26 Geometric Optics, Reflection

Size: px
Start display at page:

Download "26 Geometric Optics, Reflection"

Transcription

1 26 Geometric Optics, Reflection We now turn to a branch of optics referred to as geometric optics and also referred to as ray optics. It applies in cases where the dimensions of the objects (and apertures) with which the light interacts are so large as to render diffraction effects negligible. In geometric optics we treat light as being made up of an infinite set of narrow beams of light, called light rays, or simply rays, traveling through vacuum or transparent media along straight line paths. Where a ray of light encounters the surface of a mirror, or the interface between the transparent medium in which it (the light) is traveling and another transparent medium, the ray makes an abrupt change in direction, after which, it travels along a new straight line path. In the geometric optics model of light, we see light emitted by sources of light because the light enters our eyes. Consider for instance, a candle. Every point of the flame of the candle emits rays of light in every direction. While the preceding diagram conveys the idea in the statement preceding the diagram, the diagram is not the complete picture. To get a more complete picture of what s going on, what I want you to do is to look at the diagram provided, form a picture of it in your mind, and, to the picture in your mind, add the following embellishments: 229

2 . First off, I need you to imagine it to be a real candle extending in three dimensions. Our set of rays depicted as arrows whose tips are all on a circle becomes a set of rays depicted as arrows whose tips all end on a sphere. Thus, in addition to rays going (at various angles) upward, downward and to the sides, you ve got rays proceeding (at various angles) away from you and toward you. 2. Now I need you to add more rays to the picture in your mind. I included 6 rays in the diagram. In three dimensions, you should have about 20 rays in the picture in your mind. I need you to bump that up to infinity. 3. In the original diagram, I showed rays coming only from the tip of the flame. At this point, we have an infinite number of rays coming from the tip of the flame. I need you to picture that to be the case for each point of the flame, not just the tip of the flame. In the interest of simplicity, in the picture in your mind, let the flame of the candle be an opaque solid rather than gaseous, so that we can treat all our rays as coming from points on the surface of the flame. Neglect any rays that are in any way directed into the flame itself (don t include them in the picture in your mind). Upon completion of this step, you should have, in the picture in your mind, an infinite number of rays coming from each of the infinite number of points making up the surface of the flame. 4. For this next part, we need to establish the setting. I m concerned that you might be reading this in a room in which lit candles are forbidden. If so, please relocate the candle in the picture in your mind to the dining room table in your home, or, replace the candle with a fake electric-powered candle such as you might see in a home around Christmastime. Now I need you to extend each of the rays in the picture in your mind all the way out to the point where they bump into something. Please end each ray at the point where it bumps into something. (A ray that bumps into a non-shiny surface, bounces off in all directions [diffuse reflection]. Thus, each ray that bumps into a non-shiny surface creates an infinite set of rays coming from the point of impact. A ray bumping into perfectly shiny surfaces continues as a single ray in one particular, new, direction [specular reflection]. To avoid clutter, let s omit all the reflected rays from the picture in your mind.) If you have carried out steps -4 above, then you have the picture, in your mind, of the geometric optics model of the light given off by a light-emitting object. When you are in a room with a candle such as the one we have been discussing, you can tell where it is (in what direction and how far away you might not be able to give very accurate values, but you can tell where it is) by looking at it. When you look at it, an infinite number of rays, from each part of the surface of 230

3 the flame, are entering your eyes. What is amazing is how few rays you need to determine where, for instance, the tip of the flame is. Of the infinite number of rays available to you, you only need two! Consider what you can find out from a single ray entering your eye: From just one of the infinite number of rays, you can deduce the direction that the tip of the flame is in, relative to you. In other words, you can say that the tip of the flame lies somewhere on the line segment that both contains the ray that enters your eye, and, that ends at the location of your eye. From ray, you can 2 From one other ray, ray 2 in the diagram at right, you can deduce that the tip of the flame must lie somewhere back along one other line. 23

4 From ray, you can 2 From ray 2, you can There is only one point in space that is both somewhere back along line and somewhere back along line 2. That one point is, of course, the point where the two lines cross. The eyebrain system is an amazing system. When you look at something, your eye-brain system automatically carries out the trace back and find the intersection process to determine how far away that something is. Again, you might not be able to tell me how many centimeters away the candle, for instance, is, but you must know how far away it is because you would know about how hard to throw something to hit the candle. This business of tracing rays back to see where they come from is known as ray tracing and is what geometric optics is all about. At this point I want to return our attention to the candle to provide you with a little bit more insight into the practice of ray tracing. Suppose that when you were determining the location of the tip of the flame of the candle, you already had some additional information about the candle. For instance, assume: You know that the rays are coming from the upper extremity of the candle; you know that the bottom of the candle is on the plane of the surface of your dining room table; and you know that the candle is vertical. We ll also assume that the candle is so skinny that we are not interested in its horizontal extent in space, so, we can think of it as a skinny line segment with a top (the tip of the candle) and a bottom, the point on the candle that is at table level. The intersection of the plane of the table surface with the plane of the two rays is a line, and, based on the information we have, the bottom of the candle is on that line. Note: Throwing things at lit candles is a dangerous practice in which I urge you not to engage. 232

5 From ray, you can 2 Reliable, but undisclosed, sources tell us that the bottom of the candle is on this line, and that the candle is vertical. From ray 2, you can Taken together with the information gleaned from the rays, we can draw in the entire (skinny) candle, on our diagram, and from the diagram, determine such things as the candle s height, position, and orientation (whether it is upside down [inverted] or right side up [erect]). In adding the candle to the diagram, I am going to draw it as an arrow. Besides the fact that it is conventional to draw objects in ray tracing diagrams as arrows, we use an arrow to represent the candle to avoid conveying the impression that, from the limited facts we have at our disposal, we have been able to learn more about the candle (diameter, flame height, etc) than is possible. (We can only determine the height, position, and orientation.) 2 233

6 The trace-back method for locating the tip of the candle flame works for any two rays, from among the infinite number of rays emitted by the tip of the candle flame. All the rays come from the same point and they all travel along different straight line paths. As such, the rays are said to diverge from the tip of the candle flame. The trace-back method allows us to determine the point from which the rays are diverging. By means of lenses and mirrors, we can redirect rays of light, infinite numbers of them at a time, in such a manner as to fool the eye-brain system that is using the trace-back method into perceiving the point from which the rays are diverging as being someplace other than where the object is. To do so, one simply has to redirect the rays so that they are diverging from someplace other than their point of origin. The point, other than their point of origin, from which the rays diverge (because of the redirection of rays by mirrors and/or lenses), is called the image of the point on the object from which the light actually originates. The Law of Reflection I have mentioned specular reflection. In specular reflection, a ray of light traveling along one straight line path, hits a smooth shiny surface and continues along a new straight line path. The adoption of the new path, at the smooth shiny surface, by the incoming ray is called reflection. Where the ray travels along the new path, we call the ray, the reflected ray. The smooth shiny surface is typically called a mirror. The law of reflection, derived originally directly from experimental evidence and, by Huygens, from the principle now known as Huygens principle, states that the angle that the reflected ray makes with an imaginary line that is perpendicular to the mirror, and, passes through the point where the incoming ray hits the mirror, is equal to the angle that the incoming ray makes with the same imaginary line. The point where the incoming ray hits the mirror is called the point of incidence. The imaginary line that is perpendicular to the surface of the mirror and passes through the point of incidence is called the normal. The angle that the incoming ray makes with the normal is called the angle of incidence θ I. The angle that the reflected ray makes with the normal is called the angle of reflection θ R. In terms of this jargon, the law of reflection can be stated as: The angle of reflection θ R is equal to the angle of incidence θ I. Reflected Ray The Normal θ R θ I The Law of Reflection states that θ R = θ I. Incident Ray 234

7 Geometric Optics Applied to a Plane Mirror Let s apply our ray-tracing methods to the case of an object in front of a plane mirror in order to determine the position of the image of that object. Here s the configuration. Object of height h The Plane of the Mirror h o Mirror The Principal Axis of the Mirror We have an object of height h a distance o from the plane of the mirror. Our object is represented by an arrow. The tail of the arrow is on a reference line that is perpendicular to the plane of the mirror. I am calling the reference line the principal axis of the mirror. The plane of the mirror is the infinite plane that contains the surface of the mirror. We use the method of principal rays to determine the position of the image of the object. In the method of principal rays, we consider only a few incident rays for which the reflected rays are particularly easy to determine. Experimentally, we find that the position of the image is independent of the size of the mirror, so we consider the mirror to be as large as it needs to be for the principal rays to hit it. In particular, if a principal ray appears to miss the mirror in our diagram, we show the ray as reflecting off the plane of the mirror nevertheless. Our Principal Ray I for the case at hand is one that approaches the plane of the mirror along a line that is parallel to the principal axis of the mirror. h I o 235

8 According to the law of reflection, Principal Ray I is reflected straight back on itself as depicted in the following diagram: h I o Using the trace-back method we know that the tip of the object lies somewhere along this line. Principal Ray II hits the mirror right where the principal axis of the mirror intersects the mirror. In accord with the Law of Reflection, with, for the ray in question, the principal axis of the mirror being the normal, the reflected ray makes the same angle with the principal axis of the mirror as the incident ray does. I h II h θ I θ θ R = θ I o i Tracing back the second reflected ray, to the point where it intersects the first reflected ray traceback line, yields the position of the image of the tip of the arrow. I have drawn the shaft of the image of the arrow in so that it is perpendicular to the principal axis of the mirror. The question is, what is the image height h and what is the distance of the image from the plane of the mirror? Well, the image height h is the distance between the same two parallel lines that the object height h is the distance between. So, h = h. Since vertical angles are equal, we have θ in the diagram above being equal to θ R which we know to be equal to θ I from the law of reflection. Thus the right triangle of side h and angle θ is congruent to the triangle of height h and angle θ I. Hence, since corresponding sides of congruent triangles are equal, we have i = o. That is to say that the image distance, from the plane of the mirror, is equal to the object distance. 236

Optics II. Reflection and Mirrors

Optics II. Reflection and Mirrors Optics II Reflection and Mirrors Geometric Optics Using a Ray Approximation Light travels in a straight-line path in a homogeneous medium until it encounters a boundary between two different media The

More information

Reflection & Mirrors

Reflection & Mirrors Reflection & Mirrors Geometric Optics Using a Ray Approximation Light travels in a straight-line path in a homogeneous medium until it encounters a boundary between two different media A ray of light is

More information

PHY 171 Lecture 6 (January 18, 2012)

PHY 171 Lecture 6 (January 18, 2012) PHY 171 Lecture 6 (January 18, 2012) Light Throughout most of the next 2 weeks, we will be concerned with the wave properties of light, and phenomena based on them (interference & diffraction). Light also

More information

The Law of Reflection

The Law of Reflection If the surface off which the light is reflected is smooth, then the light undergoes specular reflection (parallel rays will all be reflected in the same directions). If, on the other hand, the surface

More information

Chapter 12 Notes: Optics

Chapter 12 Notes: Optics Chapter 12 Notes: Optics How can the paths traveled by light rays be rearranged in order to form images? In this chapter we will consider just one form of electromagnetic wave: visible light. We will be

More information

The Reflection of Light

The Reflection of Light King Saud University College of Applied Studies and Community Service Department of Natural Sciences The Reflection of Light General Physics II PHYS 111 Nouf Alkathran nalkathran@ksu.edu.sa Outline Introduction

More information

Refraction at a single curved spherical surface

Refraction at a single curved spherical surface Refraction at a single curved spherical surface This is the beginning of a sequence of classes which will introduce simple and complex lens systems We will start with some terminology which will become

More information

3. Confirm Does the law of reflection apply to rough surfaces? Explain. Diffuse Reflection

3. Confirm Does the law of reflection apply to rough surfaces? Explain. Diffuse Reflection Light Key Concepts How does light reflect from smooth surfaces and rough surfaces? What happens to light when it strikes a concave mirror? Which types of mirrors can produce a virtual image? Reflection

More information

Physics 1C Lecture 26A. Beginning of Chapter 26

Physics 1C Lecture 26A. Beginning of Chapter 26 Physics 1C Lecture 26A Beginning of Chapter 26 Mirrors and Lenses! As we have noted before, light rays can be diverted by optical systems to fool your eye into thinking an object is somewhere that it is

More information

Nicholas J. Giordano. Chapter 24. Geometrical Optics. Marilyn Akins, PhD Broome Community College

Nicholas J. Giordano.   Chapter 24. Geometrical Optics. Marilyn Akins, PhD Broome Community College Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 24 Geometrical Optics Marilyn Akins, PhD Broome Community College Optics The study of light is called optics Some highlights in the history

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 26.1 The Reflection of Light 26.2 Forming Images With a Plane Mirror 26.3 Spherical Mirrors 26.4 Ray Tracing and the Mirror Equation 26.5 The Refraction of Light 26.6 Ray

More information

1. What is the law of reflection?

1. What is the law of reflection? Name: Skill Sheet 7.A The Law of Reflection The law of reflection works perfectly with light and the smooth surface of a mirror. However, you can apply this law to other situations. For example, how would

More information

Lecture Notes (Reflection & Mirrors)

Lecture Notes (Reflection & Mirrors) Lecture Notes (Reflection & Mirrors) Intro: - plane mirrors are flat, smooth surfaces from which light is reflected by regular reflection - light rays are reflected with equal angles of incidence and reflection

More information

Lecture 17: Recursive Ray Tracing. Where is the way where light dwelleth? Job 38:19

Lecture 17: Recursive Ray Tracing. Where is the way where light dwelleth? Job 38:19 Lecture 17: Recursive Ray Tracing Where is the way where light dwelleth? Job 38:19 1. Raster Graphics Typical graphics terminals today are raster displays. A raster display renders a picture scan line

More information

Light, Photons, and MRI

Light, Photons, and MRI Light, Photons, and MRI When light hits an object, some of it will be reflected. The reflected light can form an image. We usually want to be able to characterize the image given what we know about the

More information

CHAPTER 29: REFLECTION

CHAPTER 29: REFLECTION CHAPTER 29: REFLECTION 29.1 REFLECTION The return of a wave back to its original medium is called reflection. Fasten a spring to a wall and send a pulse along the spring s length. The wall is a very rigid

More information

P H Y L A B 1 : G E O M E T R I C O P T I C S

P H Y L A B 1 : G E O M E T R I C O P T I C S P H Y 1 4 3 L A B 1 : G E O M E T R I C O P T I C S Introduction Optics is the study of the way light interacts with other objects. This behavior can be extremely complicated. However, if the objects in

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Geometric Optics Physics for Scientists & Engineers 2 Spring Semester 2005 Lecture 36! The study of light divides itself into three fields geometric optics wave optics quantum optics! In the previous chapter,

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 1 Overview of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing and the Mirror Equation The Refraction of Light Ray Tracing

More information

Dispersion (23.5) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 17

Dispersion (23.5) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 17 Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 1 / 17 Dispersion (23.5) The speed of light in a material depends on its wavelength White light is a mixture of wavelengths

More information

PHYS 219 General Physics: Electricity, Light and Modern Physics

PHYS 219 General Physics: Electricity, Light and Modern Physics PHYS 219 General Physics: Electricity, Light and Modern Physics Exam 2 is scheduled on Tuesday, March 26 @ 8 10 PM In Physics 114 It will cover four Chapters 21, 22, 23, and 24. Start reviewing lecture

More information

Part Images Formed by Flat Mirrors. This Chapter. Phys. 281B Geometric Optics. Chapter 2 : Image Formation. Chapter 2: Image Formation

Part Images Formed by Flat Mirrors. This Chapter. Phys. 281B Geometric Optics. Chapter 2 : Image Formation. Chapter 2: Image Formation Phys. 281B Geometric Optics This Chapter 3 Physics Department Yarmouk University 21163 Irbid Jordan 1- Images Formed by Flat Mirrors 2- Images Formed by Spherical Mirrors 3- Images Formed by Refraction

More information

Algebra Based Physics

Algebra Based Physics Slide 1 / 66 Slide 2 / 66 Algebra Based Physics Geometric Optics 2015-12-01 www.njctl.org Table of ontents Slide 3 / 66 lick on the topic to go to that section Reflection Spherical Mirror Refraction and

More information

PHYSICS. Chapter 34 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 34 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 34 Lecture RANDALL D. KNIGHT Chapter 34 Ray Optics IN THIS CHAPTER, you will learn about and apply the ray model of light Slide 34-2

More information

Lab 10 - GEOMETRICAL OPTICS

Lab 10 - GEOMETRICAL OPTICS L10-1 Name Date Partners OBJECTIVES OVERVIEW Lab 10 - GEOMETRICAL OPTICS To examine Snell s Law. To observe total internal reflection. To understand and use the lens equations. To find the focal length

More information

SNC2D PHYSICS 4/27/2013. LIGHT & GEOMETRIC OPTICS L Light Rays & Reflection (P ) Light Rays & Reflection. The Ray Model of Light

SNC2D PHYSICS 4/27/2013. LIGHT & GEOMETRIC OPTICS L Light Rays & Reflection (P ) Light Rays & Reflection. The Ray Model of Light SNC2D PHYSICS LIGHT & GEOMETRIC OPTICS L Light Rays & Reflection (P.402-409) Light Rays & Reflection A driver adjusts her rearview mirror. The mirror allows her to see the cars behind her. Mirrors help

More information

Light and Mirrors MIRRORS

Light and Mirrors MIRRORS Light and Mirrors MIRRORS 1 Polarized Sunglasses- How do they work? light waves vibrate in more than one plane light waves can be made to vibrate in a single plane by use of polarizing filters. 2 polarizing

More information

Light and the Properties of Reflection & Refraction

Light and the Properties of Reflection & Refraction Light and the Properties of Reflection & Refraction OBJECTIVE To study the imaging properties of a plane mirror. To prove the law of reflection from the previous imaging study. To study the refraction

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics The Reflection of Light: Mirrors: Mirrors produce images because the light that strikes them is reflected, rather than absorbed. Reflected light does much more than produce

More information

P03 ray drawing with plane mirrors. November 06, Worlds Best Optical Illusion. Owls. Ray Diagrams.

P03 ray drawing with plane mirrors. November 06, Worlds Best Optical Illusion. Owls. Ray Diagrams. Worlds Best Optical Illusion http://www.youtube.com/watch?v=haxm0diuyug Owls http://www.youtube.com/watch?v=hoc42xegvt8 Ray Diagrams http://www.youtube.com/watch?v=ed4jexpdwuo&feature=related 1 Locate

More information

Reflections. I feel pretty, oh so pretty

Reflections. I feel pretty, oh so pretty Reflections I feel pretty, oh so pretty Objectives By the end of the lesson, you should be able to: Draw an accurate reflective angle Determine the focal length of a spherical mirror Light Review Light

More information

Lecture Outlines Chapter 26

Lecture Outlines Chapter 26 Lecture Outlines Chapter 26 11/18/2013 2 Chapter 26 Geometrical Optics Objectives: After completing this module, you should be able to: Explain and discuss with diagrams, reflection and refraction of light

More information

GEOMETRIC OPTICS. LENSES refract light, so we need to know how light bends when entering and exiting a lens and how that interaction forms an image.

GEOMETRIC OPTICS. LENSES refract light, so we need to know how light bends when entering and exiting a lens and how that interaction forms an image. I. What is GEOMTERIC OPTICS GEOMETRIC OPTICS In geometric optics, LIGHT is treated as imaginary rays. How these rays interact with at the interface of different media, including lenses and mirrors, is

More information

Images in Plane Mirrors. Monday, May 23, 16

Images in Plane Mirrors. Monday, May 23, 16 Images in Plane Mirrors Reflection: Light bouncing off of an object and entering our eye. You can use light rays and the laws of reflection to show how a plane mirror produces a virtual image and where

More information

At the interface between two materials, where light can be reflected or refracted. Within a material, where the light can be scattered or absorbed.

At the interface between two materials, where light can be reflected or refracted. Within a material, where the light can be scattered or absorbed. At the interface between two materials, where light can be reflected or refracted. Within a material, where the light can be scattered or absorbed. The eye sees by focusing a diverging bundle of rays from

More information

PHYS 202 Notes, Week 9

PHYS 202 Notes, Week 9 PHYS 202 Notes, Week 9 Greg Christian March 22 & 24, 206 Last updated: 03/24/206 at 2:23:56 This week we learn about images by mirrors, refraction, and thin lenses. Images Spherical Mirrors First let s

More information

LIGHT-REFLECTION AND REFRACTION. It is a form of energy which is needed to see things around us. It travels in a straight line.

LIGHT-REFLECTION AND REFRACTION. It is a form of energy which is needed to see things around us. It travels in a straight line. LIGHT-REFLECTION AND REFRACTION Class: 10 (Boys) Sub: PHYSICS NOTES-Reflection Light: It is a form of energy which is needed to see things around us. It travels in a straight line. Nature of Light: Light

More information

Discover how to solve this problem in this chapter.

Discover how to solve this problem in this chapter. A 2 cm tall object is 12 cm in front of a spherical mirror. A 1.2 cm tall erect image is then obtained. What kind of mirror is used (concave, plane or convex) and what is its focal length? www.totalsafes.co.uk/interior-convex-mirror-900mm.html

More information

LIGHT. Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses

LIGHT. Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses LIGHT Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses Light = Electromagnetic Wave Requires No Medium to Travel Oscillating Electric and Magnetic Field Travel at the speed of light

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics Regular and Diffuse Reflection Sections 23-1 to 23-2. How We See Weseebecauselightreachesoureyes. There are two ways, therefore, in which we see: (1) light from a luminous object

More information

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc.

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc. Chapter 32 Light: Reflection and Refraction Units of Chapter 32 The Ray Model of Light Reflection; Image Formation by a Plane Mirror Formation of Images by Spherical Mirrors Index of Refraction Refraction:

More information

Physics 11. Unit 8 Geometric Optics Part 1

Physics 11. Unit 8 Geometric Optics Part 1 Physics 11 Unit 8 Geometric Optics Part 1 1.Review of waves In the previous section, we have investigated the nature and behaviors of waves in general. We know that all waves possess the following characteristics:

More information

Ray Optics. Physics 11. Sources of Light Rays: Self-Luminous Objects. The Ray Model of Light

Ray Optics. Physics 11. Sources of Light Rays: Self-Luminous Objects. The Ray Model of Light Physics 11 Ray Optics Ray Model of Light Reflection Plane Mirrors Spherical Mirrors Ray Tracing Images from a Concave Mirror Images from a Convex Mirror Slide 18-3 The Ray Model of Light Sources of Light

More information

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light.

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light. Chapter 7: Geometrical Optics The branch of physics which studies the properties of light using the ray model of light. Overview Geometrical Optics Spherical Mirror Refraction Thin Lens f u v r and f 2

More information

Physics 11 Chapter 18: Ray Optics

Physics 11 Chapter 18: Ray Optics Physics 11 Chapter 18: Ray Optics "... Everything can be taken from a man but one thing; the last of the human freedoms to choose one s attitude in any given set of circumstances, to choose one s own way.

More information

Optics. a- Before the beginning of the nineteenth century, light was considered to be a stream of particles.

Optics. a- Before the beginning of the nineteenth century, light was considered to be a stream of particles. Optics 1- Light Nature: a- Before the beginning of the nineteenth century, light was considered to be a stream of particles. The particles were either emitted by the object being viewed or emanated from

More information

Seeing an Object. 6: Geometric Optics (Chapters 34)

Seeing an Object. 6: Geometric Optics (Chapters 34) Seeing an Object 6: Geometric Optics (Chapters 34) Phys130, A01 Dr. Robert MacDonald Light rays from each point on the go everywhere. Some light from each point reaches the. 2 virtual image As long as

More information

Chapter 5 Mirrors and Lenses

Chapter 5 Mirrors and Lenses Chapter 5 Notes: Mirrors and Lenses Name: Block: The Ray Model of Light The ray model of light represents light as a line, or ray, indicating the path of a beam of light. Light travels in straight lines

More information

SPH3UW Unit 7.2 Reflection Page 1 of 7

SPH3UW Unit 7.2 Reflection Page 1 of 7 SPH3UW Unit 7.2 Reflection Page 1 of 7 Notes Physics Tool box Law of Reflection On flat surfaces, the angle of incidence equals the angle of reflection. Diffuse Reflection when light is incident on a rough

More information

Phys 102 Lecture 17 Introduction to ray optics

Phys 102 Lecture 17 Introduction to ray optics Phys 102 Lecture 17 Introduction to ray optics 1 Physics 102 lectures on light Light as a wave Lecture 15 EM waves Lecture 16 Polarization Lecture 22 & 23 Interference & diffraction Light as a ray Lecture

More information

Science 8 Chapter 5 Section 1

Science 8 Chapter 5 Section 1 Science 8 Chapter 5 Section 1 The Ray Model of Light (pp. 172-187) Models of Light wave model of light: a model in which light is a type of wave that travels through space and transfers energy from one

More information

Name Section Date. Experiment Reflection and Refraction

Name Section Date. Experiment Reflection and Refraction Name Section Date Introduction: Experiment Reflection and Refraction The travel of light is often represented in geometric optics by a light ray, a line that is drawn to represent the straight-line movement

More information

Chapter 23. Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian

Chapter 23. Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian Chapter 23 Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian Reflection and Refraction at a Plane Surface The light radiate from a point object in all directions The light reflected from a plane

More information

normal: a line drawn perpendicular (90 ) from the point of incidence of the reflecting surface

normal: a line drawn perpendicular (90 ) from the point of incidence of the reflecting surface Ch 11 Reflecting Light off a Plane Mirror p. 313 Types of Mirrors (3) 1) Plane: flat fg 1 p. 313 law of reflection: the angle of incidence = the angle of reflection incident ray (in): the ray (light beam)

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Apr 22, 2012 Light from distant things We learn about a distant thing from the light it generates or redirects. The lenses in our eyes create images of objects our brains can

More information

Chapter 22. Reflection and Refraction of Light

Chapter 22. Reflection and Refraction of Light Chapter 22 Reflection and Refraction of Light Nature of Light Light has a dual nature. Particle Wave Wave characteristics will be discussed in this chapter. Reflection Refraction These characteristics

More information

Mirrors. N.G. Schultheiss translated and adapted by K. Schadenberg

Mirrors. N.G. Schultheiss translated and adapted by K. Schadenberg Mirrors N.G. Schultheiss translated and adapted by K. Schadenberg 1 Introduction This module Mirrors summarizes and extents your basic knowledge about mirrors. After this module you can proceed with the

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics 23.1 The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization,

More information

2/26/2016. Chapter 23 Ray Optics. Chapter 23 Preview. Chapter 23 Preview

2/26/2016. Chapter 23 Ray Optics. Chapter 23 Preview. Chapter 23 Preview Chapter 23 Ray Optics Chapter Goal: To understand and apply the ray model of light. Slide 23-2 Chapter 23 Preview Slide 23-3 Chapter 23 Preview Slide 23-4 1 Chapter 23 Preview Slide 23-5 Chapter 23 Preview

More information

CHAPTER- 10 LIGHT REFLECTION AND REFRACTION

CHAPTER- 10 LIGHT REFLECTION AND REFRACTION CHAPTER- 10 LIGHT REFLECTION AND REFRACTION LIGHT Light is a form of energy, which enable us to see the object. Its speed is 3 10 8 m/s in vacuum. Light always travel in straight line. Reflection: The

More information

AP Physics: Curved Mirrors and Lenses

AP Physics: Curved Mirrors and Lenses The Ray Model of Light Light often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but is very useful for geometric

More information

Lecture Notes (Geometric Optics)

Lecture Notes (Geometric Optics) Lecture Notes (Geometric Optics) Intro: - plane mirrors are flat, smooth surfaces from which light is reflected by regular reflection - light rays are reflected with equal angles of incidence and reflection

More information

Ch. 25 The Reflection of Light

Ch. 25 The Reflection of Light Ch. 25 The Reflection of Light 25. Wave fronts and rays We are all familiar with mirrors. We see images because some light is reflected off the surface of the mirror and into our eyes. In order to describe

More information

Light: Geometric Optics (Chapter 23)

Light: Geometric Optics (Chapter 23) Light: Geometric Optics (Chapter 23) Units of Chapter 23 The Ray Model of Light Reflection; Image Formed by a Plane Mirror Formation of Images by Spherical Index of Refraction Refraction: Snell s Law 1

More information

Reflection and Image Formation by Mirrors

Reflection and Image Formation by Mirrors Purpose Theory a. To study the reflection of light Reflection and Image Formation by Mirrors b. To study the formation and characteristics of images formed by different types of mirrors. When light (wave)

More information

General Physics II. Mirrors & Lenses

General Physics II. Mirrors & Lenses General Physics II Mirrors & Lenses Nothing New! For the next several lectures we will be studying geometrical optics. You already know the fundamentals of what is going on!!! Reflection: θ 1 = θ r incident

More information

ACTIVITY 2: Reflection of Light

ACTIVITY 2: Reflection of Light UNIT L Developing Ideas ACTIVITY 2: Reflection of Light Purpose Most people realize that light is necessary to see things, like images in mirrors, and various kinds of objects. But how does that happen?

More information

Reflection and Mirrors

Reflection and Mirrors Reflection and Mirrors 1 The Law of Reflection The angle of incidence equals the angle of reflection. 2 The Law of Reflection When light strikes a surface it is reflected. The light ray striking the surface

More information

Physics Optics Problems. Science and Mathematics Education Research Group

Physics Optics Problems. Science and Mathematics Education Research Group F FA ACULTY C U L T Y OF O F EDUCATION E D U C A T I O N Department of Curriculum and Pedagogy Physics Optics Problems Science and Mathematics Education Research Group Supported by UBC Teaching and Learning

More information

Solution and Grading Key PHYS1212 / PHYS1252 Quiz #1.04 Ray Diagrams

Solution and Grading Key PHYS1212 / PHYS1252 Quiz #1.04 Ray Diagrams (A) Solution and Grading Key PHYS1212 / PHYS1252 Quiz #1.04 Ray Diagrams Only the object is shown here. The image is hidden and you have to infer its location and orientation from the rays as drawn. Red

More information

REFLECTION & REFRACTION

REFLECTION & REFRACTION REFLECTION & REFRACTION OBJECTIVE: To study and verify the laws of reflection and refraction using a plane mirror and a glass block. To see the virtual images that can be formed by the reflection and refraction

More information

GEOMETRIC OPTICS MIRRORS

GEOMETRIC OPTICS MIRRORS GEOMETRIC OPTICS Now that we understand the laws of reflection and refraction we can put them to practical use by designing optical instruments. We begin with the law of reflection which tells us that

More information

Geometrical Optics INTRODUCTION. Wave Fronts and Rays

Geometrical Optics INTRODUCTION. Wave Fronts and Rays Geometrical Optics INTRODUCTION In this experiment, the optical characteristics of mirrors, lenses, and prisms will be studied based on using the following physics definitions and relationships plus simple

More information

Lecture 7 Notes: 07 / 11. Reflection and refraction

Lecture 7 Notes: 07 / 11. Reflection and refraction Lecture 7 Notes: 07 / 11 Reflection and refraction When an electromagnetic wave, such as light, encounters the surface of a medium, some of it is reflected off the surface, while some crosses the boundary

More information

Homework Set 3 Due Thursday, 07/14

Homework Set 3 Due Thursday, 07/14 Homework Set 3 Due Thursday, 07/14 Problem 1 A room contains two parallel wall mirrors, on opposite walls 5 meters apart. The mirrors are 8 meters long. Suppose that one person stands in a doorway, in

More information

Physics 1230: Light and Color. Projects

Physics 1230: Light and Color. Projects Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Matt Heinemann, Matthew.Heinemann@colorado.edu www.colorado.edu/physics/phys1230 Exam 2 tomorrow, here. HWK 6 is due at 5PM Thursday.

More information

All forms of EM waves travel at the speed of light in a vacuum = 3.00 x 10 8 m/s This speed is constant in air as well

All forms of EM waves travel at the speed of light in a vacuum = 3.00 x 10 8 m/s This speed is constant in air as well Pre AP Physics Light & Optics Chapters 14-16 Light is an electromagnetic wave Electromagnetic waves: Oscillating electric and magnetic fields that are perpendicular to the direction the wave moves Difference

More information

P06 ray diagrams with concave mirrors and intro to problem solving.notebook

P06 ray diagrams with concave mirrors and intro to problem solving.notebook Ray Diagrams Concave Mirror A concave mirror is a converging mirror because parallel rays will. For any object, millions and millions of rays are reflected in all directions. Some of these rays hit the

More information

Lab 9 - Geometrical Optics

Lab 9 - Geometrical Optics Lab 9 Geometrical Optics L9-1 Name Date Partners Lab 9 - Geometrical Optics OBJECTIVES To examine Snell s Law To observe total internal reflection. To understand and use the lens equations. To find the

More information

34.2: Two Types of Image

34.2: Two Types of Image Chapter 34 Images 34.2: Two Types of Image For you to see an object, your eye intercepts some of the light rays spreading from the object and then redirect them onto the retina at the rear of the eye.

More information

HW Chapter 20 Q 2,3,4,5,6,10,13 P 1,2,3. Chapter 20. Classic and Modern Optics. Dr. Armen Kocharian

HW Chapter 20 Q 2,3,4,5,6,10,13 P 1,2,3. Chapter 20. Classic and Modern Optics. Dr. Armen Kocharian HW Chapter 20 Q 2,3,4,5,6,10,13 P 1,2,3 Chapter 20 Classic and Modern Optics Dr. Armen Kocharian Electromagnetic waves and matter: A Brief History of Light 1000 AD It was proposed that light consisted

More information

Lecture Outline Chapter 26. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 26. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 26 Physics, 4 th Edition James S. Walker Chapter 26 Geometrical Optics Units of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing

More information

When light strikes an object there are different ways it can be affected. Light can be

When light strikes an object there are different ways it can be affected. Light can be When light strikes an object there are different ways it can be affected. Light can be transmitted, reflected, refracted, and absorbed, It depends on the type of matter that it strikes. For example light

More information

Ray Optics. Lecture 23. Chapter 34. Physics II. Course website:

Ray Optics. Lecture 23. Chapter 34. Physics II. Course website: Lecture 23 Chapter 34 Physics II Ray Optics Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Today we are going to discuss: Chapter 34: Section 34.1-3 Ray Optics Ray Optics Wave

More information

Announcement on HW 8. HW 8 originally due this Wednesday, Mar. 13 Now due FRIDAY, Mar. 15 at 8:00am. Physics 102: Lecture 16, Slide 1

Announcement on HW 8. HW 8 originally due this Wednesday, Mar. 13 Now due FRIDAY, Mar. 15 at 8:00am. Physics 102: Lecture 16, Slide 1 Announcement on HW 8 HW 8 originally due this Wednesday, Mar. 13 Now due FRIDAY, Mar. 15 at 8:00am Physics 102: Lecture 16, Slide 1 Physics 102: Lecture 16 Introduction to Mirrors Physics 102: Lecture

More information

SESSION 5: INVESTIGATING LIGHT. Key Concepts. X-planation. Physical Sciences Grade In this session we:

SESSION 5: INVESTIGATING LIGHT. Key Concepts. X-planation. Physical Sciences Grade In this session we: SESSION 5: INVESTIGATING LIGHT Key Concepts In this session we: Explain what light is, where light comes from and why it is important Identify what happens when light strikes the surface of different objects

More information

Introduction: The Nature of Light

Introduction: The Nature of Light O1 Introduction: The Nature of Light Introduction Optical elements and systems Basic properties O1.1 Overview Generally Geometrical Optics is considered a less abstract subject than Waves or Physical Optics

More information

Refraction of Light. This bending of the ray is called refraction

Refraction of Light. This bending of the ray is called refraction Refraction & Lenses Refraction of Light When a ray of light traveling through a transparent medium encounters a boundary leading into another transparent medium, part of the ray is reflected and part of

More information

Physics 1C. Lecture 22A. "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton

Physics 1C. Lecture 22A. There are two ways of spreading light: to be the candle or the mirror that reflects it. --Edith Wharton Physics 1C Lecture 22A "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton The Nature of Light An interesting question developed as to the nature of

More information

Propagation and Reflection of Light

Propagation and Reflection of Light Al-Saudia Virtual Academy Online tuition Pakistan Online Tutor Pakistan Propagation and Reflection of Light Q1. Define reflection of light. State the laws of reflection. Ans: REFLECTION OF LIGHT: When

More information

Name: Date: Concave Mirrors. 1. Reflect the rays off of the concave mirror. Principal axis

Name: Date: Concave Mirrors. 1. Reflect the rays off of the concave mirror. Principal axis Name: Date: Concave Mirrors 1. Reflect the rays off of the concave mirror. Principal axis Concave Mirrors Draw one line on each diagram to illustrate each of the following rules: a. Any ray that travels

More information

UNIT C: LIGHT AND OPTICAL SYSTEMS

UNIT C: LIGHT AND OPTICAL SYSTEMS 1 UNIT C: LIGHT AND OPTICAL SYSTEMS Science 8 2 LIGHT BEHAVES IN PREDICTABLE WAYS. Section 2.0 1 3 LIGHT TRAVELS IN RAYS AND INTERACTS WITH MATERIALS Topic 2.1 RAY DIAGRAMS Scientists use ray diagrams

More information

Chapter 11 Mirrors and Lenses KEY

Chapter 11 Mirrors and Lenses KEY Science 8 Physics Unit http://moodle.sd23.bc.ca/drk Question Completion Asking for Help Working in Class G I have completed all of the assigned questions, completed all diagrams, and corrected all wrong

More information

Lecture Presentation Chapter 18 Ray Optics

Lecture Presentation Chapter 18 Ray Optics Lecture Presentation Chapter 18 Ray Optics Suggested Videos for Chapter 18 Prelecture Videos Mirrors and Reflection Refraction Lenses and Images Video Tutor Solutions Ray Optics Class Videos Scattering

More information

The Question. What are the 4 types of interactions that waves can have when they encounter an object?

The Question. What are the 4 types of interactions that waves can have when they encounter an object? The Question What are the 4 types of interactions that waves can have when they encounter an object? Waves, Wave fronts and Rays Wave Front: Crests of the waves. Rays: Lines that are perpendicular to the

More information

Chapter 23. Geometrical Optics: Mirrors and Lenses and other Instruments

Chapter 23. Geometrical Optics: Mirrors and Lenses and other Instruments Chapter 23 Geometrical Optics: Mirrors and Lenses and other Instruments HITT1 A small underwater pool light is 1 m below the surface of a swimming pool. What is the radius of the circle of light on the

More information

Chapter 33 Continued Properties of Light. Law of Reflection Law of Refraction or Snell s Law Chromatic Dispersion Brewsters Angle

Chapter 33 Continued Properties of Light. Law of Reflection Law of Refraction or Snell s Law Chromatic Dispersion Brewsters Angle Chapter 33 Continued Properties of Light Law of Reflection Law of Refraction or Snell s Law Chromatic Dispersion Brewsters Angle Dispersion: Different wavelengths have different velocities and therefore

More information

4. Refraction. glass, air, Perspex and water.

4. Refraction. glass, air, Perspex and water. Mr. C. Grima 11 1. Rays and Beams A ray of light is a narrow beam of parallel light, which can be represented by a line with an arrow on it, in diagrams. A group of rays makes up a beam of light. In laboratory

More information

Physics 102: Lecture 16 Introduction to Mirrors

Physics 102: Lecture 16 Introduction to Mirrors Physics 102: Lecture 16 Introduction to Mirrors Physics 102: Lecture 16, Slide 1 Exam II Tuesday April 1st! What will exam cover? Lectures 8 15 (Magnetic fields Polarization) What do you need to bring?

More information

Video: The Mirror. Unit #3 - Optics. Geometric Optics. A) The Law of Reflection. applications Mirrors.

Video: The Mirror. Unit #3 - Optics. Geometric Optics. A) The Law of Reflection. applications Mirrors. Video: The Mirror http://vimeo.com/6212004 Unit #3 - Optics 11.1 - Mirrors Geometric Optics the science of how light reflects and bends optical device is any technology that uses light A) The Law of Reflection

More information