanta, Egypt. (2002). [12] A. M. Wu and Y. Y. Lee. Geometric Correction of High Resolution Images Using Ground Control Points Singapore Institute of Surveyors and Valuers (SISV); Asian Association on Remote Sensing (AARS). (2001). [13] Yoshinari OGURO, Shoji TAKEUCHI and Yuzo SUGA, An Improvement in Educational Tools For Geometric Correction of Satellite Images by Using DEM Shade Simulation.(2002). [14] Thierry Toutin,. Review Paper: Geometric Processing of Remote Sensing Images: Models, Algorithms and Methods, Canada Centre for Remote Sensing. (2003). 7/14

8 (a) (b) (c) (d) (e) (f) Fig. 1. a & b Raw image1 and its corresponding reference image, c & d 10 GCPs good location & bad distribution on image1 & its reference, e & f Corrected image1, and its reference with link between them. 8/14

9 (a) (b) (c) (d) (e) (f) Fig. 2. a & b Raw image1 and its corresponding reference image, c & d 10 GCPs good location & good distribution on image1 & its reference, e & f Corrected image1, and its reference with link between them. 9/14

10 (a) (b) (c) (d) (e) (f) Fig. 3. a & b Raw image1 and its corresponding reference image, c & d 10 GCPs bad location & good distribution on image1 & its reference, e & f Corrected image1, and its reference with link between them. 10/14

11 (a) (b) (c) (d) (e) (f) Fig. 4 a & b Raw image2 and its corresponding reference image, c & d 10 GCPs good location & bad distribution on image2 & its reference, e & f Corrected image2, and its reference with link between them. 11/14

12 (a) (b) (c) (d) (e) (f) Fig. 5 a & b Raw image2 and its corresponding reference image, c & d 10 GCPs good location & good distribution on image2 & its reference, e & f Corrected image2, and its reference with link between them. 12/14

13 (a) (b) (c) (d) (e) (f) Fig. 6 a & b Raw image2 and its corresponding reference image, c & d 10 GCPs bad location & good distribution on image2 & its reference, e & f Corrected image2, and its reference with link between them. 13/14

14 (a) (b) (c) (d) (e) (f) Fig. 7 a & b Raw image2 and its corresponding reference image, c & d 10 GCPs bad location & bad distribution on image2 & its reference, e & f Corrected image2, and its reference with link between them. 14/14

Geometric Rectification of Remote Sensing Images

Geometric Rectification of Remote Sensing Images Geometric Rectification of Remote Sensing Images Airborne TerrestriaL Applications Sensor (ATLAS) Nine flight paths were recorded over the city of Providence. 1 True color ATLAS image (bands 4, 2, 1 in

More information

University of Technology Building & Construction Department / Remote Sensing & GIS lecture

University of Technology Building & Construction Department / Remote Sensing & GIS lecture 5. Corrections 5.1 Introduction 5.2 Radiometric Correction 5.3 Geometric corrections 5.3.1 Systematic distortions 5.3.2 Nonsystematic distortions 5.4 Image Rectification 5.5 Ground Control Points (GCPs)

More information

Overview. Image Geometric Correction. LA502 Special Studies Remote Sensing. Why Geometric Correction?

Overview. Image Geometric Correction. LA502 Special Studies Remote Sensing. Why Geometric Correction? LA502 Special Studies Remote Sensing Image Geometric Correction Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room 103 Overview Image rectification Geometric

More information

Determination of suitable requirements for Geometric Correction of remote sensing Satellite Images when Using Ground Control Points

Determination of suitable requirements for Geometric Correction of remote sensing Satellite Images when Using Ground Control Points Determination of suitable requirements for Geometric Correction of remote sensing Satellite Images when Using Ground Control Points Mohamed Tawfeik 1, Hassan Elhifnawy 2, EssamHamza 1, Ahmed Shawky 2 1Dept.

More information

Geometric Correction of Imagery

Geometric Correction of Imagery Geometric Correction of Imagery Geometric Correction of Imagery Present by: Dr.Weerakaset Suanpaga D.Eng(RS&GIS) The intent is to compensate for the distortions introduced by a variety of factors, so that

More information

Training i Course Remote Sensing Basic Theory & Image Processing Methods September 2011

Training i Course Remote Sensing Basic Theory & Image Processing Methods September 2011 Training i Course Remote Sensing Basic Theory & Image Processing Methods 19 23 September 2011 Geometric Operations Michiel Damen (September 2011) damen@itc.nl ITC FACULTY OF GEO-INFORMATION SCIENCE AND

More information

Terrain correction. Backward geocoding. Terrain correction and ortho-rectification. Why geometric terrain correction? Rüdiger Gens

Terrain correction. Backward geocoding. Terrain correction and ortho-rectification. Why geometric terrain correction? Rüdiger Gens Terrain correction and ortho-rectification Terrain correction Rüdiger Gens Why geometric terrain correction? Backward geocoding remove effects of side looking geometry of SAR images necessary step to allow

More information

GEOG 4110/5100 Advanced Remote Sensing Lecture 4

GEOG 4110/5100 Advanced Remote Sensing Lecture 4 GEOG 4110/5100 Advanced Remote Sensing Lecture 4 Geometric Distortion Relevant Reading: Richards, Sections 2.11-2.17 Geometric Distortion Geometric Distortion: Errors in image geometry, (location, dimensions,

More information

Exercise #5b - Geometric Correction of Image Data

Exercise #5b - Geometric Correction of Image Data Exercise #5b - Geometric Correction of Image Data 5.6 Geocoding or Registration of geometrically uncorrected image data 5.7 Resampling 5.8 The Ukrainian coordinate system 5.9 Selecting Ground Control Points

More information

GEOG 4110/5100 Advanced Remote Sensing Lecture 4

GEOG 4110/5100 Advanced Remote Sensing Lecture 4 GEOG 4110/5100 Advanced Remote Sensing Lecture 4 Geometric Distortion Relevant Reading: Richards, Sections 2.11-2.17 Review What factors influence radiometric distortion? What is striping in an image?

More information

Study on Geometric Correction Algorithms for SAR Images

Study on Geometric Correction Algorithms for SAR Images 68 Study on Geometric Correction Algorithms for SAR Images A.L. Choo 1, Y.K. Chan 1, V.C. Koo 1 and T.S. Lim 1 1 Faculty of Engineering and Technology Multimedia University, Jalan Ayer Keroh Lama, 75450

More information

Modern Surveying Techniques. Prof. S. K. Ghosh. Department of Civil Engineering. Indian Institute of Technology, Roorkee.

Modern Surveying Techniques. Prof. S. K. Ghosh. Department of Civil Engineering. Indian Institute of Technology, Roorkee. Modern Surveying Techniques Prof. S. K. Ghosh Department of Civil Engineering Indian Institute of Technology, Roorkee Lecture - 12 Rectification & Restoration In my previous session, I had discussed regarding

More information

CORRECTING RS SYSTEM DETECTOR ERROR GEOMETRIC CORRECTION

CORRECTING RS SYSTEM DETECTOR ERROR GEOMETRIC CORRECTION 1 CORRECTING RS SYSTEM DETECTOR ERROR GEOMETRIC CORRECTION Lecture 1 Correcting Remote Sensing 2 System Detector Error Ideally, the radiance recorded by a remote sensing system in various bands is an accurate

More information

POSITIONING A PIXEL IN A COORDINATE SYSTEM

POSITIONING A PIXEL IN A COORDINATE SYSTEM GEOREFERENCING AND GEOCODING EARTH OBSERVATION IMAGES GABRIEL PARODI STUDY MATERIAL: PRINCIPLES OF REMOTE SENSING AN INTRODUCTORY TEXTBOOK CHAPTER 6 POSITIONING A PIXEL IN A COORDINATE SYSTEM The essential

More information

MONO-IMAGE INTERSECTION FOR ORTHOIMAGE REVISION

MONO-IMAGE INTERSECTION FOR ORTHOIMAGE REVISION MONO-IMAGE INTERSECTION FOR ORTHOIMAGE REVISION Mohamed Ibrahim Zahran Associate Professor of Surveying and Photogrammetry Faculty of Engineering at Shoubra, Benha University ABSTRACT This research addresses

More information

KEY WORDS: IKONOS, Orthophotos, Relief Displacement, Affine Transformation

KEY WORDS: IKONOS, Orthophotos, Relief Displacement, Affine Transformation GRATIO OF DIGITAL ORTHOPHOTOS FROM IKOOS GO IMAGS Liang-Chien Chen and Chiu-Yueh Lo Center for Space and Remote Sensing Research. ational Central University Tel: 886-3-47151 xt.76 Fax: 886-3-455535 lcchen@csrsr.ncu.edu.tw

More information

Comparative Analysis and Evaluation of Various Mathematical Models for Stereo IKONOS Satellite Images

Comparative Analysis and Evaluation of Various Mathematical Models for Stereo IKONOS Satellite Images Comparative Analysis and Evaluation of Various Mathematical Models for Stereo Nagawa ELASHMAWY, Yasser ELMANADILI and Hazem BARAKAT, Egypt Key words: Satellite images, IKONOS, stereo, sensor modeling SUMMARY

More information

Georeferencing in ArcGIS

Georeferencing in ArcGIS Georeferencing in ArcGIS Georeferencing In order to position images on the surface of the earth, they need to be georeferenced. Images are georeferenced by linking unreferenced features in the image with

More information

OPTIMIZED PATCH BACKPROJECTION IN ORTHORECTIFICATION FOR HIGH RESOLUTION SATELLITE IMAGES

OPTIMIZED PATCH BACKPROJECTION IN ORTHORECTIFICATION FOR HIGH RESOLUTION SATELLITE IMAGES OPTIMIZED PATCH BACKPROJECTION IN ORTHORECTIFICATION FOR HIGH RESOLUTION SATELLITE IMAGES Liang-Chien Chen *, Tee-Ann Teo, Jiann-Yeou Rau Center for Space and Remote Sensing Research, National Central

More information

Geometric Correction

Geometric Correction CEE 6150: Digital Image Processing Geometric Correction 1 Sources of Distortion Sensor Characteristics optical distortion aspect ratio non-linear mirror velocity detector geometry & scanning sequence Viewing

More information

DENSE IMAGE MATCHING FOR MARS EXPRESS HRSC IMAGERY BASED ON PRECISE POINT PREDICTION METHOD

DENSE IMAGE MATCHING FOR MARS EXPRESS HRSC IMAGERY BASED ON PRECISE POINT PREDICTION METHOD DENSE IMAGE MATCHING FOR MARS EXPRESS HRSC IMAGERY BASED ON PRECISE POINT PREDICTION METHOD X. Geng a,b *, Q. Xu a, J. Miao b, Y.F. Hou a, S. Xing a, C.Z. Lan a a Information Engineering University, Institute

More information

Rectification Algorithm for Linear Pushbroom Image of UAV

Rectification Algorithm for Linear Pushbroom Image of UAV Ruoming SHI and Ling ZHU, China Key words: Rectification, Linear Pushbroom, GCP, UAV. 2 SUMMARY This research presents a method of rectification for the image flow acquired by UAV. The sensor on the UAV

More information

IMAGE CORRECTIONS 11.1 INTRODUCTION. Objectives. Structure 11.1 Introduction Concept of Image Distortion and Correction

IMAGE CORRECTIONS 11.1 INTRODUCTION. Objectives. Structure 11.1 Introduction Concept of Image Distortion and Correction UNIT 11 IMAGE CORRECTIONS Image Corrections Structure 11.1 Introduction Objectives 11.2 Concept of Image Distortion and Correction Image Distortions Image Corrections 11.3 Radiometric Distortions and their

More information

The Geometrical Comparisons of RSM and RFM for FORMOSAT-2 Satellite Images

The Geometrical Comparisons of RSM and RFM for FORMOSAT-2 Satellite Images HR-5-16.qxd 4/1/6 2:55 PM Page 573 The Geometrical Comparisons of RSM and RFM for FORMOSAT-2 Satellite Images Liang-Chien Chen, Tee-Ann Teo, and Chien-Liang Liu Abstract In this paper, we compare the geometrical

More information

Aerial Photo Rectification

Aerial Photo Rectification Aerial Photo Rectification ERDAS Imagine 2016 Description: We will be using ERDAS Imagine to georeference aerial photos to a DOQ image. We will try to achieve this with a total RMS (root mean square) error

More information

Research Collection. Metric information extraction from spot images and the role of polynomial mapping functions. Conference Paper.

Research Collection. Metric information extraction from spot images and the role of polynomial mapping functions. Conference Paper. Research Collection Conference Paper Metric information extraction from spot images and the role of polynomial mapping functions Author(s): Baltsavias, Emmanuel P.; Stallmann, Dirk Publication Date: 1992

More information

An Analysis of Different Resampling Methods in Coimbatore, District

An Analysis of Different Resampling Methods in Coimbatore, District Global Journal of Computer Science and Technology Vol. 10 Issue 15 (Ver. 1.0) December 2010 P a g e 61 An Analysis of Different Resampling Methods in Coimbatore, District Dr.S. Santhosh Baboo 1, M.Renuka

More information

Blacksburg, VA July 24 th 30 th, 2010 Georeferencing images and scanned maps Page 1. Georeference

Blacksburg, VA July 24 th 30 th, 2010 Georeferencing images and scanned maps Page 1. Georeference George McLeod Prepared by: With support from: NSF DUE-0903270 in partnership with: Geospatial Technician Education Through Virginia s Community Colleges (GTEVCC) Georeference The process of defining how

More information

ACCURACY ANALYSIS AND SURFACE MAPPING USING SPOT 5 STEREO DATA

ACCURACY ANALYSIS AND SURFACE MAPPING USING SPOT 5 STEREO DATA ACCURACY ANALYSIS AND SURFACE MAPPING USING SPOT 5 STEREO DATA Hannes Raggam Joanneum Research, Institute of Digital Image Processing Wastiangasse 6, A-8010 Graz, Austria hannes.raggam@joanneum.at Commission

More information

MODULE 3 LECTURE NOTES 2 GROUND CONTROL POINTS AND CO-REGISTRATION

MODULE 3 LECTURE NOTES 2 GROUND CONTROL POINTS AND CO-REGISTRATION MODULE 3 LECTURE NOTES 2 GROUND CONTROL POINTS AND CO-REGISTRATION 1. Introduction Remotel sensed images obtained raw from the satellites contain errors in the form of sstematic and non sstematic geometric

More information

ACCURACY ANALYSIS FOR NEW CLOSE-RANGE PHOTOGRAMMETRIC SYSTEMS

ACCURACY ANALYSIS FOR NEW CLOSE-RANGE PHOTOGRAMMETRIC SYSTEMS ACCURACY ANALYSIS FOR NEW CLOSE-RANGE PHOTOGRAMMETRIC SYSTEMS Dr. Mahmoud El-Nokrashy O. ALI Prof. of Photogrammetry, Civil Eng. Al Azhar University, Cairo, Egypt m_ali@starnet.com.eg Dr. Mohamed Ashraf

More information

Georeferencing & Spatial Adjustment

Georeferencing & Spatial Adjustment Georeferencing & Spatial Adjustment Aligning Raster and Vector Data to the Real World Rotation Differential Scaling Distortion Skew Translation 1 The Problem How are geographically unregistered data, either

More information

Geometric Rectification Using Feature Points Supplied by Straight-lines

Geometric Rectification Using Feature Points Supplied by Straight-lines Available online at www.sciencedirect.com Procedia Environmental Sciences (0 ) 00 07 Geometric Rectification Using Feature Points Supplied by Straight-lines Tengfei Long, Weili Jiao, Wei Wang Center for

More information

COORDINATE TRANSFORMATION. Lecture 6

COORDINATE TRANSFORMATION. Lecture 6 COORDINATE TRANSFORMATION Lecture 6 SGU 1053 SURVEY COMPUTATION 1 Introduction Geomatic professional are mostly confronted in their work with transformations from one two/three-dimensional coordinate system

More information

Georeferencing & Spatial Adjustment 2/13/2018

Georeferencing & Spatial Adjustment 2/13/2018 Georeferencing & Spatial Adjustment The Problem Aligning Raster and Vector Data to the Real World How are geographically unregistered data, either raster or vector, made to align with data that exist in

More information

The Problem. Georeferencing & Spatial Adjustment. Nature Of The Problem: For Example: Georeferencing & Spatial Adjustment 9/20/2016

The Problem. Georeferencing & Spatial Adjustment. Nature Of The Problem: For Example: Georeferencing & Spatial Adjustment 9/20/2016 Georeferencing & Spatial Adjustment Aligning Raster and Vector Data to the Real World The Problem How are geographically unregistered data, either raster or vector, made to align with data that exist in

More information

The Radar Ortho Suite is an add-on to Geomatica. It requires Geomatica Core or Geomatica Prime as a pre-requisite.

The Radar Ortho Suite is an add-on to Geomatica. It requires Geomatica Core or Geomatica Prime as a pre-requisite. RADAR ORTHO SUITE The Radar Ortho Suite includes rigorous and rational function models developed to compensate for distortions and produce orthorectified radar images. Distortions caused by the platform

More information

Multi-Spectral Image Analysis and NURBS-based 3D Visualization of Land Maps

Multi-Spectral Image Analysis and NURBS-based 3D Visualization of Land Maps Multi-Spectral Image Analysis and URBS-based 3D Visualization of Land Maps Dilshan Jayathilaka and Ravinda G.. Meegama Centre for Computer Studies Sabaragamuwa University P.O. Box 2, Belihuloya SRI LAKA

More information

Correction and Calibration 2. Preprocessing

Correction and Calibration 2. Preprocessing Correction and Calibration Reading: Chapter 7, 8. 8.3 ECE/OPTI 53 Image Processing Lab for Remote Sensing Preprocessing Required for certain sensor characteristics and systematic defects Includes: noise

More information

Geoprocessing and georeferencing raster data

Geoprocessing and georeferencing raster data Geoprocessing and georeferencing raster data Raster conversion tools Geoprocessing tools ArcCatalog tools ESRI Grid GDB Raster Raster Dataset Raster Catalog Erdas IMAGINE TIFF ArcMap - raster projection

More information

DEVELOPMENT OF CAMERA MODEL AND GEOMETRIC CALIBRATION/VALIDATION OF XSAT IRIS IMAGERY

DEVELOPMENT OF CAMERA MODEL AND GEOMETRIC CALIBRATION/VALIDATION OF XSAT IRIS IMAGERY DEVELOPMENT OF CAMERA MODEL AND GEOMETRIC CALIBRATION/VALIDATION OF XSAT IRIS IMAGERY Leong Keong Kwoh, Xiaojing Huang, Wee Juan Tan Centre for Remote, Imaging Sensing and Processing (CRISP), National

More information

EVALUATION OF THE THEMATIC INFORMATION CONTENT OF THE ASTER-VNIR IMAGERY IN URBAN AREAS BY CLASSIFICATION TECHNIQUES

EVALUATION OF THE THEMATIC INFORMATION CONTENT OF THE ASTER-VNIR IMAGERY IN URBAN AREAS BY CLASSIFICATION TECHNIQUES EVALUATION OF THE THEMATIC INFORMATION CONTENT OF THE ASTER-VNIR IMAGERY IN URBAN AREAS BY CLASSIFICATION TECHNIQUES T. G. Panagou a *, G. Ch. Miliaresis a a TEI, Dpt. of Topography, 3 P.Drakou Str., Thiva,

More information

DIGITAL HEIGHT MODELS BY CARTOSAT-1

DIGITAL HEIGHT MODELS BY CARTOSAT-1 DIGITAL HEIGHT MODELS BY CARTOSAT-1 K. Jacobsen Institute of Photogrammetry and Geoinformation Leibniz University Hannover, Germany jacobsen@ipi.uni-hannover.de KEY WORDS: high resolution space image,

More information

CHANGE DETECTION OF SURFACE ELEVATION BY ALOS/PRISM FOR DISASTER MONITORING

CHANGE DETECTION OF SURFACE ELEVATION BY ALOS/PRISM FOR DISASTER MONITORING International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Volume XXXVIII, Part, Kyoto Japan 00 CHANGE DETECTION OF SURFACE ELEVATION BY ALOS/PRISM FOR DISASTER MONITORING

More information

Preprocessing of Satellite Images. Radiometric and geometric corrections

Preprocessing of Satellite Images. Radiometric and geometric corrections Preprocessing of Satellite Images Radiometric and geometric corrections Outline Remote sensing data suffers from variety of radiometric and geometric errors. These errors diminish the accuracy of information

More information

EVALUATION OF WORLDVIEW-1 STEREO SCENES AND RELATED 3D PRODUCTS

EVALUATION OF WORLDVIEW-1 STEREO SCENES AND RELATED 3D PRODUCTS EVALUATION OF WORLDVIEW-1 STEREO SCENES AND RELATED 3D PRODUCTS Daniela POLI, Kirsten WOLFF, Armin GRUEN Swiss Federal Institute of Technology Institute of Geodesy and Photogrammetry Wolfgang-Pauli-Strasse

More information

The Problem. Georeferencing & Spatial Adjustment. Nature of the problem: For Example: Georeferencing & Spatial Adjustment 2/4/2014

The Problem. Georeferencing & Spatial Adjustment. Nature of the problem: For Example: Georeferencing & Spatial Adjustment 2/4/2014 Georeferencing & Spatial Adjustment Aligning Raster and Vector Data to a GIS The Problem How are geographically unregistered data, either raster or vector, made to align with data that exist in geographical

More information

Comparison of Image Orientation by IKONOS, QuickBird and OrbView-3

Comparison of Image Orientation by IKONOS, QuickBird and OrbView-3 Comparison of Image Orientation by IKONOS, QuickBird and OrbView-3 K. Jacobsen University of Hannover, Germany Keywords: Orientation, Mathematical Models, IKONOS, QuickBird, OrbView-3 ABSTRACT: The generation

More information

٥...: (Picture element) Pixel ٧...:

٥...: (Picture element) Pixel ٧...: ( RS ) : : / : : - ٣... : ٣...: ٤...: ٥...: (Picture element) Pixel ٥...: ٧...: ١٠... : Geo Tiff ١٨... : ١٩... : DEM ٢٨...: ٢ :.. " " RS. :.. Kosmos Land Sat. : : RS :. : (Land Use) :( Change detection

More information

PRECISE GEOREFERENCING OF CARTOSAT IMAGERY VIA DIFFERENT ORIENTATION MODELS

PRECISE GEOREFERENCING OF CARTOSAT IMAGERY VIA DIFFERENT ORIENTATION MODELS PRECISE GEOREFERENCING OF CARTOSAT IMAGERY VIA DIFFERENT ORIENTATION MODELS J. Willneff, T. Weser, F. Rottensteiner, C. S. Fraser * Cooperative Research Centre for Spatial Information, Department of Geomatics,

More information

GEOREFERENCING OF EROS-A1 HIGH RESOLUTION IMAGES WITH RIGOROUS AND RATIONAL FUNCTION MODEL

GEOREFERENCING OF EROS-A1 HIGH RESOLUTION IMAGES WITH RIGOROUS AND RATIONAL FUNCTION MODEL GEOREFERENCING OF EROS-A1 HIGH RESOLUION IMAGES WIH RIGOROUS AND RAIONAL FUNCION MODEL F. Giulio onolo a, D. Poli b a DiGE, Politecnico di orino, Corso Duca degli Abruzzi 4, 119 urin, Italy - fabio.giuliotonolo@polito.it

More information

Tutorial R E C T I F I C A T I O N. Rectifying Images. Rectifying Images. with. TNTmips. page 1

Tutorial R E C T I F I C A T I O N. Rectifying Images. Rectifying Images. with. TNTmips. page 1 R E C T I F I C A T I O N Tutorial Rectifying Images Rectifying Images with TNTmips page 1 Before Getting Started This booklet introduces you to the Automatic Resampling process in TNTmips. This process

More information

DEVELOPMENT OF ORIENTATION AND DEM/ORTHOIMAGE GENERATION PROGRAM FOR ALOS PRISM

DEVELOPMENT OF ORIENTATION AND DEM/ORTHOIMAGE GENERATION PROGRAM FOR ALOS PRISM DEVELOPMENT OF ORIENTATION AND DEM/ORTHOIMAGE GENERATION PROGRAM FOR ALOS PRISM Izumi KAMIYA Geographical Survey Institute 1, Kitasato, Tsukuba 305-0811 Japan Tel: (81)-29-864-5944 Fax: (81)-29-864-2655

More information

DATA FUSION AND INTEGRATION FOR MULTI-RESOLUTION ONLINE 3D ENVIRONMENTAL MONITORING

DATA FUSION AND INTEGRATION FOR MULTI-RESOLUTION ONLINE 3D ENVIRONMENTAL MONITORING DATA FUSION AND INTEGRATION FOR MULTI-RESOLUTION ONLINE 3D ENVIRONMENTAL MONITORING Yun Zhang, Pingping Xie, Hui Li Department of Geodesy and Geomatics Engineering, University of New Brunswick Fredericton,

More information

IMAGINE OrthoRadar. Accuracy Evaluation. age 1 of 9

IMAGINE OrthoRadar. Accuracy Evaluation. age 1 of 9 IMAGINE OrthoRadar Accuracy Evaluation age 1 of 9 IMAGINE OrthoRadar Product Description IMAGINE OrthoRadar is part of the IMAGINE Radar Mapping Suite and performs precision geocoding and orthorectification

More information

EVALUATION OF LBTM FOR HRSI RECTIFICATION

EVALUATION OF LBTM FOR HRSI RECTIFICATION EVALUATION OF LBTM FOR HRSI RECTIFICATION Sun Yushan a, Ahmed Shaker b, Wenzhong Shi c a Mapping from space, Key Laboratory of State Bureau of Surveying and Mapping, China Academy Surveying and Mapping

More information

FOUR ADVANCES IN HANDLING UNCERTAINTIES IN SPATIAL DATA AND ANALYSIS

FOUR ADVANCES IN HANDLING UNCERTAINTIES IN SPATIAL DATA AND ANALYSIS FOUR ADVANCES IN HANDLING UNCERTAINTIES IN SPATIAL DATA AND ANALYSIS Wenzhong Shi Advanced Research Centre for Spatial Information Technology Department of Land Surveying and Geo-Informatics The Hong Kong

More information

Engineering, Korea Advanced Institute of Science and Technology (hytoiy wpark tjkim Working Group

Engineering, Korea Advanced Institute of Science and Technology (hytoiy wpark tjkim Working Group THE DEVELOPMENT OF AN ACCURATE DEM EXTRACTION STRATEGY FOR SATELLITE IMAGE PAIRS USING EPIPOLARITY OF LINEAR PUSHBROOM SENSORS AND INTELLIGENT INTERPOLATION SCHEME Hae-Yeoun Lee *, Wonkyu Park **, Taejung

More information

DATA FUSION FOR MULTI-SCALE COLOUR 3D SATELLITE IMAGE GENERATION AND GLOBAL 3D VISUALIZATION

DATA FUSION FOR MULTI-SCALE COLOUR 3D SATELLITE IMAGE GENERATION AND GLOBAL 3D VISUALIZATION DATA FUSION FOR MULTI-SCALE COLOUR 3D SATELLITE IMAGE GENERATION AND GLOBAL 3D VISUALIZATION ABSTRACT: Yun Zhang, Pingping Xie, and Hui Li Department of Geodesy and Geomatics Engineering, University of

More information

MODULE 3 LECTURE NOTES 3 ATMOSPHERIC CORRECTIONS

MODULE 3 LECTURE NOTES 3 ATMOSPHERIC CORRECTIONS MODULE 3 LECTURE NOTES 3 ATMOSPHERIC CORRECTIONS 1. Introduction The energy registered by the sensor will not be exactly equal to that emitted or reflected from the terrain surface due to radiometric and

More information

APPLICATION AND ACCURACY EVALUATION OF LEICA ADS40 FOR LARGE SCALE MAPPING

APPLICATION AND ACCURACY EVALUATION OF LEICA ADS40 FOR LARGE SCALE MAPPING APPLICATION AND ACCURACY EVALUATION OF LEICA ADS40 FOR LARGE SCALE MAPPING WenYuan Hu a, GengYin Yang b, Hui Yuan c,* a, b ShanXi Provincial Survey and Mapping Bureau, China - sxgcchy@public.ty.sx.cn c

More information

The Study and Implementation of Extraction HY-1B Level 1B Product Image Data Based on HDF Format Shibin Liu a, Wei Liu ab, Hailong Peng c

The Study and Implementation of Extraction HY-1B Level 1B Product Image Data Based on HDF Format Shibin Liu a, Wei Liu ab, Hailong Peng c The Study and Implementation of Extraction HY-1B Level 1B Product Image Data Based on HDF Format Shibin Liu a, Wei Liu ab, Hailong Peng c a Center for Earth Observation and Digital Earth, Chinese Academy

More information

ACCURACY ASSESSMENT OF RADARGRAMMETRIC DEMS DERIVED FROM RADARSAT-2 ULTRAFINE MODE

ACCURACY ASSESSMENT OF RADARGRAMMETRIC DEMS DERIVED FROM RADARSAT-2 ULTRAFINE MODE ISPRS Istanbul Workshop 2010 on Modeling of optical airborne and spaceborne Sensors, WG I/4, Oct. 11-13, IAPRS Vol. XXXVIII-1/W17. ACCURACY ASSESSMENT OF RADARGRAMMETRIC DEMS DERIVED FROM RADARSAT-2 ULTRAFINE

More information

LAB EXERCISE NO. 02 DUE DATE: 9/22/2015 Total Points: 4 TOPIC: TOA REFLECTANCE COMPUTATION FROM LANDSAT IMAGES

LAB EXERCISE NO. 02 DUE DATE: 9/22/2015 Total Points: 4 TOPIC: TOA REFLECTANCE COMPUTATION FROM LANDSAT IMAGES LAB EXERCISE NO. 02 DUE DATE: 9/22/2015 Total Points: 4 TOPIC: TOA REFLECTANCE COMPUTATION FROM LANDSAT IMAGES You are asked to perform a radiometric conversion from raw digital numbers to reflectance

More information

BUILDING MODEL RECONSTRUCTION FROM DATA INTEGRATION INTRODUCTION

BUILDING MODEL RECONSTRUCTION FROM DATA INTEGRATION INTRODUCTION BUILDING MODEL RECONSTRUCTION FROM DATA INTEGRATION Ruijin Ma Department Of Civil Engineering Technology SUNY-Alfred Alfred, NY 14802 mar@alfredstate.edu ABSTRACT Building model reconstruction has been

More information

ENVI Automated Image Registration Solutions

ENVI Automated Image Registration Solutions ENVI Automated Image Registration Solutions Xiaoying Jin Harris Corporation Table of Contents Introduction... 3 Overview... 4 Image Registration Engine... 6 Image Registration Workflow... 8 Technical Guide...

More information

EXTRACTION OF ATTITUDE PARAMETERS OF MOVING TARGET FROM A SINGLE SET OF HIGH SPATIAL RESOLUTION SATELLITE IMAGERY INTRODUCTION

EXTRACTION OF ATTITUDE PARAMETERS OF MOVING TARGET FROM A SINGLE SET OF HIGH SPATIAL RESOLUTION SATELLITE IMAGERY INTRODUCTION EXTRACTION OF ATTITUDE PARAMETERS OF MOVING TARGET FROM A SINGLE SET OF HIGH SPATIAL RESOLUTION SATELLITE IMAGERY Zhen Xiong, Post Doctoral Fellow Yun Zhang,Associate Professor Department of Geodesy &

More information

A RIGOROUS MODEL AND DEM GENERATION FOR SPOT5 HRS

A RIGOROUS MODEL AND DEM GENERATION FOR SPOT5 HRS A RIGOROUS MODEL AND DEM GENERATION FOR SPOT5 HRS Pantelis Michalis and Ian Dowman Department of Geomatic Engineering, University College London, Gower Street, London WC1E 6BT, UK [pmike,idowman]@ge.ucl.ac.uk

More information

Geometric Integration of Aerial and High-Resolution Satellite Imagery and Application in Shoreline Mapping

Geometric Integration of Aerial and High-Resolution Satellite Imagery and Application in Shoreline Mapping Marine Geodesy, 31: 143 159, 2008 Copyright Taylor & Francis Group, LLC ISSN: 0149-0419 print / 1521-060X online DOI: 10.1080/01490410802265310 Geometric Integration of Aerial and High-Resolution Satellite

More information

The Accuracy of Determining the Volumes Using Close Range Photogrammetry

The Accuracy of Determining the Volumes Using Close Range Photogrammetry IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 12, Issue 2 Ver. VII (Mar - Apr. 2015), PP 10-15 www.iosrjournals.org The Accuracy of Determining

More information

A Comparative Study of Shoreline Mapping Techniques

A Comparative Study of Shoreline Mapping Techniques Abstract A Comparative Study of Shoreline Mapping Techniques Ron Li, Kaichang Di and Ruijin Ma Department of Civil and Environmental Engineering and Geodetic Science The Ohio State University 470 Hitchcock

More information

PART 1. Answers module 6: 'Transformations'

PART 1. Answers module 6: 'Transformations' Answers module 6: 'Transformations' PART 1 1 a A nominal measure scale refers to data that are in named categories. There is no order among these categories. That is, no category is better or more than

More information

ACROSS-TRACK IMAGING ACCURACY ANALYSIS AND RESEARCH OF HIGH RESOLUTION SATELLITE IMAGERY IN METROPOLITAN AREA

ACROSS-TRACK IMAGING ACCURACY ANALYSIS AND RESEARCH OF HIGH RESOLUTION SATELLITE IMAGERY IN METROPOLITAN AREA ACROSS-TRACK IMAGING ACCURAC ANALSIS AND RESEARCH OF HIGH RESOLUTION SATELLITE IMAGER IN METROPOLITAN AREA Wang Weian*, Qiao Gang, Tong iaohua, Bao Feng, Liu Chun, Wang Jianmei, e Qin, Liu Shijie, Wang

More information

Remote Sensing in an

Remote Sensing in an Chapter 2: Adding Data to a Map Document Remote Sensing in an ArcMap Environment Remote Sensing Analysis in an ArcMap Environment Tammy E. Parece Image source: landsat.usgs.gov Tammy Parece James Campbell

More information

Applied GIS a free, international, refereed e-journal (ISSN: )

Applied GIS a free, international, refereed e-journal (ISSN: ) Applied GIS a free, international, refereed e-journal (ISSN: 1832-5505) URL: http://www.appliedgis.net MANAGING EDITORS: Ray Wyatt ray.wyatt@unimelb.edu.au Jim Peterson Jim.Peterson@arts.monash.edu.au

More information

Exercise 6-1 Image Georegistration Using RESAMPLE

Exercise 6-1 Image Georegistration Using RESAMPLE Exercise 6-1 Image Georegistration Using RESAMPLE Resampling is a procedure for spatially georeferencing an image to its known position on the ground. Often, this procedure is used to register an image

More information

ADS40 Calibration & Verification Process. Udo Tempelmann*, Ludger Hinsken**, Utz Recke*

ADS40 Calibration & Verification Process. Udo Tempelmann*, Ludger Hinsken**, Utz Recke* ADS40 Calibration & Verification Process Udo Tempelmann*, Ludger Hinsken**, Utz Recke* *Leica Geosystems GIS & Mapping GmbH, Switzerland **Ludger Hinsken, Author of ORIMA, Konstanz, Germany Keywords: ADS40,

More information

INCREASING CLASSIFICATION QUALITY BY USING FUZZY LOGIC

INCREASING CLASSIFICATION QUALITY BY USING FUZZY LOGIC JOURNAL OF APPLIED ENGINEERING SCIENCES VOL. 1(14), issue 4_2011 ISSN 2247-3769 ISSN-L 2247-3769 (Print) / e-issn:2284-7197 INCREASING CLASSIFICATION QUALITY BY USING FUZZY LOGIC DROJ Gabriela, University

More information

Principal Component Image Interpretation A Logical and Statistical Approach

Principal Component Image Interpretation A Logical and Statistical Approach Principal Component Image Interpretation A Logical and Statistical Approach Md Shahid Latif M.Tech Student, Department of Remote Sensing, Birla Institute of Technology, Mesra Ranchi, Jharkhand-835215 Abstract

More information

AN APPROACH OF SEMIAUTOMATED ROAD EXTRACTION FROM AERIAL IMAGE BASED ON TEMPLATE MATCHING AND NEURAL NETWORK

AN APPROACH OF SEMIAUTOMATED ROAD EXTRACTION FROM AERIAL IMAGE BASED ON TEMPLATE MATCHING AND NEURAL NETWORK AN APPROACH OF SEMIAUTOMATED ROAD EXTRACTION FROM AERIAL IMAGE BASED ON TEMPLATE MATCHING AND NEURAL NETWORK Xiangyun HU, Zuxun ZHANG, Jianqing ZHANG Wuhan Technique University of Surveying and Mapping,

More information

9/14/2011. Contents. Lecture 3: Spatial Data Acquisition in GIS. Dr. Bo Wu Learning Outcomes. Data Input Stream in GIS

9/14/2011. Contents. Lecture 3: Spatial Data Acquisition in GIS. Dr. Bo Wu Learning Outcomes. Data Input Stream in GIS Contents Lecture 3: Spatial Data Acquisition in GIS Dr. Bo Wu lsbowu@polyu.edu.hk 1. Learning outcomes. Data acquisition: Manual digitization 3. Data acquisition: Field survey 4. Data acquisition: Remote

More information

Australian Journal of Basic and Applied Sciences 2018 X; 12(5): pages DOI: /ajbas

Australian Journal of Basic and Applied Sciences 2018 X; 12(5): pages DOI: /ajbas Research Article Australian Journal of Basic and Applied Sciences 2018 X; 12(5): pages 57-61 DOI: 10.22587/ajbas.2018.12.5.11 AENSI Publications Geometric Correction of High Resolution Satellite Imagery

More information

ifp Universität Stuttgart Performance of IGI AEROcontrol-IId GPS/Inertial System Final Report

ifp Universität Stuttgart Performance of IGI AEROcontrol-IId GPS/Inertial System Final Report Universität Stuttgart Performance of IGI AEROcontrol-IId GPS/Inertial System Final Report Institute for Photogrammetry (ifp) University of Stuttgart ifp Geschwister-Scholl-Str. 24 D M. Cramer: Final report

More information

A METHOD TO PREDICT ACCURACY OF LEAST SQUARES SURFACE MATCHING FOR AIRBORNE LASER SCANNING DATA SETS

A METHOD TO PREDICT ACCURACY OF LEAST SQUARES SURFACE MATCHING FOR AIRBORNE LASER SCANNING DATA SETS A METHOD TO PREDICT ACCURACY OF LEAST SQUARES SURFACE MATCHING FOR AIRBORNE LASER SCANNING DATA SETS Robert Pâquet School of Engineering, University of Newcastle Callaghan, NSW 238, Australia (rpaquet@mail.newcastle.edu.au)

More information

ACCURACY COMPARISON OF VHR SYSTEMATIC-ORTHO SATELLITE IMAGERIES AGAINST VHR ORTHORECTIFIED IMAGERIES USING GCP

ACCURACY COMPARISON OF VHR SYSTEMATIC-ORTHO SATELLITE IMAGERIES AGAINST VHR ORTHORECTIFIED IMAGERIES USING GCP ACCURACY COMPARISON OF VHR SYSTEMATIC-ORTHO SATELLITE IMAGERIES AGAINST VHR ORTHORECTIFIED IMAGERIES USING GCP E. Widyaningrum a, M. Fajari a, J. Octariady a * a Geospatial Information Agency (BIG), Cibinong,

More information

L6 Transformations in the Euclidean Plane

L6 Transformations in the Euclidean Plane L6 Transformations in the Euclidean Plane NGEN06(TEK230) Algorithms in Geographical Information Systems by: Irene Rangel, updated by Sadegh Jamali, Per-Ola Olsson (source: Lecture notes in GIS, Lars Harrie)

More information

Rectification Algorithm for Linear Pushbroom Image of UAV

Rectification Algorithm for Linear Pushbroom Image of UAV Rectification Algorithm for Linear Pushbroom Image of UAV Ruoming SHI and Ling ZHU INTRODUCTION In recent years, unmanned aerial vehicle (UAV) has become a strong supplement and an important complement

More information

BUILDING DETECTION IN VERY HIGH RESOLUTION SATELLITE IMAGE USING IHS MODEL

BUILDING DETECTION IN VERY HIGH RESOLUTION SATELLITE IMAGE USING IHS MODEL BUILDING DETECTION IN VERY HIGH RESOLUTION SATELLITE IMAGE USING IHS MODEL Shabnam Jabari, PhD Candidate Yun Zhang, Professor, P.Eng University of New Brunswick E3B 5A3, Fredericton, Canada sh.jabari@unb.ca

More information

Analysis of the Fitting Accuracy of the 3d Affine Transformation Applied to Cartosat-1 (IRS P5) Satellite Stereo Imagery

Analysis of the Fitting Accuracy of the 3d Affine Transformation Applied to Cartosat-1 (IRS P5) Satellite Stereo Imagery Cloud Publications International Journal of Advanced Remote Sensing and GIS 2016, Volume 5, Issue 6, pp. 1768-1786 ISSN 2320-0243, Crossref: 10.23953/cloud.ijarsg.59 Research Article Open Access Analysis

More information

EXTERIOR ORIENTATION OF LINE-ARRAY CCD IMAGES BASED ON QUATERNION SPHERICAL LINEAR INTERPOLATION

EXTERIOR ORIENTATION OF LINE-ARRAY CCD IMAGES BASED ON QUATERNION SPHERICAL LINEAR INTERPOLATION EXTERIOR ORIENTATION OF LINE-ARRAY CCD IMAGES BASED ON QUATERNION SPHERICAL LINEAR INTERPOLATION G. Jiang, T. Jiang *, H. Gong, X. Wang Zhengzhou Institute of Surveying and Mapping, Information Engineering

More information

IN-FLIGHT GEOMETRIC CALIBRATION OF FORE AND AFT CAMERAS OF CARTOSAT- 1

IN-FLIGHT GEOMETRIC CALIBRATION OF FORE AND AFT CAMERAS OF CARTOSAT- 1 IN-FLIGHT GEOMETRIC CALIBRATION OF FORE AND AFT CAMERAS OF CARTOSAT- 1 By P.V. RADHADEVI* (adrin_radhadevi@yahoo.co.in) Advanced Data Processing Research Institute (ADRIN), Department of Space, Government

More information

IMAGE CORRECTION FOR DIGITAL MAPPING

IMAGE CORRECTION FOR DIGITAL MAPPING IMAGE CORRECTION FOR DIGITAL MAPPING Yubin Xin PCI Geomatics Inc. 50 West Wilmot St., Richmond Hill, Ontario L4B 1M5, Canada Fax: 1-905-7640153 xin@pcigeomatics.com ABSTRACT Digital base maps generated

More information

THE ROLE OF EPHEMERIDES AND GCPs DISTRIBUTION IN HIGH RESOLUTION SATELLITE IMAGES MODELLING

THE ROLE OF EPHEMERIDES AND GCPs DISTRIBUTION IN HIGH RESOLUTION SATELLITE IMAGES MODELLING THE ROLE OF EPHEMERIDES AND G DISTRIBUTION IN HIGH RESOLUTION SATELLITE IMAGES MODELLING M. Fiani a, P. Pistillo a, S. Troisi b, L. Turturici b a Dipartimento di Ingegneria Civile, Università di Salerno,

More information

AN INTEGRATED APPROACH TO AGRICULTURAL CROP CLASSIFICATION USING SPOT5 HRV IMAGES

AN INTEGRATED APPROACH TO AGRICULTURAL CROP CLASSIFICATION USING SPOT5 HRV IMAGES AN INTEGRATED APPROACH TO AGRICULTURAL CROP CLASSIFICATION USING SPOT5 HRV IMAGES Chang Yi 1 1,2,*, Yaozhong Pan 1, 2, Jinshui Zhang 1, 2 College of Resources Science and Technology, Beijing Normal University,

More information

Bias Compensation in Rational Functions for Ikonos Satellite Imagery

Bias Compensation in Rational Functions for Ikonos Satellite Imagery Bias Compensation in Rational Functions for Ikonos Satellite Imagery Clive S. Fraser and Harry B. Hanley Abstract A method for the removal of exterior orientation biases in rational function coefficients

More information

Image georeferencing is the process of developing a model to transform from pixel coordinates into GIS coordinates such as meters on the ground.

Image georeferencing is the process of developing a model to transform from pixel coordinates into GIS coordinates such as meters on the ground. Image georeferencing is the process of developing a model to transform from pixel coordinates into GIS coordinates such as meters on the ground. Image rectification is the process of using your georeferencing

More information

Geometric Accuracy Evaluation, DEM Generation and Validation for SPOT-5 Level 1B Stereo Scene

Geometric Accuracy Evaluation, DEM Generation and Validation for SPOT-5 Level 1B Stereo Scene Geometric Accuracy Evaluation, DEM Generation and Validation for SPOT-5 Level 1B Stereo Scene Buyuksalih, G.*, Oruc, M.*, Topan, H.*,.*, Jacobsen, K.** * Karaelmas University Zonguldak, Turkey **University

More information

convergent angle and covers about 60 km x 40 km in the area near central Taiwan.

convergent angle and covers about 60 km x 40 km in the area near central Taiwan. Bundle Adjustment with Additional Parameters for SPOT Stereopairs Liang-Hwei Lee, Liang-Chien Chen Center for Space and Remote Sensing Research National Central University Chung-Li, Taiwan, R.O.C. Commission

More information

Exterior Orientation Parameters

Exterior Orientation Parameters Exterior Orientation Parameters PERS 12/2001 pp 1321-1332 Karsten Jacobsen, Institute for Photogrammetry and GeoInformation, University of Hannover, Germany The georeference of any photogrammetric product

More information

DSM AND ORTHOIMAGES FROM QUICKBIRD AND IKONOS DATA USING RATIONAL POLYNOMIAL FUNCTIONS

DSM AND ORTHOIMAGES FROM QUICKBIRD AND IKONOS DATA USING RATIONAL POLYNOMIAL FUNCTIONS DSM AND ORTHOIMAGES FROM QUICKBIRD AND IKONOS DATA USING RATIONAL POLYNOMIAL FUNCTIONS Manfred Lehner, Rupert Müller, Peter Reinartz German Aerospace Center (DLR), Remote Sensing Technology Institute,

More information