Sandeep Kharidhi and WenSui Liu ChoicePoint Precision Marketing

Size: px
Start display at page:

Download "Sandeep Kharidhi and WenSui Liu ChoicePoint Precision Marketing"

Transcription

1 Generalized Additive Model and Applications in Direct Marketing Sandeep Kharidhi and WenSui Liu ChoicePoint Precision Marketing Abstract Logistic regression 1 has been widely used in direct marketing applications to develop response and conversion models. Although attractively simple, logistic regression has been criticized for failing to capture the nonlinearity, and therefore possibly not leading to satisfactory results. Introduced by Hastie and Tibshirani, Generalized Additive Model 2 (GAM) provides the ability to detect the nonlinear relationship between the response behavior and predictors. In this paper, we present an application of GAM in the direct marketing environment, and also demonstrate how to improve the interpretability and scoring scheme of GAM using other statistical techniques. Model performance is evaluated and compared among discussed models using the area under Receiver Operating Characteristic (ROC) curve. It is found that our proposed method is able to yield superior results in practice. Introduction How to assess a prospect s likelihood to respond to a marketing campaign has been a key interest in direct marketing. In most marketing companies, modelers are using logistic regression to develop response and conversion models to boost marketing campaign response rates and reduce expenses. While logistic regression is easy to understand and implement, it assumes a linear relationship between response and predictors, and may fail to capture a more complex nonlinear relationship that often exists with the real-life data. While neural networks have reportedly been successful in nonlinear modeling, 3 this success comes with the price of interpretability. As another alternative, GAM has recently shown promising success in modeling the default risk 4 by combining the strength of flexible modeling with the ease of interpretation. In this paper, we demonstrate the superiority of GAM over logistic regression through the development of a conversion model. Due to the nonparametric nature of GAM, we also discuss how to use other techniques such as Classification and Regression Tree 5 (CART) and Multivariate Adaptive Regression Splines 6 (MARS) as further improvements in the model development. Modeling Methodology In direct marketing, statistical models are often used to evaluate the probability that an individual will respond to a marketing campaign, for the aim of improving campaign efficiency and reducing marketing costs. Traditionally, discriminant analysis and logistic regression have been commonly used to model binary outcomes such as that kind of response action, under the assumption that predictors for these outcomes are linearly related to the response. However, a potential risk of such an assumption is model misspecification. While the effects of predictors are often neither linear nor monotonic in the real world, it is always challenging to find an appropriate functional form between the response and the predictor. Consequently, logistic regression may not 22

2 always be able to provide an adequate fit to the complex data structure. As an alternative to logistic regression, GAM relaxes the linear assumption, and assumes that the response is dependent on predictors in a flexible manner, which could be either linear or nonlinear. The nonlinear relationship is largely driven by the data, and estimated nonparametrically with a univariate B-spline or local regression smoother. In other words, instead of having a single coefficient for each predictor, GAM uses an unspecified nonparametric function to describe the relationship between each predictor and the response, for the purpose of maximizing the predictive performance. Such nonparametric function is analogous to the coefficient in a logistic regression, and can be used to visualize the relationship between the response and the predictor. This ability to visualize the nonparametric function between each predictor and the response is an important feature in GAM, and provides an intuitive way for modelers to explore the complex data structure and interpret the model s results. In order to illustrate the application of GAM in Table 1: Conversion Summary direct marketing, we will apply it to realworld data and compare the results with a logistic regression baseline model. Data analyzed in our paper has been used to develop a response-toconversion model. The dataset consists of 6,180 responders with a 6-percent conversion rate and 24 variables. The response variable Y reflects the status of the prospect s conversion and therefore has binary outcome. The 23 predictors include eight numeric variables and 15 categorical variables with levels ranging from 2 to 11. Before the model development, we randomly divided the entire dataset into two parts: one for model development, and the other for model validation, as shown in Table 1. A version of logistic regression is estimated for the conversion model using the development data with the inclusion of all predictors and a focus on seven numeric variables. Partial output of the model is shown in Table 2 below, in which predictors significant at 10% level are flagged. Out of seven numeric variables, only four are shown to be statistically Table 2: Output of Logistic Regression significant based on the linear assumption. Besides the illustrated output, all statistics indicate that the logistic regression achieves an adequate fit for the development data. A Receiver Operating Characteristic curve, also known as ROC curve, is a graphical representation of the tradeoff between Type-I error (Sensitivity) and Type-II error (Specificity) for different possible cutoffs, and is often used to compare predictive performance between different classification models. In a ROC curve, Sensitivity is placed on the Y-axis and Specificity on the X-axis (expressed as 1-Specificity). The area under ROC curve, also abbreviated as AUC, is a statistical measure often used to summarize the information of ROC curve derived from a predictive model. In brief, AUC can be interpreted as the probability that the predictive model is able to score a randomly selected positive response higher than a randomly selected negative response. A predictive model with the perfect performance has an area under ROC curve equal to 1, whereas this area is 0.5 for a predictive model as good as the random guess. In practice, the area under the ROC curve is between 0.5 and 1. In Figure 1 (pg. 24), ROC curves of logistic regression for both development and validation data are plotted. The areas under ROC curves are equal to 0.78 and 0.76, respectively, for development and validation data, suggesting a reasonable predictiveness for the logistic regression. All statistical evidence thus far indicates a good fit for the conversion model using logistic regression. However, whether the assumed linearity is the correct functional form for the analyzed data remains in question, and still needs to be addressed. Since logistic regression indicates that X4, X5, X6, and X7 are 23

3 Figure 1: ROC Curves for Development and Validation Data Table 4: Partial Output of Generalized Additive Model Figure 2: Partial Prediction Plots of X5 and X7 statistically insignificant, we will pay extra attention to these four variables. After establishing the Logistic Regression Model as the benchmark, we fit the GAM with the same development data, and apply a flexible nonparametric estimation to those four insignificant predictors in the previous logistic regression. With the flexibility provided by the GAM, there is a strong temptation to over-fit the model to the development data using excess degrees of freedom in the model. Based upon our experience, the benefit of using conservative degrees of freedom in a GAM is twofold: first, over-fitting can be prevented with low degrees of freedom; and second, computation time can be reduced dramatically, given the large volume of data commonly modeled in direct marketing. Table 4 (left) shows the partial output of the best GAM developed, after trial and error, with all predictors included. Note that X5 and X7 become significant after being estimated nonparametrically under the nonlinear assumption. The nonlinear effect of each predictor is shown in Figure 2 (left). For instance, it is clear that the relationship between X5 and Y is neither linear nor monotonic, a violation of the linear assumption in logistic regression. Instead, the conversion rate goes up as X5 increases, starts decreasing once X5 reaches 0, and then picks up again after X5 exceeds 1.5. For comparison purposes, the ROC curves of GAM for both development and validation data are also plotted in Figure 3 (right) to evaluate the predictive performance based upon the values of Area Under Curve (AUC). While AUC for development data is marginally higher than the one from logistic regression, both models perform comparably for validation data. 24

4 However, it is important to note that the GAM provides better insight into the relationship between the response and the predictor without imposing strict linear assumption and pre-specified functional form to the model. This feature is particularly helpful in database marketing, where the data structure is always complex and little domain knowledge about thousands of variables is known before model development. Although conceptually attractive, GAM is not beyond criticism. Lack of parametric functional form makes it difficult to score new data directly from the database in a direct marketing production environment. Also, the nonlinear effect without an estimated parameter might not be easily adopted by non-technical audiences such as business directors and campaign managers. A possible workaround might be to estimate a parametric approximation for each nonlinear term derived from the GAM, such as a piece-wise constant approximation. While there are multiple ways to come up with such an approximation based upon either percentile or experience, we propose a model-based method using a Classification and Regression Tree to develop such approximation. In this case, classification and regression tree is developed with only one independent variable and one dependent variable, which are the predictor and the corresponding nonlinear term, respectively. Such a tree-based model is constructed through a process of recursive binary partitioning. At each partition, an if-then splitting rule is generated to divide the nonlinear term into several homogeneous groups based upon the value of the predictor. Figure 4 shows diagrams of classification and regression trees for X5 and X7 (see Figure 4, top). Figure 3: ROC Curves for Development and Validation Data Figure 4: Classification and Regression Trees of X5 and X7 After the development of the classification and regression tree, we then use the piecewise constant approximation as a categorical variable to replace the nonlinear term from the GAM. As a result, the GAM collapses to become a logistic regression model that is very familiar. Figure 4 (top) shows such piecewise constant approximation for X5 and X7. Table 5 (pg. 26) displays the statistical output from revised logistic regression with inclusion of piecewise constant approximation. While X5 shows statistical significance, X7 is at the border of 10% significant level. Parameter estimates and statistical significances of the other numeric variables are very close to the ones in the GAM. In Figure 5 (pg. 26), ROC curves of logistic regression with piecewise constant approximation for both development and validation data are plotted to evaluate the efficiency of predictiveness. For development data, this new hybrid model performs similarly to the GAM discussed earlier. However, it generalizes better than both logistic regression and the GAM 25

5 Figure 5: Piecewise Constant Approximation for X5 and X7 for validation data with AUC = Since one of the advantages in the classification and regression tree is the resistance to outliers, our understanding is that this improvement might come from the reduction of over-fitting. Table 5: Partial Output of Revised Logistic Regression with Piecewise Constant Approximation Figure 6: ROC Curves for Development and Validation Data While the classification and regression tree provides a satisfactory solution of piecewise constant approximation for nonlinear effect, multivariate adaptive regression splines are able to address the same problem with piecewise linear approximation. Similar to the classification and regression tree, multivariate adaptive regression splines are designed to partition the entire range of a predictor into multiple sub-regions known as basis. Within each sub-region, a regression with a different coefficient is used to define the relationship between the response and the predictor. As a result, such a divide and conquer strategy provides flexibility to approximate any nonlinear pattern with sufficient numbers of basis functions. It is interesting to note that, when the coefficient in each sub-region is equal to zero and only the intercept remains, then the multivariate adaptive regression spline will simply become a classification and regression tree (see Figure 6, below). As the building block of a multivariate adaptive regression spline, the basis function can be considered a function with a of hockey stick shape, and takes the form of BF = max(x k, 0), where k is the breaking point of the hockey stick. During the model development, a forward selection method is employed to include statistically significant basis functions, followed by a backward pruning process. A similar technique is used in logistic regression for variable selection. Figure 7 (right) shows the piecewise linear approximation for nonlinear terms of X5 and X7, indicating 26

6 that each nonlinear pattern can be adequately approximated by three basis functions. Figure 7: Piecewise Linear Approximation for X5 and X7 After the development of multivariate adaptive regression splines, we can use derived basis functions to replace nonlinear terms from the GAM, and re-estimate a logistic regression with inclusion of these basis functions. Table 6 (right) illustrates the output of such revised logistic regression, and shows that almost all basis functions are statistically significant in this new model. Predictiveness efficiency is summarized in Figure 8, (right) using ROC curves and AUC again. While there is no noticeable difference with logistic regression and the GAM for development data, this new model does not generalize well for the validation data with AUC = In our view, this underperformance is likely to have arisen from over-fitting, which is one of the known drawbacks for multivariate adaptive regression splines. Table 6: Partial Output of Revised Logistic Regression with Piecewise Linear Approximation Conclusion We have demonstrated a new modeling technique and its application in direct marketing. In our experience, the GAM outperforms logistic regression in two aspects: First, the GAM relaxes the linear assumption between the response and predictors, and therefore avoids the problem of model mis-specification, which often occurs in the linearbased logistic regression. Second, by incorporating nonlinear effects, the GAM helps discover the hidden pattern between the response and predictors, and consequently improves the predictive performance while over-fitting is carefully guarded. Figure 8: Roc Curves for Development and Validation Data Besides its original concept and implementation, we have also discussed two 27

7 hybrid GAMs based upon our learning experience from daily modeling work, which are piecewise constant and piece linear approximation models. Our findings show that a hybrid model that combines the flexibility from GAM and the resistance to over-fitting from classification and regression tree is able to yield the best result. n Reference 1. McCullagh, P. and Nelder, J., Generalized Linear Models, Chapman and Hall, (1989). 2. Hastie, T. and Tibshirani, R., Generalized Additive Models, Chapman and Hall, (1990). 3. Hastie, T., Tibshirani, R., and Friedman, J., Elements of Statistical Learning, Springer, (2001). 4. Franke, J., Hardle, W., and Stahl, G., Measuring Risk in Complex Statistical Systems, Springer Verlag, (2000). 5. Breiman, L., Friedman, J., Olshen, R., and Stone, C., Classification and Regression Trees, Chapman & Hall, (1984) 6. Friedman, J., Multivariate Adaptive Regression Splines, The Annals of Statistics, Vol. 19, No. 1, 1-67, (1991). 28

Generalized Additive Model

Generalized Additive Model Generalized Additive Model by Huimin Liu Department of Mathematics and Statistics University of Minnesota Duluth, Duluth, MN 55812 December 2008 Table of Contents Abstract... 2 Chapter 1 Introduction 1.1

More information

Random Forest A. Fornaser

Random Forest A. Fornaser Random Forest A. Fornaser alberto.fornaser@unitn.it Sources Lecture 15: decision trees, information theory and random forests, Dr. Richard E. Turner Trees and Random Forests, Adele Cutler, Utah State University

More information

MIT Samberg Center Cambridge, MA, USA. May 30 th June 2 nd, by C. Rea, R.S. Granetz MIT Plasma Science and Fusion Center, Cambridge, MA, USA

MIT Samberg Center Cambridge, MA, USA. May 30 th June 2 nd, by C. Rea, R.S. Granetz MIT Plasma Science and Fusion Center, Cambridge, MA, USA Exploratory Machine Learning studies for disruption prediction on DIII-D by C. Rea, R.S. Granetz MIT Plasma Science and Fusion Center, Cambridge, MA, USA Presented at the 2 nd IAEA Technical Meeting on

More information

Statistics & Analysis. Fitting Generalized Additive Models with the GAM Procedure in SAS 9.2

Statistics & Analysis. Fitting Generalized Additive Models with the GAM Procedure in SAS 9.2 Fitting Generalized Additive Models with the GAM Procedure in SAS 9.2 Weijie Cai, SAS Institute Inc., Cary NC July 1, 2008 ABSTRACT Generalized additive models are useful in finding predictor-response

More information

Analytical model A structure and process for analyzing a dataset. For example, a decision tree is a model for the classification of a dataset.

Analytical model A structure and process for analyzing a dataset. For example, a decision tree is a model for the classification of a dataset. Glossary of data mining terms: Accuracy Accuracy is an important factor in assessing the success of data mining. When applied to data, accuracy refers to the rate of correct values in the data. When applied

More information

Interpretable Machine Learning with Applications to Banking

Interpretable Machine Learning with Applications to Banking Interpretable Machine Learning with Applications to Banking Linwei Hu Advanced Technologies for Modeling, Corporate Model Risk Wells Fargo October 26, 2018 2018 Wells Fargo Bank, N.A. All rights reserved.

More information

Applying Supervised Learning

Applying Supervised Learning Applying Supervised Learning When to Consider Supervised Learning A supervised learning algorithm takes a known set of input data (the training set) and known responses to the data (output), and trains

More information

Predictive Analytics: Demystifying Current and Emerging Methodologies. Tom Kolde, FCAS, MAAA Linda Brobeck, FCAS, MAAA

Predictive Analytics: Demystifying Current and Emerging Methodologies. Tom Kolde, FCAS, MAAA Linda Brobeck, FCAS, MAAA Predictive Analytics: Demystifying Current and Emerging Methodologies Tom Kolde, FCAS, MAAA Linda Brobeck, FCAS, MAAA May 18, 2017 About the Presenters Tom Kolde, FCAS, MAAA Consulting Actuary Chicago,

More information

Cyber attack detection using decision tree approach

Cyber attack detection using decision tree approach Cyber attack detection using decision tree approach Amit Shinde Department of Industrial Engineering, Arizona State University,Tempe, AZ, USA {amit.shinde@asu.edu} In this information age, information

More information

Model Assessment and Selection. Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer

Model Assessment and Selection. Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer Model Assessment and Selection Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer 1 Model Training data Testing data Model Testing error rate Training error

More information

Evaluation Measures. Sebastian Pölsterl. April 28, Computer Aided Medical Procedures Technische Universität München

Evaluation Measures. Sebastian Pölsterl. April 28, Computer Aided Medical Procedures Technische Universität München Evaluation Measures Sebastian Pölsterl Computer Aided Medical Procedures Technische Universität München April 28, 2015 Outline 1 Classification 1. Confusion Matrix 2. Receiver operating characteristics

More information

Nonparametric Regression

Nonparametric Regression Nonparametric Regression John Fox Department of Sociology McMaster University 1280 Main Street West Hamilton, Ontario Canada L8S 4M4 jfox@mcmaster.ca February 2004 Abstract Nonparametric regression analysis

More information

Using Multivariate Adaptive Regression Splines (MARS ) to enhance Generalised Linear Models. Inna Kolyshkina PriceWaterhouseCoopers

Using Multivariate Adaptive Regression Splines (MARS ) to enhance Generalised Linear Models. Inna Kolyshkina PriceWaterhouseCoopers Using Multivariate Adaptive Regression Splines (MARS ) to enhance Generalised Linear Models. Inna Kolyshkina PriceWaterhouseCoopers Why enhance GLM? Shortcomings of the linear modelling approach. GLM being

More information

Univariate and Multivariate Decision Trees

Univariate and Multivariate Decision Trees Univariate and Multivariate Decision Trees Olcay Taner Yıldız and Ethem Alpaydın Department of Computer Engineering Boğaziçi University İstanbul 80815 Turkey Abstract. Univariate decision trees at each

More information

DI TRANSFORM. The regressive analyses. identify relationships

DI TRANSFORM. The regressive analyses. identify relationships July 2, 2015 DI TRANSFORM MVstats TM Algorithm Overview Summary The DI Transform Multivariate Statistics (MVstats TM ) package includes five algorithm options that operate on most types of geologic, geophysical,

More information

Data mining with Support Vector Machine

Data mining with Support Vector Machine Data mining with Support Vector Machine Ms. Arti Patle IES, IPS Academy Indore (M.P.) artipatle@gmail.com Mr. Deepak Singh Chouhan IES, IPS Academy Indore (M.P.) deepak.schouhan@yahoo.com Abstract: Machine

More information

Hybrid Feature Selection for Modeling Intrusion Detection Systems

Hybrid Feature Selection for Modeling Intrusion Detection Systems Hybrid Feature Selection for Modeling Intrusion Detection Systems Srilatha Chebrolu, Ajith Abraham and Johnson P Thomas Department of Computer Science, Oklahoma State University, USA ajith.abraham@ieee.org,

More information

Big Data Methods. Chapter 5: Machine learning. Big Data Methods, Chapter 5, Slide 1

Big Data Methods. Chapter 5: Machine learning. Big Data Methods, Chapter 5, Slide 1 Big Data Methods Chapter 5: Machine learning Big Data Methods, Chapter 5, Slide 1 5.1 Introduction to machine learning What is machine learning? Concerned with the study and development of algorithms that

More information

Feature Selection. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani

Feature Selection. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani Feature Selection CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Dimensionality reduction Feature selection vs. feature extraction Filter univariate

More information

Statistics & Analysis. A Comparison of PDLREG and GAM Procedures in Measuring Dynamic Effects

Statistics & Analysis. A Comparison of PDLREG and GAM Procedures in Measuring Dynamic Effects A Comparison of PDLREG and GAM Procedures in Measuring Dynamic Effects Patralekha Bhattacharya Thinkalytics The PDLREG procedure in SAS is used to fit a finite distributed lagged model to time series data

More information

Predict the Likelihood of Responding to Direct Mail Campaign in Consumer Lending Industry

Predict the Likelihood of Responding to Direct Mail Campaign in Consumer Lending Industry Predict the Likelihood of Responding to Direct Mail Campaign in Consumer Lending Industry Jincheng Cao, SCPD Jincheng@stanford.edu 1. INTRODUCTION When running a direct mail campaign, it s common practice

More information

STAT 705 Introduction to generalized additive models

STAT 705 Introduction to generalized additive models STAT 705 Introduction to generalized additive models Timothy Hanson Department of Statistics, University of South Carolina Stat 705: Data Analysis II 1 / 22 Generalized additive models Consider a linear

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Sources Hastie, Tibshirani, Friedman: The Elements of Statistical Learning James, Witten, Hastie, Tibshirani: An Introduction to Statistical Learning Andrew Ng:

More information

Classification and Regression Trees

Classification and Regression Trees Classification and Regression Trees David S. Rosenberg New York University April 3, 2018 David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 3, 2018 1 / 51 Contents 1 Trees 2 Regression

More information

Classification Algorithms in Data Mining

Classification Algorithms in Data Mining August 9th, 2016 Suhas Mallesh Yash Thakkar Ashok Choudhary CIS660 Data Mining and Big Data Processing -Dr. Sunnie S. Chung Classification Algorithms in Data Mining Deciding on the classification algorithms

More information

Comparison of Optimization Methods for L1-regularized Logistic Regression

Comparison of Optimization Methods for L1-regularized Logistic Regression Comparison of Optimization Methods for L1-regularized Logistic Regression Aleksandar Jovanovich Department of Computer Science and Information Systems Youngstown State University Youngstown, OH 44555 aleksjovanovich@gmail.com

More information

Contents Machine Learning concepts 4 Learning Algorithm 4 Predictive Model (Model) 4 Model, Classification 4 Model, Regression 4 Representation

Contents Machine Learning concepts 4 Learning Algorithm 4 Predictive Model (Model) 4 Model, Classification 4 Model, Regression 4 Representation Contents Machine Learning concepts 4 Learning Algorithm 4 Predictive Model (Model) 4 Model, Classification 4 Model, Regression 4 Representation Learning 4 Supervised Learning 4 Unsupervised Learning 4

More information

Network. Department of Statistics. University of California, Berkeley. January, Abstract

Network. Department of Statistics. University of California, Berkeley. January, Abstract Parallelizing CART Using a Workstation Network Phil Spector Leo Breiman Department of Statistics University of California, Berkeley January, 1995 Abstract The CART (Classication and Regression Trees) program,

More information

AN INTRODUCTION TO MULTIVARIATE ADAPTIVE REGRESSION SPLINES FOR THE CANE INDUSTRY YL EVERINGHAM, J SEXTON

AN INTRODUCTION TO MULTIVARIATE ADAPTIVE REGRESSION SPLINES FOR THE CANE INDUSTRY YL EVERINGHAM, J SEXTON AN INTRODUCTION TO MULTIVARIATE ADAPTIVE REGRESSION SPLINES FOR THE CANE INDUSTRY By YL EVERINGHAM, J SEXTON School of Engineering and Physical Sciences, James Cook University yvette.everingham@jcu.edu.au

More information

Linear Methods for Regression and Shrinkage Methods

Linear Methods for Regression and Shrinkage Methods Linear Methods for Regression and Shrinkage Methods Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer 1 Linear Regression Models Least Squares Input vectors

More information

Nonparametric Approaches to Regression

Nonparametric Approaches to Regression Nonparametric Approaches to Regression In traditional nonparametric regression, we assume very little about the functional form of the mean response function. In particular, we assume the model where m(xi)

More information

CHAPTER 5. BASIC STEPS FOR MODEL DEVELOPMENT

CHAPTER 5. BASIC STEPS FOR MODEL DEVELOPMENT CHAPTER 5. BASIC STEPS FOR MODEL DEVELOPMENT This chapter provides step by step instructions on how to define and estimate each of the three types of LC models (Cluster, DFactor or Regression) and also

More information

SPM Users Guide. This guide elaborates on powerful ways to combine the TreeNet and GPS engines to achieve model compression and more.

SPM Users Guide. This guide elaborates on powerful ways to combine the TreeNet and GPS engines to achieve model compression and more. SPM Users Guide Model Compression via ISLE and RuleLearner This guide elaborates on powerful ways to combine the TreeNet and GPS engines to achieve model compression and more. Title: Model Compression

More information

A Method for Comparing Multiple Regression Models

A Method for Comparing Multiple Regression Models CSIS Discussion Paper No. 141 A Method for Comparing Multiple Regression Models Yuki Hiruta Yasushi Asami Department of Urban Engineering, the University of Tokyo e-mail: hiruta@ua.t.u-tokyo.ac.jp asami@csis.u-tokyo.ac.jp

More information

DATA MINING AND MACHINE LEARNING. Lecture 6: Data preprocessing and model selection Lecturer: Simone Scardapane

DATA MINING AND MACHINE LEARNING. Lecture 6: Data preprocessing and model selection Lecturer: Simone Scardapane DATA MINING AND MACHINE LEARNING Lecture 6: Data preprocessing and model selection Lecturer: Simone Scardapane Academic Year 2016/2017 Table of contents Data preprocessing Feature normalization Missing

More information

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review Gautam Kunapuli Machine Learning Data is identically and independently distributed Goal is to learn a function that maps to Data is generated using an unknown function Learn a hypothesis that minimizes

More information

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1 Preface to the Second Edition Preface to the First Edition vii xi 1 Introduction 1 2 Overview of Supervised Learning 9 2.1 Introduction... 9 2.2 Variable Types and Terminology... 9 2.3 Two Simple Approaches

More information

Chapter 5. Tree-based Methods

Chapter 5. Tree-based Methods Chapter 5. Tree-based Methods Wei Pan Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455 Email: weip@biostat.umn.edu PubH 7475/8475 c Wei Pan Regression

More information

Topics in Machine Learning

Topics in Machine Learning Topics in Machine Learning Gilad Lerman School of Mathematics University of Minnesota Text/slides stolen from G. James, D. Witten, T. Hastie, R. Tibshirani and A. Ng Machine Learning - Motivation Arthur

More information

Non-Linearity of Scorecard Log-Odds

Non-Linearity of Scorecard Log-Odds Non-Linearity of Scorecard Log-Odds Ross McDonald, Keith Smith, Matthew Sturgess, Edward Huang Retail Decision Science, Lloyds Banking Group Edinburgh Credit Scoring Conference 6 th August 9 Lloyds Banking

More information

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Syllabus Fri. 27.10. (1) 0. Introduction A. Supervised Learning: Linear Models & Fundamentals Fri. 3.11. (2) A.1 Linear Regression Fri. 10.11. (3) A.2 Linear Classification Fri. 17.11. (4) A.3 Regularization

More information

An Optimal Search Process of Eigen Knots. for Spline Logistic Regression. Research Department, Point Right

An Optimal Search Process of Eigen Knots. for Spline Logistic Regression. Research Department, Point Right An Optimal Search Process of Eigen Knots for Spline Logistic Regression John Gao and Cheryl Caswell Research Department, Point Right Abstract The spline regression method usually defines a series piecewise

More information

Predict Outcomes and Reveal Relationships in Categorical Data

Predict Outcomes and Reveal Relationships in Categorical Data PASW Categories 18 Specifications Predict Outcomes and Reveal Relationships in Categorical Data Unleash the full potential of your data through predictive analysis, statistical learning, perceptual mapping,

More information

Local Minima in Regression with Optimal Scaling Transformations

Local Minima in Regression with Optimal Scaling Transformations Chapter 2 Local Minima in Regression with Optimal Scaling Transformations CATREG is a program for categorical multiple regression, applying optimal scaling methodology to quantify categorical variables,

More information

The Curse of Dimensionality

The Curse of Dimensionality The Curse of Dimensionality ACAS 2002 p1/66 Curse of Dimensionality The basic idea of the curse of dimensionality is that high dimensional data is difficult to work with for several reasons: Adding more

More information

Stat 342 Exam 3 Fall 2014

Stat 342 Exam 3 Fall 2014 Stat 34 Exam 3 Fall 04 I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed There are questions on the following 6 pages. Do as many of them as you can

More information

Recitation Supplement: Creating a Neural Network for Classification SAS EM December 2, 2002

Recitation Supplement: Creating a Neural Network for Classification SAS EM December 2, 2002 Recitation Supplement: Creating a Neural Network for Classification SAS EM December 2, 2002 Introduction Neural networks are flexible nonlinear models that can be used for regression and classification

More information

REGRESSION BY SELECTING APPROPRIATE FEATURE(S)

REGRESSION BY SELECTING APPROPRIATE FEATURE(S) REGRESSION BY SELECTING APPROPRIATE FEATURE(S) 7ROJD$\GÕQDQG+$OWD\*üvenir Department of Computer Engineering Bilkent University Ankara, 06533, TURKEY Abstract. This paper describes two machine learning

More information

Lecture 24: Generalized Additive Models Stat 704: Data Analysis I, Fall 2010

Lecture 24: Generalized Additive Models Stat 704: Data Analysis I, Fall 2010 Lecture 24: Generalized Additive Models Stat 704: Data Analysis I, Fall 2010 Tim Hanson, Ph.D. University of South Carolina T. Hanson (USC) Stat 704: Data Analysis I, Fall 2010 1 / 26 Additive predictors

More information

Machine Learning: An Applied Econometric Approach Online Appendix

Machine Learning: An Applied Econometric Approach Online Appendix Machine Learning: An Applied Econometric Approach Online Appendix Sendhil Mullainathan mullain@fas.harvard.edu Jann Spiess jspiess@fas.harvard.edu April 2017 A How We Predict In this section, we detail

More information

Lecture 9: Support Vector Machines

Lecture 9: Support Vector Machines Lecture 9: Support Vector Machines William Webber (william@williamwebber.com) COMP90042, 2014, Semester 1, Lecture 8 What we ll learn in this lecture Support Vector Machines (SVMs) a highly robust and

More information

Classification and Regression Trees

Classification and Regression Trees Classification and Regression Trees Matthew S. Shotwell, Ph.D. Department of Biostatistics Vanderbilt University School of Medicine Nashville, TN, USA March 16, 2018 Introduction trees partition feature

More information

The gbev Package. August 19, 2006

The gbev Package. August 19, 2006 The gbev Package August 19, 2006 Version 0.1 Date 2006-08-10 Title Gradient Boosted Regression Trees with Errors-in-Variables Author Joe Sexton Maintainer Joe Sexton

More information

Fast or furious? - User analysis of SF Express Inc

Fast or furious? - User analysis of SF Express Inc CS 229 PROJECT, DEC. 2017 1 Fast or furious? - User analysis of SF Express Inc Gege Wen@gegewen, Yiyuan Zhang@yiyuan12, Kezhen Zhao@zkz I. MOTIVATION The motivation of this project is to predict the likelihood

More information

Classification and Regression via Integer Optimization

Classification and Regression via Integer Optimization Classification and Regression via Integer Optimization Dimitris Bertsimas Romy Shioda September, 2002 Abstract Motivated by the significant advances in integer optimization in the past decade, we introduce

More information

Evaluation Metrics. (Classifiers) CS229 Section Anand Avati

Evaluation Metrics. (Classifiers) CS229 Section Anand Avati Evaluation Metrics (Classifiers) CS Section Anand Avati Topics Why? Binary classifiers Metrics Rank view Thresholding Confusion Matrix Point metrics: Accuracy, Precision, Recall / Sensitivity, Specificity,

More information

3 Ways to Improve Your Regression

3 Ways to Improve Your Regression 3 Ways to Improve Your Regression Introduction This tutorial will take you through the steps demonstrated in the 3 Ways to Improve Your Regression webinar. First, you will be introduced to a dataset about

More information

Weka ( )

Weka (  ) Weka ( http://www.cs.waikato.ac.nz/ml/weka/ ) The phases in which classifier s design can be divided are reflected in WEKA s Explorer structure: Data pre-processing (filtering) and representation Supervised

More information

Performance Estimation and Regularization. Kasthuri Kannan, PhD. Machine Learning, Spring 2018

Performance Estimation and Regularization. Kasthuri Kannan, PhD. Machine Learning, Spring 2018 Performance Estimation and Regularization Kasthuri Kannan, PhD. Machine Learning, Spring 2018 Bias- Variance Tradeoff Fundamental to machine learning approaches Bias- Variance Tradeoff Error due to Bias:

More information

Multicollinearity and Validation CIVL 7012/8012

Multicollinearity and Validation CIVL 7012/8012 Multicollinearity and Validation CIVL 7012/8012 2 In Today s Class Recap Multicollinearity Model Validation MULTICOLLINEARITY 1. Perfect Multicollinearity 2. Consequences of Perfect Multicollinearity 3.

More information

Evaluating generalization (validation) Harvard-MIT Division of Health Sciences and Technology HST.951J: Medical Decision Support

Evaluating generalization (validation) Harvard-MIT Division of Health Sciences and Technology HST.951J: Medical Decision Support Evaluating generalization (validation) Harvard-MIT Division of Health Sciences and Technology HST.951J: Medical Decision Support Topics Validation of biomedical models Data-splitting Resampling Cross-validation

More information

Logistic Model Tree With Modified AIC

Logistic Model Tree With Modified AIC Logistic Model Tree With Modified AIC Mitesh J. Thakkar Neha J. Thakkar Dr. J.S.Shah Student of M.E.I.T. Asst.Prof.Computer Dept. Prof.&Head Computer Dept. S.S.Engineering College, Indus Engineering College

More information

Induction of Multivariate Decision Trees by Using Dipolar Criteria

Induction of Multivariate Decision Trees by Using Dipolar Criteria Induction of Multivariate Decision Trees by Using Dipolar Criteria Leon Bobrowski 1,2 and Marek Krȩtowski 1 1 Institute of Computer Science, Technical University of Bia lystok, Poland 2 Institute of Biocybernetics

More information

Modelling Personalized Screening: a Step Forward on Risk Assessment Methods

Modelling Personalized Screening: a Step Forward on Risk Assessment Methods Modelling Personalized Screening: a Step Forward on Risk Assessment Methods Validating Prediction Models Inmaculada Arostegui Universidad del País Vasco UPV/EHU Red de Investigación en Servicios de Salud

More information

Using Machine Learning to Optimize Storage Systems

Using Machine Learning to Optimize Storage Systems Using Machine Learning to Optimize Storage Systems Dr. Kiran Gunnam 1 Outline 1. Overview 2. Building Flash Models using Logistic Regression. 3. Storage Object classification 4. Storage Allocation recommendation

More information

劉介宇 國立台北護理健康大學 護理助產研究所 / 通識教育中心副教授 兼教師發展中心教師評鑑組長 Nov 19, 2012

劉介宇 國立台北護理健康大學 護理助產研究所 / 通識教育中心副教授 兼教師發展中心教師評鑑組長 Nov 19, 2012 劉介宇 國立台北護理健康大學 護理助產研究所 / 通識教育中心副教授 兼教師發展中心教師評鑑組長 Nov 19, 2012 Overview of Data Mining ( 資料採礦 ) What is Data Mining? Steps in Data Mining Overview of Data Mining techniques Points to Remember Data mining

More information

Building a cascade detector and its applications in automatic target detection

Building a cascade detector and its applications in automatic target detection Building a cascade detector and its applications in automatic target detection Xiaoming Huo and Jihong Chen A hierarchical classifier cascade is proposed for target detection. In building an optimal cascade

More information

Didacticiel - Études de cas. Comparison of the implementation of the CART algorithm under Tanagra and R (rpart package).

Didacticiel - Études de cas. Comparison of the implementation of the CART algorithm under Tanagra and R (rpart package). 1 Theme Comparison of the implementation of the CART algorithm under Tanagra and R (rpart package). CART (Breiman and al., 1984) is a very popular classification tree (says also decision tree) learning

More information

INTRODUCTION... 2 FEATURES OF DARWIN... 4 SPECIAL FEATURES OF DARWIN LATEST FEATURES OF DARWIN STRENGTHS & LIMITATIONS OF DARWIN...

INTRODUCTION... 2 FEATURES OF DARWIN... 4 SPECIAL FEATURES OF DARWIN LATEST FEATURES OF DARWIN STRENGTHS & LIMITATIONS OF DARWIN... INTRODUCTION... 2 WHAT IS DATA MINING?... 2 HOW TO ACHIEVE DATA MINING... 2 THE ROLE OF DARWIN... 3 FEATURES OF DARWIN... 4 USER FRIENDLY... 4 SCALABILITY... 6 VISUALIZATION... 8 FUNCTIONALITY... 10 Data

More information

GENREG DID THAT? Clay Barker Research Statistician Developer JMP Division, SAS Institute

GENREG DID THAT? Clay Barker Research Statistician Developer JMP Division, SAS Institute GENREG DID THAT? Clay Barker Research Statistician Developer JMP Division, SAS Institute GENREG WHAT IS IT? The Generalized Regression platform was introduced in JMP Pro 11 and got much better in version

More information

Link Prediction for Social Network

Link Prediction for Social Network Link Prediction for Social Network Ning Lin Computer Science and Engineering University of California, San Diego Email: nil016@eng.ucsd.edu Abstract Friendship recommendation has become an important issue

More information

Predicting Rare Failure Events using Classification Trees on Large Scale Manufacturing Data with Complex Interactions

Predicting Rare Failure Events using Classification Trees on Large Scale Manufacturing Data with Complex Interactions 2016 IEEE International Conference on Big Data (Big Data) Predicting Rare Failure Events using Classification Trees on Large Scale Manufacturing Data with Complex Interactions Jeff Hebert, Texas Instruments

More information

Business Club. Decision Trees

Business Club. Decision Trees Business Club Decision Trees Business Club Analytics Team December 2017 Index 1. Motivation- A Case Study 2. The Trees a. What is a decision tree b. Representation 3. Regression v/s Classification 4. Building

More information

Trimmed bagging a DEPARTMENT OF DECISION SCIENCES AND INFORMATION MANAGEMENT (KBI) Christophe Croux, Kristel Joossens and Aurélie Lemmens

Trimmed bagging a DEPARTMENT OF DECISION SCIENCES AND INFORMATION MANAGEMENT (KBI) Christophe Croux, Kristel Joossens and Aurélie Lemmens Faculty of Economics and Applied Economics Trimmed bagging a Christophe Croux, Kristel Joossens and Aurélie Lemmens DEPARTMENT OF DECISION SCIENCES AND INFORMATION MANAGEMENT (KBI) KBI 0721 Trimmed Bagging

More information

arxiv: v1 [stat.ml] 25 Jan 2018

arxiv: v1 [stat.ml] 25 Jan 2018 arxiv:1801.08310v1 [stat.ml] 25 Jan 2018 Information gain ratio correction: Improving prediction with more balanced decision tree splits Antonin Leroux 1, Matthieu Boussard 1, and Remi Dès 1 1 craft ai

More information

Building Better Parametric Cost Models

Building Better Parametric Cost Models Building Better Parametric Cost Models Based on the PMI PMBOK Guide Fourth Edition 37 IPDI has been reviewed and approved as a provider of project management training by the Project Management Institute

More information

NONPARAMETRIC REGRESSION TECHNIQUES

NONPARAMETRIC REGRESSION TECHNIQUES NONPARAMETRIC REGRESSION TECHNIQUES C&PE 940, 28 November 2005 Geoff Bohling Assistant Scientist Kansas Geological Survey geoff@kgs.ku.edu 864-2093 Overheads and other resources available at: http://people.ku.edu/~gbohling/cpe940

More information

Improving Quality of Products in Hard Drive Manufacturing by Decision Tree Technique

Improving Quality of Products in Hard Drive Manufacturing by Decision Tree Technique Improving Quality of Products in Hard Drive Manufacturing by Decision Tree Technique Anotai Siltepavet 1, Sukree Sinthupinyo 2 and Prabhas Chongstitvatana 3 1 Computer Engineering, Chulalongkorn University,

More information

Improving Classification Accuracy for Single-loop Reliability-based Design Optimization

Improving Classification Accuracy for Single-loop Reliability-based Design Optimization , March 15-17, 2017, Hong Kong Improving Classification Accuracy for Single-loop Reliability-based Design Optimization I-Tung Yang, and Willy Husada Abstract Reliability-based design optimization (RBDO)

More information

Model Inference and Averaging. Baging, Stacking, Random Forest, Boosting

Model Inference and Averaging. Baging, Stacking, Random Forest, Boosting Model Inference and Averaging Baging, Stacking, Random Forest, Boosting Bagging Bootstrap Aggregating Bootstrap Repeatedly select n data samples with replacement Each dataset b=1:b is slightly different

More information

MACHINE LEARNING TOOLBOX. Logistic regression on Sonar

MACHINE LEARNING TOOLBOX. Logistic regression on Sonar MACHINE LEARNING TOOLBOX Logistic regression on Sonar Classification models Categorical (i.e. qualitative) target variable Example: will a loan default? Still a form of supervised learning Use a train/test

More information

Structured Completion Predictors Applied to Image Segmentation

Structured Completion Predictors Applied to Image Segmentation Structured Completion Predictors Applied to Image Segmentation Dmitriy Brezhnev, Raphael-Joel Lim, Anirudh Venkatesh December 16, 2011 Abstract Multi-image segmentation makes use of global and local features

More information

USING CONVEX PSEUDO-DATA TO INCREASE PREDICTION ACCURACY

USING CONVEX PSEUDO-DATA TO INCREASE PREDICTION ACCURACY 1 USING CONVEX PSEUDO-DATA TO INCREASE PREDICTION ACCURACY Leo Breiman Statistics Department University of California Berkeley, CA 94720 leo@stat.berkeley.edu ABSTRACT A prediction algorithm is consistent

More information

A technique for constructing monotonic regression splines to enable non-linear transformation of GIS rasters

A technique for constructing monotonic regression splines to enable non-linear transformation of GIS rasters 18 th World IMACS / MODSIM Congress, Cairns, Australia 13-17 July 2009 http://mssanz.org.au/modsim09 A technique for constructing monotonic regression splines to enable non-linear transformation of GIS

More information

SYS 6021 Linear Statistical Models

SYS 6021 Linear Statistical Models SYS 6021 Linear Statistical Models Project 2 Spam Filters Jinghe Zhang Summary The spambase data and time indexed counts of spams and hams are studied to develop accurate spam filters. Static models are

More information

A General Greedy Approximation Algorithm with Applications

A General Greedy Approximation Algorithm with Applications A General Greedy Approximation Algorithm with Applications Tong Zhang IBM T.J. Watson Research Center Yorktown Heights, NY 10598 tzhang@watson.ibm.com Abstract Greedy approximation algorithms have been

More information

Comparing Univariate and Multivariate Decision Trees *

Comparing Univariate and Multivariate Decision Trees * Comparing Univariate and Multivariate Decision Trees * Olcay Taner Yıldız, Ethem Alpaydın Department of Computer Engineering Boğaziçi University, 80815 İstanbul Turkey yildizol@cmpe.boun.edu.tr, alpaydin@boun.edu.tr

More information

R (2) Data analysis case study using R for readily available data set using any one machine learning algorithm.

R (2) Data analysis case study using R for readily available data set using any one machine learning algorithm. Assignment No. 4 Title: SD Module- Data Science with R Program R (2) C (4) V (2) T (2) Total (10) Dated Sign Data analysis case study using R for readily available data set using any one machine learning

More information

Assessing the Quality of the Natural Cubic Spline Approximation

Assessing the Quality of the Natural Cubic Spline Approximation Assessing the Quality of the Natural Cubic Spline Approximation AHMET SEZER ANADOLU UNIVERSITY Department of Statisticss Yunus Emre Kampusu Eskisehir TURKEY ahsst12@yahoo.com Abstract: In large samples,

More information

CHAPTER 7 EXAMPLES: MIXTURE MODELING WITH CROSS- SECTIONAL DATA

CHAPTER 7 EXAMPLES: MIXTURE MODELING WITH CROSS- SECTIONAL DATA Examples: Mixture Modeling With Cross-Sectional Data CHAPTER 7 EXAMPLES: MIXTURE MODELING WITH CROSS- SECTIONAL DATA Mixture modeling refers to modeling with categorical latent variables that represent

More information

For continuous responses: the Actual by Predicted plot how well the model fits the models. For a perfect fit, all the points would be on the diagonal.

For continuous responses: the Actual by Predicted plot how well the model fits the models. For a perfect fit, all the points would be on the diagonal. 1 ROC Curve and Lift Curve : GRAPHS F0R GOODNESS OF FIT Reference 1. StatSoft, Inc. (2011). STATISTICA (data analysis software system), version 10. www.statsoft.com. 2. JMP, Version 9. SAS Institute Inc.,

More information

ICA as a preprocessing technique for classification

ICA as a preprocessing technique for classification ICA as a preprocessing technique for classification V.Sanchez-Poblador 1, E. Monte-Moreno 1, J. Solé-Casals 2 1 TALP Research Center Universitat Politècnica de Catalunya (Catalonia, Spain) enric@gps.tsc.upc.es

More information

Test designs for evaluating the effectiveness of mail packs Received: 30th November, 2001

Test designs for evaluating the effectiveness of mail packs Received: 30th November, 2001 Test designs for evaluating the effectiveness of mail packs Received: 30th November, 2001 Leonard Paas previously worked as a senior consultant at the Database Marketing Centre of Postbank. He worked on

More information

Further Maths Notes. Common Mistakes. Read the bold words in the exam! Always check data entry. Write equations in terms of variables

Further Maths Notes. Common Mistakes. Read the bold words in the exam! Always check data entry. Write equations in terms of variables Further Maths Notes Common Mistakes Read the bold words in the exam! Always check data entry Remember to interpret data with the multipliers specified (e.g. in thousands) Write equations in terms of variables

More information

Credit card Fraud Detection using Predictive Modeling: a Review

Credit card Fraud Detection using Predictive Modeling: a Review February 207 IJIRT Volume 3 Issue 9 ISSN: 2396002 Credit card Fraud Detection using Predictive Modeling: a Review Varre.Perantalu, K. BhargavKiran 2 PG Scholar, CSE, Vishnu Institute of Technology, Bhimavaram,

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley U.C. Berkeley Division of Biostatistics Working Paper Series Year 2014 Paper 321 A Scalable Supervised Subsemble Prediction Algorithm Stephanie Sapp Mark J. van der Laan

More information

Decision Trees Dr. G. Bharadwaja Kumar VIT Chennai

Decision Trees Dr. G. Bharadwaja Kumar VIT Chennai Decision Trees Decision Tree Decision Trees (DTs) are a nonparametric supervised learning method used for classification and regression. The goal is to create a model that predicts the value of a target

More information

Optimal Extension of Error Correcting Output Codes

Optimal Extension of Error Correcting Output Codes Book Title Book Editors IOS Press, 2003 1 Optimal Extension of Error Correcting Output Codes Sergio Escalera a, Oriol Pujol b, and Petia Radeva a a Centre de Visió per Computador, Campus UAB, 08193 Bellaterra

More information

Lecture 7: Decision Trees

Lecture 7: Decision Trees Lecture 7: Decision Trees Instructor: Outline 1 Geometric Perspective of Classification 2 Decision Trees Geometric Perspective of Classification Perspective of Classification Algorithmic Geometric Probabilistic...

More information

Improving Quality of Products in Hard Drive Manufacturing by Decision Tree Technique

Improving Quality of Products in Hard Drive Manufacturing by Decision Tree Technique www.ijcsi.org 29 Improving Quality of Products in Hard Drive Manufacturing by Decision Tree Technique Anotai Siltepavet 1, Sukree Sinthupinyo 2 and Prabhas Chongstitvatana 3 1 Computer Engineering, Chulalongkorn

More information