An Overview of Matchmoving using Structure from Motion Methods

Size: px
Start display at page:

Download "An Overview of Matchmoving using Structure from Motion Methods"

Transcription

1 An Overview of Matchmoving using Structure from Motion Methods Kamyar Haji Allahverdi Pour Department of Computer Engineering Sharif University of Technology Tehran, Iran Alimohammad Rabbani Department of Computer Engineering Sharif University of Technology Tehran, Iran Abstract Nowadays seeing supernatural happenings in movies is not a rare happening. Here we want to discuss a method on how to add extraterrestrial objects to an ordinary video. This method of adding computer-generated objects to a natural video is called Matchmoving [1]. The main part of this process is Structure from Motion (SfM). SfM is the process that enables Matchmovers to use the 3D information of the scene. We will mainly discuss this part, how it works and different methods to extract its information. I. INTRODUCTION As a Matchmover tries to add an artificial object to a real scene, he needs the 3D information of the scene. This information can be extracted from the sequence of images. Using the difference between images, a perception of this 3D structure can be computed. As converting 3D information to 2D information would inevitably introduce data loss, this task is challenging and needs extra information to do the reconstruction. This information can be found from our previous knowledge about the scene, e.g. looking for parallel lines in the images. Another way is finding corresponding points in different views and construct 3D points using triangulation [8]. II. STRUCTURE FROM MOTION First of all, we ll discuss the process in which we can find information about the real scene. This task is done using a method called Structure from Motion. Basic steps of this process is shown in Figure 1. This process starts with understanding the mapping between 3D world and 2D image plane. After understanding that, we ll discuss the method to find 3D points from 2D points. A. From 3D to 2D We want to model the process in which a 3D point is mapped to a 2D point by a camera. The most common model is pinhole projection model. If there is no non-linear effect, like radial distortion, this model is a good approximation for most real cameras. This model has 3 components in which a 3D point is converted to a 2D point: 1) The first component is transforming real world coordinates to camera coordinates. This transform consists of a rotation and a translation, which together they are called camera extrinsic parameters. Fig. 1. Basic Steps of SfM [5] 2) The second component is mapping 3D points to 2D points. This mapping is a matrix like 2 the 3 one below: X x f c 4y5 40 f Y c 7 4Z f 0 c 5 1 Where f is the focal length of camera. Here we are using homogenous coordinates, so we should keep the last element equal to 1. As we don t have access to this scale factor, we just have an arbitrary perception of depth. This means that using just one image information, we can t understand how far an object is from a camera. We can set this scale factor to 1, as we don t know the exact number. 3) The final component is converting 2D coordinates of image plane to pixel coordinates. This transformation is done using an upper triangular matrix called K which hold camera intrinsic parameters. This matrix can be written as: 2 K = 4 3 u s u 0 0 v v By combining aforementioned matrices, we can compute a projection matrix, P, which maps 3D points to 2D pixel coordinates:

2 This relation can be derived by replacing points in the essential matrix relation with the multiplication of K 1, inverse of camera intrinsic parameters matrix, by the pixel point: Fig. 2. Epipolar Geometry x PX By using this equation, we can find two linear equations to find P elements. This matrix has 12 elements, which there are 11 unknown elements as the scale factor is arbitrary. So if we have at least 6 points in 3D space and their correspondents in 2D image plane, we can write 12 different equations to find P elements. B. Finding Correspondent Points As mentioned before, we need to find corresponding points to extract 3D scene structure. One way to find these correspondent points, is to ask a user to tag these points in our images. This approach is time consuming and the results will depend on how accurate the user has selected the correspondent points. The automatic way to do so, in general, is a difficult task. Methods for finding these correspondent points automatically, use information around important pixels to describe them. These important points are called interest points. We can measure the similarity between these descriptors to find an approximate of how much two points can be considered matches. For example we can use Harris corner detector [3] to find such interest points. Harris corner detector finds points that are the maxima for image auto-correlation function. C. Epipolar Geometry Epipolar geometry or two-view geometry provides the relation between two views of a scene. If we have point x in the first view, epipolar geometry restricts the corresponding point, x 0, in the second view to lie on a line called epipolar line (Figure 2). This constraint can be formulated using a matrix called essential matrix. 1) Essential Matrix: This matrix gives the relation that can find epipolar lines: x T Ex 0 =0 Where Ex 0 is the epipolar line in the second view corresponding to the point x in the first view. Essential matrix has 5 parameters and can be found using 5 different matches of points [2]. 2) Fundamental Matrix: We can further expand this relation to find the formulation for two corresponding pixel points in two images. The resulting matrix is called fundamental matrix: u T Fu 0 =0 (K 1 u) T E(K 0 1 u 0 ) = 0 u T (K 1T EK 0 1 )u 0 = 0 u T Fu 0 = 0 So we can see that fundamental matrix is given by F K 1T EK 0 1. This matrix has 9 elements and it can be computed up to an arbitrary scale, so we can calculate this matrix using 8 correspondent points. 3) Projection Matrices: After finding fundamental matrix we can calculate projection matrices. This can be accomplished by decomposing fundamental matrix [4]. D. Triangulation: From 2D to 3D By finding camera projection matrices, we can find the correspondent 3D point of every 2D pair of points. This process is called Triangulation. This process is done by intersecting projection rays, rays passing from camera center and 2D points on the image plane. As there is always some noise in our measurements, the projected rays of 2D points will not intersect. So the main task of triangulation is to find 3D points that minimize this error: X = arg min X P ku i i u 0 i k Where u i is the 2D point of the image and u 0 i is the predicted 2D point by the 3D point and projection matrix. After doing triangulation we have found the information we were looking for about the structure of the scene. E. Multiple-View Structure from Motion As we discussed in the previous section, given two views we can find the correspondent 3D points to reconstruct the structure of the scene. But with a sequence of images, e.g. frames of a video, we have more than two views. The methods used to reconstruct a 3D scene from multiple views are called sequential methods. As new views are given to these methods they extend the partial reconstructed scene with the new information. One of these ways uses sequential Monte Carlo (SMC) methods for estimating 3D scene [7]. SMC originally is a non-linear filter for smoothing state space model. Another well-known method for refining 3D points when we have multiple views is Bundle Adjustment. Bundle Adjustment is the act of refining 3D points and projection matrices simultaneously. F. Multibody Structure from Motion Multibody structure from motion is the extension of SfM to dynamic scenes where objects can move and the scene is not static. This task is challenging because number of moving objects can change during time. Also moving objects are often small and therefore few number of features can be tracked for them [6]. The main requirements to build a system that enables dynamic SfM are:

3 1) finding number of moving objects at the beginning of image sequence, 2) segmenting feature tracks to find different motions in scene, 3) finding 3D structure for each moving object, The accuracy of the method is very dependent on how accurate we segment feature tracks. III. 3D MATCH MOVING Match moving is a visual-effects technique that allows us to insert computer-generated objects into real camera captured scenes. Thinking technically, it is hard to insert these objects in a way that they maintain correct position, orientation, scale, and motion relative to other objects in the real scene. The key process in match moving is to precisely determine camera movements in a 3D space. Having camera movements, newly inserted 3D objects will appear perfectly matched with regards to perspective, position and scale. This means that if we have a camera-tracked blank scene, we can create a 3D object in it. After regenerating a 2D video scene again, with the new object inserted, we will see the object moving in the 2D scene. These movements, gives us the impression that the camera is really moving around our 3D object. Now, if we had a 3D structure of objects present in the footage, we could recreate the scene adding new objects with regards to real objects. Consider that the final result, must comply with basic human vision rules and concepts such as motion parallax and occlusion. This is where SfM comes in handy. We create 3D structures of real objects in original footage in order to comply with these concepts as we add new objects. Figure 3 depicts our sample match moved footage. Considering previous notes in mind, we can break the process of match moving into the following steps: 1) Feature tracking 2) Calculating 3D information 3) Camera tracking 4) 3D modeling 5) Video composition A. Feature Tracking Feature tracking is a process very similar to motion estimation. This is the first step that needs to be done before calculating 3D information or tracking the camera. Features are points of interest in the image that can be tracked in several frames with a tracking algorithm. Depending on the tracking algorithm, we may have different approaches in selecting features. Fig. 3. Sample Match Moved Footage Fig. 4. Feature Tracking The more precision the algorithm has in tracking features, the more precisely we can calculate 3D information. Like motion estimation, there are motion vectors for active features frame by frame. The result is that we can find the position of each feature throughout the entire footage by having its motion vectors and its position in a single frame. Statistical information may be used to eliminate or correct mistakes in feature tracking. A sample visualization of feature tracking is shown in Figure 4. B. Calculating 3D information Extracting 3D information from original footage is an essential part of match moving. First, it helps solve cameras 3D motion. And then, that information will be used in next steps to maintain visual relations of added objects and real objects. Here is an example one can keep in mind describing why this information is needed to maintain visual relations. Suppose we are placing a cylinder on top of a table. First, we need to know where in space the surface of the table is located. In addition, some parts of the cylinders shadow may cast outside the tables surface on the ground. So the ground plane is also needed. In the previous simple example, at least two surfaces were needed. In more complex situations and scenes, more points and surfaces are required. At this point, SfM methods are used to build the 3D structure of a scene. The details needed in the structure, is determined by the complexity of the scene and the artists requirements. C. Camera Tracking Another step where SfM methods show up, is tracking the camera and solving its motion in 3D space. This is the key process in match moving. Again, using SfM techniques, the exact characteristics of the camera are extracted throughout the footage. These characteristics include orientation, position, and focal length. In a nutshell, camera tracking is done by inverse projection of 2D paths for rigid objects in the footage. During camera tracking, a vector is created in each frame for the camera specifying its characteristics. In a perspective 3D view, the cameras path and orientation can be seen clearly using these vectors. Figure 5 shows a perspective view of an original footage. In this figure, the 3D structure of the scene is partially reconstructed and the camera is tracked as well.

4 Fig. 7. Different Rendered Layers of Output Fig. 5. Camera Tracking Fig. 8. Composited Footage The red line in the figure depicts the path that the camera is moving on during the footage. D. 3D Modeling A 3D artist may now get involved to design new objects for the scene. The camera and reconstructed points from the footage are imported in a 3D modeling software. Therefore, the artist can see important points in a 3D space from the cameras view. Since the camera is moving in the scene, objects that are inserted will be moving accordingly in the final 2D output. Figure 6 demonstrates the interface of a 3D modeling software and shows a cylinder added on the surface of a table. In this step, the artists talents play a crucial role in the quality. He is the one who adds new objects in place and tries to add details to them. The outputs of this step are image sequences of different layers. Each layer consists of a set of characteristics of different objects. For example, a single layer maybe used for shadows, meaning that only shadows of different objects are visible in the layer. The image sequence of each layer is technically new frames that show the current position of objects in that frame. The frames are consistent with the frames from the original footage. In the next step, these image sequences are composited into the original footage and will create the final result. Figure 7 indicates different layers of rendered output. E. Video Composition This is the next and final step in match moving. Different layers of newly added objects need to be composited in to the original footage. As a result, computer generated objects seem to be perfectly matched into the sequence, as if they were actually there when the footage was being recorded. A lot of different computer software such as Adobe After Effects R are available for video compositing. Using blending modes, alpha channel masking, and similar image composition techniques, the artist is able to reconstruct objects from different layers. The layering that is done in the previous step helps the artist deal with more complexities in composition. Suppose a computer generated object needs to cast its shadow on an object from the original footage. Depending on the situation, it may be necessary to reduce the intensity of that shadow. If the layers for color and shadow are not separated, the artist may not be able to reduce the intensity of the objects shadow without changing its color characteristics. This may result in a visual error and is not acceptable in match moving. Figure 8 shows our sample footage being composited. IV. CONCLUSION In this overview we covered the process of Match Moving. We also discussed about Structure from Motion which is the main element of Match Moving. We saw that new methods of SfM enables us to create great visual effects. Fig. 6. 3D Model of a Cylinder REFERENCES [1] T. Dobbert. Matchmoving: The Invisible Art of Camera Tracking. Wiley Desktop Editions. John Wiley & Sons, [2] Friedrich Fraundorfer, Petri Tanskanen, and Marc Pollefeys. A minimal case solution to the calibrated relative pose problem for the case of two known orientation angles. In Proceedings of the 11th European conference on Computer vision: Part IV, ECCV 10, pages , Berlin, Heidelberg, Springer-Verlag. [3] Chris Harris and Mike Stephens. A combined corner and edge detector, volume 15, pages Manchester, UK, 1988.

5 [4] R. I. Hartley and A. Zisserman. Retrieving the camera matrices, pages Cambridge University Press, ISBN: , second edition, [5] Gang Liu, Reinhard Klette, and Bodo Rosenhahn. Structure from motion in the presence of noise. In Image and Vision Computing New Zealand, pages , [6] Kemal E. Ozden, Konrad Schindler, and Luc Van Gool. Multibody structure-from-motion in practice. IEEE Trans. Pattern Anal. Mach. Intell., 32(6): , June [7] Gang Qian and Rama Chellappa. Structure from motion using sequential monte carlo methods. International Journal of Computer Vision, 59(1):5 31, [8] D.P. Robertson and R. Cipolla. Structure from Motion. In Varga, M., editors, Practical Image Processing and Computer Vision. John Wiley, 2009.

Computer Vision Lecture 17

Computer Vision Lecture 17 Computer Vision Lecture 17 Epipolar Geometry & Stereo Basics 13.01.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Seminar in the summer semester

More information

Computer Vision Lecture 17

Computer Vision Lecture 17 Announcements Computer Vision Lecture 17 Epipolar Geometry & Stereo Basics Seminar in the summer semester Current Topics in Computer Vision and Machine Learning Block seminar, presentations in 1 st week

More information

3D Sensing and Reconstruction Readings: Ch 12: , Ch 13: ,

3D Sensing and Reconstruction Readings: Ch 12: , Ch 13: , 3D Sensing and Reconstruction Readings: Ch 12: 12.5-6, Ch 13: 13.1-3, 13.9.4 Perspective Geometry Camera Model Stereo Triangulation 3D Reconstruction by Space Carving 3D Shape from X means getting 3D coordinates

More information

Multiple View Geometry

Multiple View Geometry Multiple View Geometry CS 6320, Spring 2013 Guest Lecture Marcel Prastawa adapted from Pollefeys, Shah, and Zisserman Single view computer vision Projective actions of cameras Camera callibration Photometric

More information

3D Geometry and Camera Calibration

3D Geometry and Camera Calibration 3D Geometry and Camera Calibration 3D Coordinate Systems Right-handed vs. left-handed x x y z z y 2D Coordinate Systems 3D Geometry Basics y axis up vs. y axis down Origin at center vs. corner Will often

More information

Geometric camera models and calibration

Geometric camera models and calibration Geometric camera models and calibration http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 13 Course announcements Homework 3 is out. - Due October

More information

Camera Model and Calibration

Camera Model and Calibration Camera Model and Calibration Lecture-10 Camera Calibration Determine extrinsic and intrinsic parameters of camera Extrinsic 3D location and orientation of camera Intrinsic Focal length The size of the

More information

CS201 Computer Vision Camera Geometry

CS201 Computer Vision Camera Geometry CS201 Computer Vision Camera Geometry John Magee 25 November, 2014 Slides Courtesy of: Diane H. Theriault (deht@bu.edu) Question of the Day: How can we represent the relationships between cameras and the

More information

Structure from Motion. Introduction to Computer Vision CSE 152 Lecture 10

Structure from Motion. Introduction to Computer Vision CSE 152 Lecture 10 Structure from Motion CSE 152 Lecture 10 Announcements Homework 3 is due May 9, 11:59 PM Reading: Chapter 8: Structure from Motion Optional: Multiple View Geometry in Computer Vision, 2nd edition, Hartley

More information

Two-view geometry Computer Vision Spring 2018, Lecture 10

Two-view geometry Computer Vision Spring 2018, Lecture 10 Two-view geometry http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 10 Course announcements Homework 2 is due on February 23 rd. - Any questions about the homework? - How many of

More information

Dense 3D Reconstruction. Christiano Gava

Dense 3D Reconstruction. Christiano Gava Dense 3D Reconstruction Christiano Gava christiano.gava@dfki.de Outline Previous lecture: structure and motion II Structure and motion loop Triangulation Today: dense 3D reconstruction The matching problem

More information

Stereo Vision. MAN-522 Computer Vision

Stereo Vision. MAN-522 Computer Vision Stereo Vision MAN-522 Computer Vision What is the goal of stereo vision? The recovery of the 3D structure of a scene using two or more images of the 3D scene, each acquired from a different viewpoint in

More information

Step-by-Step Model Buidling

Step-by-Step Model Buidling Step-by-Step Model Buidling Review Feature selection Feature selection Feature correspondence Camera Calibration Euclidean Reconstruction Landing Augmented Reality Vision Based Control Sparse Structure

More information

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry 55:148 Digital Image Processing Chapter 11 3D Vision, Geometry Topics: Basics of projective geometry Points and hyperplanes in projective space Homography Estimating homography from point correspondence

More information

Camera Calibration. Schedule. Jesus J Caban. Note: You have until next Monday to let me know. ! Today:! Camera calibration

Camera Calibration. Schedule. Jesus J Caban. Note: You have until next Monday to let me know. ! Today:! Camera calibration Camera Calibration Jesus J Caban Schedule! Today:! Camera calibration! Wednesday:! Lecture: Motion & Optical Flow! Monday:! Lecture: Medical Imaging! Final presentations:! Nov 29 th : W. Griffin! Dec 1

More information

EECS 442: Final Project

EECS 442: Final Project EECS 442: Final Project Structure From Motion Kevin Choi Robotics Ismail El Houcheimi Robotics Yih-Jye Jeffrey Hsu Robotics Abstract In this paper, we summarize the method, and results of our projective

More information

Structure from motion

Structure from motion Structure from motion Structure from motion Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates?? R 1,t 1 R 2,t 2 R 3,t 3 Camera 1 Camera

More information

LUMS Mine Detector Project

LUMS Mine Detector Project LUMS Mine Detector Project Using visual information to control a robot (Hutchinson et al. 1996). Vision may or may not be used in the feedback loop. Visual (image based) features such as points, lines

More information

Unit 3 Multiple View Geometry

Unit 3 Multiple View Geometry Unit 3 Multiple View Geometry Relations between images of a scene Recovering the cameras Recovering the scene structure http://www.robots.ox.ac.uk/~vgg/hzbook/hzbook1.html 3D structure from images Recover

More information

Rigid Body Motion and Image Formation. Jana Kosecka, CS 482

Rigid Body Motion and Image Formation. Jana Kosecka, CS 482 Rigid Body Motion and Image Formation Jana Kosecka, CS 482 A free vector is defined by a pair of points : Coordinates of the vector : 1 3D Rotation of Points Euler angles Rotation Matrices in 3D 3 by 3

More information

Camera Models and Image Formation. Srikumar Ramalingam School of Computing University of Utah

Camera Models and Image Formation. Srikumar Ramalingam School of Computing University of Utah Camera Models and Image Formation Srikumar Ramalingam School of Computing University of Utah srikumar@cs.utah.edu Reference Most slides are adapted from the following notes: Some lecture notes on geometric

More information

calibrated coordinates Linear transformation pixel coordinates

calibrated coordinates Linear transformation pixel coordinates 1 calibrated coordinates Linear transformation pixel coordinates 2 Calibration with a rig Uncalibrated epipolar geometry Ambiguities in image formation Stratified reconstruction Autocalibration with partial

More information

Vision Review: Image Formation. Course web page:

Vision Review: Image Formation. Course web page: Vision Review: Image Formation Course web page: www.cis.udel.edu/~cer/arv September 10, 2002 Announcements Lecture on Thursday will be about Matlab; next Tuesday will be Image Processing The dates some

More information

Camera Models and Image Formation. Srikumar Ramalingam School of Computing University of Utah

Camera Models and Image Formation. Srikumar Ramalingam School of Computing University of Utah Camera Models and Image Formation Srikumar Ramalingam School of Computing University of Utah srikumar@cs.utah.edu VisualFunHouse.com 3D Street Art Image courtesy: Julian Beaver (VisualFunHouse.com) 3D

More information

A Summary of Projective Geometry

A Summary of Projective Geometry A Summary of Projective Geometry Copyright 22 Acuity Technologies Inc. In the last years a unified approach to creating D models from multiple images has been developed by Beardsley[],Hartley[4,5,9],Torr[,6]

More information

Stereo. 11/02/2012 CS129, Brown James Hays. Slides by Kristen Grauman

Stereo. 11/02/2012 CS129, Brown James Hays. Slides by Kristen Grauman Stereo 11/02/2012 CS129, Brown James Hays Slides by Kristen Grauman Multiple views Multi-view geometry, matching, invariant features, stereo vision Lowe Hartley and Zisserman Why multiple views? Structure

More information

Fundamentals of Stereo Vision Michael Bleyer LVA Stereo Vision

Fundamentals of Stereo Vision Michael Bleyer LVA Stereo Vision Fundamentals of Stereo Vision Michael Bleyer LVA Stereo Vision What Happened Last Time? Human 3D perception (3D cinema) Computational stereo Intuitive explanation of what is meant by disparity Stereo matching

More information

1 Projective Geometry

1 Projective Geometry CIS8, Machine Perception Review Problem - SPRING 26 Instructions. All coordinate systems are right handed. Projective Geometry Figure : Facade rectification. I took an image of a rectangular object, and

More information

Multi-View Geometry Part II (Ch7 New book. Ch 10/11 old book)

Multi-View Geometry Part II (Ch7 New book. Ch 10/11 old book) Multi-View Geometry Part II (Ch7 New book. Ch 10/11 old book) Guido Gerig CS-GY 6643, Spring 2016 gerig@nyu.edu Credits: M. Shah, UCF CAP5415, lecture 23 http://www.cs.ucf.edu/courses/cap6411/cap5415/,

More information

Machine vision. Summary # 11: Stereo vision and epipolar geometry. u l = λx. v l = λy

Machine vision. Summary # 11: Stereo vision and epipolar geometry. u l = λx. v l = λy 1 Machine vision Summary # 11: Stereo vision and epipolar geometry STEREO VISION The goal of stereo vision is to use two cameras to capture 3D scenes. There are two important problems in stereo vision:

More information

Camera Drones Lecture 3 3D data generation

Camera Drones Lecture 3 3D data generation Camera Drones Lecture 3 3D data generation Ass.Prof. Friedrich Fraundorfer WS 2017 Outline SfM introduction SfM concept Feature matching Camera pose estimation Bundle adjustment Dense matching Data products

More information

Image Based Rendering. D.A. Forsyth, with slides from John Hart

Image Based Rendering. D.A. Forsyth, with slides from John Hart Image Based Rendering D.A. Forsyth, with slides from John Hart Topics Mosaics translating cameras reveal extra information, break occlusion Optical flow for very small movements of the camera Explicit

More information

Lecture 10: Multi view geometry

Lecture 10: Multi view geometry Lecture 10: Multi view geometry Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Stereo vision Correspondence problem (Problem Set 2 (Q3)) Active stereo vision systems Structure from

More information

Passive 3D Photography

Passive 3D Photography SIGGRAPH 2000 Course on 3D Photography Passive 3D Photography Steve Seitz Carnegie Mellon University University of Washington http://www.cs cs.cmu.edu/~ /~seitz Visual Cues Shading Merle Norman Cosmetics,

More information

A General Expression of the Fundamental Matrix for Both Perspective and Affine Cameras

A General Expression of the Fundamental Matrix for Both Perspective and Affine Cameras A General Expression of the Fundamental Matrix for Both Perspective and Affine Cameras Zhengyou Zhang* ATR Human Information Processing Res. Lab. 2-2 Hikari-dai, Seika-cho, Soraku-gun Kyoto 619-02 Japan

More information

arxiv: v1 [cs.cv] 28 Sep 2018

arxiv: v1 [cs.cv] 28 Sep 2018 Camera Pose Estimation from Sequence of Calibrated Images arxiv:1809.11066v1 [cs.cv] 28 Sep 2018 Jacek Komorowski 1 and Przemyslaw Rokita 2 1 Maria Curie-Sklodowska University, Institute of Computer Science,

More information

Camera Model and Calibration. Lecture-12

Camera Model and Calibration. Lecture-12 Camera Model and Calibration Lecture-12 Camera Calibration Determine extrinsic and intrinsic parameters of camera Extrinsic 3D location and orientation of camera Intrinsic Focal length The size of the

More information

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry 55:148 Digital Image Processing Chapter 11 3D Vision, Geometry Topics: Basics of projective geometry Points and hyperplanes in projective space Homography Estimating homography from point correspondence

More information

Synchronized Ego-Motion Recovery of Two Face-to-Face Cameras

Synchronized Ego-Motion Recovery of Two Face-to-Face Cameras Synchronized Ego-Motion Recovery of Two Face-to-Face Cameras Jinshi Cui, Yasushi Yagi, Hongbin Zha, Yasuhiro Mukaigawa, and Kazuaki Kondo State Key Lab on Machine Perception, Peking University, China {cjs,zha}@cis.pku.edu.cn

More information

Dense 3D Reconstruction. Christiano Gava

Dense 3D Reconstruction. Christiano Gava Dense 3D Reconstruction Christiano Gava christiano.gava@dfki.de Outline Previous lecture: structure and motion II Structure and motion loop Triangulation Wide baseline matching (SIFT) Today: dense 3D reconstruction

More information

Flexible Calibration of a Portable Structured Light System through Surface Plane

Flexible Calibration of a Portable Structured Light System through Surface Plane Vol. 34, No. 11 ACTA AUTOMATICA SINICA November, 2008 Flexible Calibration of a Portable Structured Light System through Surface Plane GAO Wei 1 WANG Liang 1 HU Zhan-Yi 1 Abstract For a portable structured

More information

Lecture 10: Multi-view geometry

Lecture 10: Multi-view geometry Lecture 10: Multi-view geometry Professor Stanford Vision Lab 1 What we will learn today? Review for stereo vision Correspondence problem (Problem Set 2 (Q3)) Active stereo vision systems Structure from

More information

Euclidean Reconstruction Independent on Camera Intrinsic Parameters

Euclidean Reconstruction Independent on Camera Intrinsic Parameters Euclidean Reconstruction Independent on Camera Intrinsic Parameters Ezio MALIS I.N.R.I.A. Sophia-Antipolis, FRANCE Adrien BARTOLI INRIA Rhone-Alpes, FRANCE Abstract bundle adjustment techniques for Euclidean

More information

A Factorization Method for Structure from Planar Motion

A Factorization Method for Structure from Planar Motion A Factorization Method for Structure from Planar Motion Jian Li and Rama Chellappa Center for Automation Research (CfAR) and Department of Electrical and Computer Engineering University of Maryland, College

More information

Multi-Projector Display with Continuous Self-Calibration

Multi-Projector Display with Continuous Self-Calibration Multi-Projector Display with Continuous Self-Calibration Jin Zhou Liang Wang Amir Akbarzadeh Ruigang Yang Graphics and Vision Technology Lab (GRAVITY Lab) Center for Visualization and Virtual Environments,

More information

Rectification and Distortion Correction

Rectification and Distortion Correction Rectification and Distortion Correction Hagen Spies March 12, 2003 Computer Vision Laboratory Department of Electrical Engineering Linköping University, Sweden Contents Distortion Correction Rectification

More information

Depth from two cameras: stereopsis

Depth from two cameras: stereopsis Depth from two cameras: stereopsis Epipolar Geometry Canonical Configuration Correspondence Matching School of Computer Science & Statistics Trinity College Dublin Dublin 2 Ireland www.scss.tcd.ie Lecture

More information

3D reconstruction class 11

3D reconstruction class 11 3D reconstruction class 11 Multiple View Geometry Comp 290-089 Marc Pollefeys Multiple View Geometry course schedule (subject to change) Jan. 7, 9 Intro & motivation Projective 2D Geometry Jan. 14, 16

More information

Camera Calibration. COS 429 Princeton University

Camera Calibration. COS 429 Princeton University Camera Calibration COS 429 Princeton University Point Correspondences What can you figure out from point correspondences? Noah Snavely Point Correspondences X 1 X 4 X 3 X 2 X 5 X 6 X 7 p 1,1 p 1,2 p 1,3

More information

Multiple View Geometry in Computer Vision Second Edition

Multiple View Geometry in Computer Vision Second Edition Multiple View Geometry in Computer Vision Second Edition Richard Hartley Australian National University, Canberra, Australia Andrew Zisserman University of Oxford, UK CAMBRIDGE UNIVERSITY PRESS Contents

More information

Structure from motion

Structure from motion Structure from motion Structure from motion Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates?? R 1,t 1 R 2,t R 2 3,t 3 Camera 1 Camera

More information

Passive 3D Photography

Passive 3D Photography SIGGRAPH 99 Course on 3D Photography Passive 3D Photography Steve Seitz Carnegie Mellon University http:// ://www.cs.cmu.edu/~seitz Talk Outline. Visual Cues 2. Classical Vision Algorithms 3. State of

More information

3D Sensing. 3D Shape from X. Perspective Geometry. Camera Model. Camera Calibration. General Stereo Triangulation.

3D Sensing. 3D Shape from X. Perspective Geometry. Camera Model. Camera Calibration. General Stereo Triangulation. 3D Sensing 3D Shape from X Perspective Geometry Camera Model Camera Calibration General Stereo Triangulation 3D Reconstruction 3D Shape from X shading silhouette texture stereo light striping motion mainly

More information

BIL Computer Vision Apr 16, 2014

BIL Computer Vision Apr 16, 2014 BIL 719 - Computer Vision Apr 16, 2014 Binocular Stereo (cont d.), Structure from Motion Aykut Erdem Dept. of Computer Engineering Hacettepe University Slide credit: S. Lazebnik Basic stereo matching algorithm

More information

Pattern Feature Detection for Camera Calibration Using Circular Sample

Pattern Feature Detection for Camera Calibration Using Circular Sample Pattern Feature Detection for Camera Calibration Using Circular Sample Dong-Won Shin and Yo-Sung Ho (&) Gwangju Institute of Science and Technology (GIST), 13 Cheomdan-gwagiro, Buk-gu, Gwangju 500-71,

More information

Stereo CSE 576. Ali Farhadi. Several slides from Larry Zitnick and Steve Seitz

Stereo CSE 576. Ali Farhadi. Several slides from Larry Zitnick and Steve Seitz Stereo CSE 576 Ali Farhadi Several slides from Larry Zitnick and Steve Seitz Why do we perceive depth? What do humans use as depth cues? Motion Convergence When watching an object close to us, our eyes

More information

Computer Vision Projective Geometry and Calibration. Pinhole cameras

Computer Vision Projective Geometry and Calibration. Pinhole cameras Computer Vision Projective Geometry and Calibration Professor Hager http://www.cs.jhu.edu/~hager Jason Corso http://www.cs.jhu.edu/~jcorso. Pinhole cameras Abstract camera model - box with a small hole

More information

The end of affine cameras

The end of affine cameras The end of affine cameras Affine SFM revisited Epipolar geometry Two-view structure from motion Multi-view structure from motion Planches : http://www.di.ens.fr/~ponce/geomvis/lect3.pptx http://www.di.ens.fr/~ponce/geomvis/lect3.pdf

More information

MERGING POINT CLOUDS FROM MULTIPLE KINECTS. Nishant Rai 13th July, 2016 CARIS Lab University of British Columbia

MERGING POINT CLOUDS FROM MULTIPLE KINECTS. Nishant Rai 13th July, 2016 CARIS Lab University of British Columbia MERGING POINT CLOUDS FROM MULTIPLE KINECTS Nishant Rai 13th July, 2016 CARIS Lab University of British Columbia Introduction What do we want to do? : Use information (point clouds) from multiple (2+) Kinects

More information

Depth from two cameras: stereopsis

Depth from two cameras: stereopsis Depth from two cameras: stereopsis Epipolar Geometry Canonical Configuration Correspondence Matching School of Computer Science & Statistics Trinity College Dublin Dublin 2 Ireland www.scss.tcd.ie Lecture

More information

CS231A Midterm Review. Friday 5/6/2016

CS231A Midterm Review. Friday 5/6/2016 CS231A Midterm Review Friday 5/6/2016 Outline General Logistics Camera Models Non-perspective cameras Calibration Single View Metrology Epipolar Geometry Structure from Motion Active Stereo and Volumetric

More information

Three-dimensional nondestructive evaluation of cylindrical objects (pipe) using an infrared camera coupled to a 3D scanner

Three-dimensional nondestructive evaluation of cylindrical objects (pipe) using an infrared camera coupled to a 3D scanner Three-dimensional nondestructive evaluation of cylindrical objects (pipe) using an infrared camera coupled to a 3D scanner F. B. Djupkep Dizeu, S. Hesabi, D. Laurendeau, A. Bendada Computer Vision and

More information

Simultaneous Vanishing Point Detection and Camera Calibration from Single Images

Simultaneous Vanishing Point Detection and Camera Calibration from Single Images Simultaneous Vanishing Point Detection and Camera Calibration from Single Images Bo Li, Kun Peng, Xianghua Ying, and Hongbin Zha The Key Lab of Machine Perception (Ministry of Education), Peking University,

More information

Camera Geometry II. COS 429 Princeton University

Camera Geometry II. COS 429 Princeton University Camera Geometry II COS 429 Princeton University Outline Projective geometry Vanishing points Application: camera calibration Application: single-view metrology Epipolar geometry Application: stereo correspondence

More information

Depth-Layer-Based Patient Motion Compensation for the Overlay of 3D Volumes onto X-Ray Sequences

Depth-Layer-Based Patient Motion Compensation for the Overlay of 3D Volumes onto X-Ray Sequences Depth-Layer-Based Patient Motion Compensation for the Overlay of 3D Volumes onto X-Ray Sequences Jian Wang 1,2, Anja Borsdorf 2, Joachim Hornegger 1,3 1 Pattern Recognition Lab, Friedrich-Alexander-Universität

More information

Recap: Features and filters. Recap: Grouping & fitting. Now: Multiple views 10/29/2008. Epipolar geometry & stereo vision. Why multiple views?

Recap: Features and filters. Recap: Grouping & fitting. Now: Multiple views 10/29/2008. Epipolar geometry & stereo vision. Why multiple views? Recap: Features and filters Epipolar geometry & stereo vision Tuesday, Oct 21 Kristen Grauman UT-Austin Transforming and describing images; textures, colors, edges Recap: Grouping & fitting Now: Multiple

More information

Computer Vision I - Algorithms and Applications: Multi-View 3D reconstruction

Computer Vision I - Algorithms and Applications: Multi-View 3D reconstruction Computer Vision I - Algorithms and Applications: Multi-View 3D reconstruction Carsten Rother 09/12/2013 Computer Vision I: Multi-View 3D reconstruction Roadmap this lecture Computer Vision I: Multi-View

More information

Stereoscopic Vision System for reconstruction of 3D objects

Stereoscopic Vision System for reconstruction of 3D objects Stereoscopic Vision System for reconstruction of 3D objects Robinson Jimenez-Moreno Professor, Department of Mechatronics Engineering, Nueva Granada Military University, Bogotá, Colombia. Javier O. Pinzón-Arenas

More information

Easy to Use Calibration of Multiple Camera Setups

Easy to Use Calibration of Multiple Camera Setups Easy to Use Calibration of Multiple Camera Setups Ferenc Kahlesz, Cornelius Lilge, and Reinhard Klein University of Bonn, Institute of Computer Science II, Computer Graphics Group Römerstrasse 164, D-53117

More information

Lecture 14: Basic Multi-View Geometry

Lecture 14: Basic Multi-View Geometry Lecture 14: Basic Multi-View Geometry Stereo If I needed to find out how far point is away from me, I could use triangulation and two views scene point image plane optical center (Graphic from Khurram

More information

1 (5 max) 2 (10 max) 3 (20 max) 4 (30 max) 5 (10 max) 6 (15 extra max) total (75 max + 15 extra)

1 (5 max) 2 (10 max) 3 (20 max) 4 (30 max) 5 (10 max) 6 (15 extra max) total (75 max + 15 extra) Mierm Exam CS223b Stanford CS223b Computer Vision, Winter 2004 Feb. 18, 2004 Full Name: Email: This exam has 7 pages. Make sure your exam is not missing any sheets, and write your name on every page. The

More information

Stereo and Epipolar geometry

Stereo and Epipolar geometry Previously Image Primitives (feature points, lines, contours) Today: Stereo and Epipolar geometry How to match primitives between two (multiple) views) Goals: 3D reconstruction, recognition Jana Kosecka

More information

Image Transformations & Camera Calibration. Mašinska vizija, 2018.

Image Transformations & Camera Calibration. Mašinska vizija, 2018. Image Transformations & Camera Calibration Mašinska vizija, 2018. Image transformations What ve we learnt so far? Example 1 resize and rotate Open warp_affine_template.cpp Perform simple resize

More information

A COMPREHENSIVE TOOL FOR RECOVERING 3D MODELS FROM 2D PHOTOS WITH WIDE BASELINES

A COMPREHENSIVE TOOL FOR RECOVERING 3D MODELS FROM 2D PHOTOS WITH WIDE BASELINES A COMPREHENSIVE TOOL FOR RECOVERING 3D MODELS FROM 2D PHOTOS WITH WIDE BASELINES Yuzhu Lu Shana Smith Virtual Reality Applications Center, Human Computer Interaction Program, Iowa State University, Ames,

More information

Image Formation I Chapter 2 (R. Szelisky)

Image Formation I Chapter 2 (R. Szelisky) Image Formation I Chapter 2 (R. Selisky) Guido Gerig CS 632 Spring 22 cknowledgements: Slides used from Prof. Trevor Darrell, (http://www.eecs.berkeley.edu/~trevor/cs28.html) Some slides modified from

More information

Mosaics. Today s Readings

Mosaics. Today s Readings Mosaics VR Seattle: http://www.vrseattle.com/ Full screen panoramas (cubic): http://www.panoramas.dk/ Mars: http://www.panoramas.dk/fullscreen3/f2_mars97.html Today s Readings Szeliski and Shum paper (sections

More information

On-line and Off-line 3D Reconstruction for Crisis Management Applications

On-line and Off-line 3D Reconstruction for Crisis Management Applications On-line and Off-line 3D Reconstruction for Crisis Management Applications Geert De Cubber Royal Military Academy, Department of Mechanical Engineering (MSTA) Av. de la Renaissance 30, 1000 Brussels geert.de.cubber@rma.ac.be

More information

IMPACT OF SUBPIXEL PARADIGM ON DETERMINATION OF 3D POSITION FROM 2D IMAGE PAIR Lukas Sroba, Rudolf Ravas

IMPACT OF SUBPIXEL PARADIGM ON DETERMINATION OF 3D POSITION FROM 2D IMAGE PAIR Lukas Sroba, Rudolf Ravas 162 International Journal "Information Content and Processing", Volume 1, Number 2, 2014 IMPACT OF SUBPIXEL PARADIGM ON DETERMINATION OF 3D POSITION FROM 2D IMAGE PAIR Lukas Sroba, Rudolf Ravas Abstract:

More information

Pin Hole Cameras & Warp Functions

Pin Hole Cameras & Warp Functions Pin Hole Cameras & Warp Functions Instructor - Simon Lucey 16-423 - Designing Computer Vision Apps Today Pinhole Camera. Homogenous Coordinates. Planar Warp Functions. Motivation Taken from: http://img.gawkerassets.com/img/18w7i1umpzoa9jpg/original.jpg

More information

CS231M Mobile Computer Vision Structure from motion

CS231M Mobile Computer Vision Structure from motion CS231M Mobile Computer Vision Structure from motion - Cameras - Epipolar geometry - Structure from motion Pinhole camera Pinhole perspective projection f o f = focal length o = center of the camera z y

More information

Index. 3D reconstruction, point algorithm, point algorithm, point algorithm, point algorithm, 253

Index. 3D reconstruction, point algorithm, point algorithm, point algorithm, point algorithm, 253 Index 3D reconstruction, 123 5+1-point algorithm, 274 5-point algorithm, 260 7-point algorithm, 255 8-point algorithm, 253 affine point, 43 affine transformation, 55 affine transformation group, 55 affine

More information

Epipolar geometry. x x

Epipolar geometry. x x Two-view geometry Epipolar geometry X x x Baseline line connecting the two camera centers Epipolar Plane plane containing baseline (1D family) Epipoles = intersections of baseline with image planes = projections

More information

Epipolar Geometry and Stereo Vision

Epipolar Geometry and Stereo Vision Epipolar Geometry and Stereo Vision Computer Vision Shiv Ram Dubey, IIIT Sri City Many slides from S. Seitz and D. Hoiem Last class: Image Stitching Two images with rotation/zoom but no translation. X

More information

CSE 252B: Computer Vision II

CSE 252B: Computer Vision II CSE 252B: Computer Vision II Lecturer: Serge Belongie Scribe: Jayson Smith LECTURE 4 Planar Scenes and Homography 4.1. Points on Planes This lecture examines the special case of planar scenes. When talking

More information

Stereo II CSE 576. Ali Farhadi. Several slides from Larry Zitnick and Steve Seitz

Stereo II CSE 576. Ali Farhadi. Several slides from Larry Zitnick and Steve Seitz Stereo II CSE 576 Ali Farhadi Several slides from Larry Zitnick and Steve Seitz Camera parameters A camera is described by several parameters Translation T of the optical center from the origin of world

More information

Outline. ETN-FPI Training School on Plenoptic Sensing

Outline. ETN-FPI Training School on Plenoptic Sensing Outline Introduction Part I: Basics of Mathematical Optimization Linear Least Squares Nonlinear Optimization Part II: Basics of Computer Vision Camera Model Multi-Camera Model Multi-Camera Calibration

More information

Srikumar Ramalingam. Review. 3D Reconstruction. Pose Estimation Revisited. School of Computing University of Utah

Srikumar Ramalingam. Review. 3D Reconstruction. Pose Estimation Revisited. School of Computing University of Utah School of Computing University of Utah Presentation Outline 1 2 3 Forward Projection (Reminder) u v 1 KR ( I t ) X m Y m Z m 1 Backward Projection (Reminder) Q K 1 q Presentation Outline 1 2 3 Sample Problem

More information

3D Computer Vision. Class Roadmap. General Points. Picturing the World. Nowadays: Computer Vision. International Research in Vision Started Early!

3D Computer Vision. Class Roadmap. General Points. Picturing the World. Nowadays: Computer Vision. International Research in Vision Started Early! 3D Computer Vision Adrien Bartoli CNRS LASMEA Clermont-Ferrand, France Søren I. Olsen DIKU Copenhagen, Denmark Lecture 1 Introduction (Chapter 1, Appendices 4 and 5) Class Roadmap (AB, lect. 1-3) Aug.

More information

Augmenting Reality, Naturally:

Augmenting Reality, Naturally: Augmenting Reality, Naturally: Scene Modelling, Recognition and Tracking with Invariant Image Features by Iryna Gordon in collaboration with David G. Lowe Laboratory for Computational Intelligence Department

More information

3-D D Euclidean Space - Vectors

3-D D Euclidean Space - Vectors 3-D D Euclidean Space - Vectors Rigid Body Motion and Image Formation A free vector is defined by a pair of points : Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Coordinates of the vector : 3D Rotation

More information

Index. 3D reconstruction, point algorithm, point algorithm, point algorithm, point algorithm, 263

Index. 3D reconstruction, point algorithm, point algorithm, point algorithm, point algorithm, 263 Index 3D reconstruction, 125 5+1-point algorithm, 284 5-point algorithm, 270 7-point algorithm, 265 8-point algorithm, 263 affine point, 45 affine transformation, 57 affine transformation group, 57 affine

More information

Perception and Action using Multilinear Forms

Perception and Action using Multilinear Forms Perception and Action using Multilinear Forms Anders Heyden, Gunnar Sparr, Kalle Åström Dept of Mathematics, Lund University Box 118, S-221 00 Lund, Sweden email: {heyden,gunnar,kalle}@maths.lth.se Abstract

More information

arxiv: v1 [cs.cv] 28 Sep 2018

arxiv: v1 [cs.cv] 28 Sep 2018 Extrinsic camera calibration method and its performance evaluation Jacek Komorowski 1 and Przemyslaw Rokita 2 arxiv:1809.11073v1 [cs.cv] 28 Sep 2018 1 Maria Curie Sklodowska University Lublin, Poland jacek.komorowski@gmail.com

More information

Global localization from a single feature correspondence

Global localization from a single feature correspondence Global localization from a single feature correspondence Friedrich Fraundorfer and Horst Bischof Institute for Computer Graphics and Vision Graz University of Technology {fraunfri,bischof}@icg.tu-graz.ac.at

More information

Epipolar Geometry and Stereo Vision

Epipolar Geometry and Stereo Vision Epipolar Geometry and Stereo Vision Computer Vision Jia-Bin Huang, Virginia Tech Many slides from S. Seitz and D. Hoiem Last class: Image Stitching Two images with rotation/zoom but no translation. X x

More information

Comments on Consistent Depth Maps Recovery from a Video Sequence

Comments on Consistent Depth Maps Recovery from a Video Sequence Comments on Consistent Depth Maps Recovery from a Video Sequence N.P. van der Aa D.S. Grootendorst B.F. Böggemann R.T. Tan Technical Report UU-CS-2011-014 May 2011 Department of Information and Computing

More information

COMPARATIVE STUDY OF DIFFERENT APPROACHES FOR EFFICIENT RECTIFICATION UNDER GENERAL MOTION

COMPARATIVE STUDY OF DIFFERENT APPROACHES FOR EFFICIENT RECTIFICATION UNDER GENERAL MOTION COMPARATIVE STUDY OF DIFFERENT APPROACHES FOR EFFICIENT RECTIFICATION UNDER GENERAL MOTION Mr.V.SRINIVASA RAO 1 Prof.A.SATYA KALYAN 2 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING PRASAD V POTLURI SIDDHARTHA

More information

Homographies and RANSAC

Homographies and RANSAC Homographies and RANSAC Computer vision 6.869 Bill Freeman and Antonio Torralba March 30, 2011 Homographies and RANSAC Homographies RANSAC Building panoramas Phototourism 2 Depth-based ambiguity of position

More information

Agenda. Rotations. Camera models. Camera calibration. Homographies

Agenda. Rotations. Camera models. Camera calibration. Homographies Agenda Rotations Camera models Camera calibration Homographies D Rotations R Y = Z r r r r r r r r r Y Z Think of as change of basis where ri = r(i,:) are orthonormal basis vectors r rotated coordinate

More information

Geometry of image formation

Geometry of image formation eometry of image formation Tomáš Svoboda, svoboda@cmp.felk.cvut.cz Czech Technical University in Prague, Center for Machine Perception http://cmp.felk.cvut.cz Last update: November 3, 2008 Talk Outline

More information