15. Moment Labeling Mechanics of Manipulation

Size: px
Start display at page:

Download "15. Moment Labeling Mechanics of Manipulation"

Transcription

1 15. Moment Labeling Mechanics of Manipulation Matt Mason Carnegie Mellon Lecture 15. Mechanics of Manipulation p.1

2 Lecture 15. Moment Labeling. Chapter 1 Manipulation Case 1: Manipulation by a human Case 2: An automated assembly system Issues in manipulation A taxonomy of manipulation techniques Bibliographic notes 8 Exercises 8 Chapter 2 Kinematics Preliminaries Planar kinematics Spherical kinematics Spatial kinematics Kinematic constraint Kinematic mechanisms Bibliographic notes 36 Exercises 37 Chapter 3 Kinematic Representation Representation of spatial rotations Representation of spatial displacements Kinematic constraints Bibliographic notes 72 Exercises 72 Chapter 4 Kinematic Manipulation Path planning Path planning for nonholonomic systems Kinematic models of contact Bibliographic notes 88 Exercises 88 Chapter 5 Rigid Body Statics Forces acting on rigid bodies Polyhedral convex cones Contact wrenches and wrench cones Cones in velocity twist space The oriented plane Instantaneous centers and Reuleaux' s method Line of force; moment labeling Force dual Summary Bibliographic notes 117 Exercises 118 Chapter 6 Friction Coulomb' s Law Single degree-of-freedom problems Planar single contact problems Graphical representation of friction cones Static equilibrium problems Planar sliding Bibliographic notes 139 Exercises 139 Chapter 7 Quasistatic Manipulation Grasping and fixturing Pushing Stable pushing Parts orienting Assembly Bibliographic notes 173 Exercises 175 Chapter 8 Dynamics Newton' s laws A particle in three dimensions Moment of force; moment of momentum Dynamics of a system of particles Rigid body dynamics The angular inertia matrix Motion of a freely rotating body Planar single contact problems Graphical methods for the plane Planar multiple-contact problems Bibliographic notes 207 Exercises 208 Chapter 9 Impact A particle Rigid body impact Bibliographic notes 223 Exercises 223 Chapter 10 Dynamic Manipulation Quasidynamic manipulation Briefly dynamic manipulation Continuously dynamic manipulation Bibliographic notes 232 Exercises 235 Appendix A Infinity 237 Lecture 15. Mechanics of Manipulation p.2

3 Outline. Review: where are we? Where are we going? Moment labeling: practical introduction. Moment labeling: a more formal approach. Relation to PCC s in wrench space. Examples. Lecture 15. Mechanics of Manipulation p.3

4 Where are we? Wrench and twist spaces. Chasles theorem: rigid body motion is a twist. Poinsot s theorem: forces on rigid body are a wrench Polyhedral convex cones. Edge representation: pos({e i }) Face representation: {half(n i )} Supplementary cone: pos({n i }) or {half(e i )} Oriented plane. Rays in planar homogeneous coordinate space (x, y, w). Project to w = 1 plane, with + or to remember sign of w. Convexity: interior and exterior line segments. Lecture 15. Mechanics of Manipulation p.4

5 Where are we going? Graphical techniques for planar contact problems: Project cone to Project supplementary oriented plane cone to oriented plane single wrench (acc n center) line of action single diff l twist IC? wrench cone force dual moment labeling diff l twist cone Reuleaux? Lecture 15. Mechanics of Manipulation p.5

6 Possible resultants for one contact. For a frictionless contact, force is along contact normal, magnitude is indeterminate. I.e., the (directed) line of force is determined. Another definition of line of force: locus of zero moment points. Lecture 15. Mechanics of Manipulation p.6

7 Another way of drawing the line of force. If we indicate sign of moment at each point half plane of to the left;... half plane of to the right; zero moment points are the boundary. Gives line of force and its direction. Lecture 15. Mechanics of Manipulation p.7

8 Reuleaux s method has two interpretations! The cone of differential twists reciprocal or repelling to a given wrench. The cone of wrenches in the positive linear span of a given wrench. Reciprocal or repelling turns any wrench-pcc rep n into a twist-pcc rep n. Lecture 15. Mechanics of Manipulation p.8

9 Superiority of wrench interpretation. Actually the wrench interpretation is more useful. Differential twist cone is only first order approximation. Wrench interpretation extends to include friction. Wrench interpretation extends beyond convex cones. Lecture 15. Mechanics of Manipulation p.9

10 Possible resultants of two contacts. Remember how to construct resultant of two forces in the plane? We can represent this set of resultants by a cone drawn in the plane. Lecture 15. Mechanics of Manipulation p.10

11 Some more challenging problems How do we deal with these cases: Possible resultants of two parallel contacts? Possible resultants of three contacts? Lecture 15. Mechanics of Manipulation p.11

12 Some more challenging problems How do we deal with these cases: Possible resultants of two parallel contacts? Possible resultants of three contacts? Let s try Reuleaux s method and reinterpret. Lecture 15. Mechanics of Manipulation p.11

13 Some more challenging problems How do we deal with these cases: Possible resultants of two parallel contacts? Possible resultants of three contacts? Let s try Reuleaux s method and reinterpret. Lecture 15. Mechanics of Manipulation p.11

14 Interpreting the labeled regions. The set of all forces that go between and, in the right direction. They can graze, but cannot go through the interior. no yes yes no a) b) yes no no yes Lecture 15. Mechanics of Manipulation p.12

15 More formally Given a set of contact wrenches {w i }, Let i and i be the points of nonnegative and nonpositive moments, respectively, for contact w i, Let be the intersection of all nonnegative regions = i and let be the intersection of all nonpositive regions = i Then the possible resultants pos({w i }) is the set of all wrenches making nonnegative moments with all points in and nonpositive moments with all points in. Lecture 15. Mechanics of Manipulation p.13

16 Why does it work? If, for example, all w i give positive moments with respect to some point, Then so does any wrench of the form ki w i if all the k i are nonnegative. So, represent every w i by where it can t go, Intersect to determine where none of the w i can go, That s where wrenches pos({w i }) cannot go. Lecture 15. Mechanics of Manipulation p.14

17 Examples Sliding friction (preview). Two facing cones. Disk in concrete. GOAT against step. Lecture 15. Mechanics of Manipulation p.15

18 Next: Friction. Chapter 1 Manipulation Case 1: Manipulation by a human Case 2: An automated assembly system Issues in manipulation A taxonomy of manipulation techniques Bibliographic notes 8 Exercises 8 Chapter 2 Kinematics Preliminaries Planar kinematics Spherical kinematics Spatial kinematics Kinematic constraint Kinematic mechanisms Bibliographic notes 36 Exercises 37 Chapter 3 Kinematic Representation Representation of spatial rotations Representation of spatial displacements Kinematic constraints Bibliographic notes 72 Exercises 72 Chapter 4 Kinematic Manipulation Path planning Path planning for nonholonomic systems Kinematic models of contact Bibliographic notes 88 Exercises 88 Chapter 5 Rigid Body Statics Forces acting on rigid bodies Polyhedral convex cones Contact wrenches and wrench cones Cones in velocity twist space The oriented plane Instantaneous centers and Reuleaux' s method Line of force; moment labeling Force dual Summary Bibliographic notes 117 Exercises 118 Chapter 6 Friction Coulomb' s Law Single degree-of-freedom problems Planar single contact problems Graphical representation of friction cones Static equilibrium problems Planar sliding Bibliographic notes 139 Exercises 139 Chapter 7 Quasistatic Manipulation Grasping and fixturing Pushing Stable pushing Parts orienting Assembly Bibliographic notes 173 Exercises 175 Chapter 8 Dynamics Newton' s laws A particle in three dimensions Moment of force; moment of momentum Dynamics of a system of particles Rigid body dynamics The angular inertia matrix Motion of a freely rotating body Planar single contact problems Graphical methods for the plane Planar multiple-contact problems Bibliographic notes 207 Exercises 208 Chapter 9 Impact A particle Rigid body impact Bibliographic notes 223 Exercises 223 Chapter 10 Dynamic Manipulation Quasidynamic manipulation Briefly dynamic manipulation Continuously dynamic manipulation Bibliographic notes 232 Exercises 235 Appendix A Infinity 237 Lecture 15. Mechanics of Manipulation p.16

13. Polyhedral Convex Cones

13. Polyhedral Convex Cones 13. Polyhedral Convex Cones Mechanics of Manipulation Matt Mason matt.mason@cs.cmu.edu http://www.cs.cmu.edu/~mason Carnegie Mellon Lecture 13. Mechanics of Manipulation p.1 Lecture 13. Cones. Chapter

More information

9. Representing constraint

9. Representing constraint 9. Representing constraint Mechanics of Manipulation Matt Mason matt.mason@cs.cmu.edu http://www.cs.cmu.edu/~mason Carnegie Mellon Lecture 9. Mechanics of Manipulation p.1 Lecture 9. Representing constraint.

More information

11. Kinematic models of contact Mechanics of Manipulation

11. Kinematic models of contact Mechanics of Manipulation 11. Kinematic models of contact Mechanics of Manipulation Matt Mason matt.mason@cs.cmu.edu http://www.cs.cmu.edu/~mason Carnegie Mellon Lecture 11. Mechanics of Manipulation p.1 Lecture 11. Kinematic models

More information

14. The Oriented Plane Mechanics of Manipulation

14. The Oriented Plane Mechanics of Manipulation 14. The Oriented Plane Mechanics of Manipulation Matt Mason matt.mason@cs.cmu.edu http://www.cs.cmu.edu/~mason Carnegie Mellon Lecture 14. Mechanics of Manipulation p.1 Exhortations Hands are levers of

More information

23. Assembly Mechanics of Manipulation

23. Assembly Mechanics of Manipulation 23. Assembly Mechanics of Manipulation Matt Mason matt.mason@cs.cmu.edu http://www.cs.cmu.edu/~mason Carnegie Mellon Lecture 23. Mechanics of Manipulation p.1 Lecture 23. Assembly. Chapter 1 Manipulation

More information

3. Planar kinematics Mechanics of Manipulation

3. Planar kinematics Mechanics of Manipulation 3. Planar kinematics Mechanics of Manipulation Matt Mason matt.mason@cs.cmu.edu http://www.cs.cmu.edu/~mason Carnegie Mellon Lecture 3. Mechanics of Manipulation p.1 Lecture 2. Planar kinematics. Chapter

More information

Lecture 3. Planar Kinematics

Lecture 3. Planar Kinematics Matthew T. Mason Mechanics of Manipulation Outline Where are we? s 1. Foundations and general concepts. 2.. 3. Spherical and spatial kinematics. Readings etc. The text: By now you should have read Chapter

More information

240AR059 - Geometric Fundamentals for Robot Design

240AR059 - Geometric Fundamentals for Robot Design Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2018 240 - ETSEIB - Barcelona School of Industrial Engineering 707 - ESAII - Department of Automatic Control MASTER'S DEGREE IN AUTOMATIC

More information

Manipulation: Mechanisms, Grasping and Inverse Kinematics

Manipulation: Mechanisms, Grasping and Inverse Kinematics Manipulation: Mechanisms, Grasping and Inverse Kinematics RSS Lectures 14 & 15 Monday & Wednesday, 1 & 3 April 2013 Prof. Seth Teller Overview Mobility and Manipulation Manipulation Strategies Mechanism

More information

Partitioning Contact State Space Using the Theory of Polyhedral Convex Cones George V Paul and Katsushi Ikeuchi

Partitioning Contact State Space Using the Theory of Polyhedral Convex Cones George V Paul and Katsushi Ikeuchi Partitioning Contact State Space Using the Theory of Polyhedral Convex Cones George V Paul and Katsushi Ikeuchi August 1994 CMU-RI-TR-94-36 Robotics Institute Carnegie Mellon University Pittsburgh, PA

More information

Last 2 modules were about. What the other robot did : Robotics systems and science Lecture 15: Grasping and Manipulation

Last 2 modules were about. What the other robot did : Robotics systems and science Lecture 15: Grasping and Manipulation 6.141: Robotics systems and science Lecture 15: Grasping and Manipulation Lecture Notes Prepared by Daniela Rus EECS/MIT Spring 2009 What the robot did over Spring break Reading: Chapter3, Craig: Robotics

More information

A Quantitative Stability Measure for Graspless Manipulation

A Quantitative Stability Measure for Graspless Manipulation A Quantitative Stability Measure for Graspless Manipulation Yusuke MAEDA and Tamio ARAI Department of Precision Engineering, School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo

More information

6.141: Robotics systems and science Lecture 13: Grasping and Manipulation

6.141: Robotics systems and science Lecture 13: Grasping and Manipulation 6.141: Robotics systems and science Lecture 13: Grasping and Manipulation Lecture Notes Prepared by Daniela Rus and Seth Teller EECS/MIT Spring 2011 Reading: Chapter3, Craig: Robotics http://courses.csail.mit.edu/6.141/!

More information

Lesson 1: Introduction to Pro/MECHANICA Motion

Lesson 1: Introduction to Pro/MECHANICA Motion Lesson 1: Introduction to Pro/MECHANICA Motion 1.1 Overview of the Lesson The purpose of this lesson is to provide you with a brief overview of Pro/MECHANICA Motion, also called Motion in this book. Motion

More information

Parallel Robots. Mechanics and Control H AMID D. TAG HI RAD. CRC Press. Taylor & Francis Group. Taylor & Francis Croup, Boca Raton London NewYoric

Parallel Robots. Mechanics and Control H AMID D. TAG HI RAD. CRC Press. Taylor & Francis Group. Taylor & Francis Croup, Boca Raton London NewYoric Parallel Robots Mechanics and Control H AMID D TAG HI RAD CRC Press Taylor & Francis Group Boca Raton London NewYoric CRC Press Is an Imprint of the Taylor & Francis Croup, an informs business Contents

More information

PUSHING is a useful robot primitive for manipulating

PUSHING is a useful robot primitive for manipulating 318 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 15, NO. 2, APRIL 1999 Locally Controllable Manipulation by Stable Pushing Kevin M. Lynch, Member, IEEE Abstract When a polygonal object is pushed

More information

A simple example. Assume we want to find the change in the rotation angles to get the end effector to G. Effect of changing s

A simple example. Assume we want to find the change in the rotation angles to get the end effector to G. Effect of changing s CENG 732 Computer Animation This week Inverse Kinematics (continued) Rigid Body Simulation Bodies in free fall Bodies in contact Spring 2006-2007 Week 5 Inverse Kinematics Physically Based Rigid Body Simulation

More information

Lecture «Robot Dynamics»: Kinematic Control

Lecture «Robot Dynamics»: Kinematic Control Lecture «Robot Dynamics»: Kinematic Control 151-0851-00 V lecture: CAB G11 Tuesday 10:15 12:00, every week exercise: HG E1.2 Wednesday 8:15 10:00, according to schedule (about every 2nd week) Marco Hutter,

More information

Robotics I. March 27, 2018

Robotics I. March 27, 2018 Robotics I March 27, 28 Exercise Consider the 5-dof spatial robot in Fig., having the third and fifth joints of the prismatic type while the others are revolute. z O x Figure : A 5-dof robot, with a RRPRP

More information

Constraint and velocity analysis of mechanisms

Constraint and velocity analysis of mechanisms Constraint and velocity analysis of mechanisms Matteo Zoppi Dimiter Zlatanov DIMEC University of Genoa Genoa, Italy Su S ZZ-2 Outline Generalities Constraint and mobility analysis Examples of geometric

More information

Forward kinematics and Denavit Hartenburg convention

Forward kinematics and Denavit Hartenburg convention Forward kinematics and Denavit Hartenburg convention Prof. Enver Tatlicioglu Department of Electrical & Electronics Engineering Izmir Institute of Technology Chapter 5 Dr. Tatlicioglu (EEE@IYTE) EE463

More information

10/11/07 1. Motion Control (wheeled robots) Representing Robot Position ( ) ( ) [ ] T

10/11/07 1. Motion Control (wheeled robots) Representing Robot Position ( ) ( ) [ ] T 3 3 Motion Control (wheeled robots) Introduction: Mobile Robot Kinematics Requirements for Motion Control Kinematic / dynamic model of the robot Model of the interaction between the wheel and the ground

More information

1. Introduction 1 2. Mathematical Representation of Robots

1. Introduction 1 2. Mathematical Representation of Robots 1. Introduction 1 1.1 Introduction 1 1.2 Brief History 1 1.3 Types of Robots 7 1.4 Technology of Robots 9 1.5 Basic Principles in Robotics 12 1.6 Notation 15 1.7 Symbolic Computation and Numerical Analysis

More information

Chapter 3: Kinematics Locomotion. Ross Hatton and Howie Choset

Chapter 3: Kinematics Locomotion. Ross Hatton and Howie Choset Chapter 3: Kinematics Locomotion Ross Hatton and Howie Choset 1 (Fully/Under)Actuated Fully Actuated Control all of the DOFs of the system Controlling the joint angles completely specifies the configuration

More information

Design of a Three-Axis Rotary Platform

Design of a Three-Axis Rotary Platform Design of a Three-Axis Rotary Platform William Mendez, Yuniesky Rodriguez, Lee Brady, Sabri Tosunoglu Mechanics and Materials Engineering, Florida International University 10555 W Flagler Street, Miami,

More information

Robot mechanics and kinematics

Robot mechanics and kinematics University of Pisa Master of Science in Computer Science Course of Robotics (ROB) A.Y. 2017/18 cecilia.laschi@santannapisa.it http://didawiki.cli.di.unipi.it/doku.php/magistraleinformatica/rob/start Robot

More information

Robotics Prof. Dilip Kumar Pratihar Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Robotics Prof. Dilip Kumar Pratihar Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Robotics Prof. Dilip Kumar Pratihar Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture 03 Introduction to Robot and Robotics (Contd.) (Refer Slide Time: 00:34) Now,

More information

Chapter 4. Mechanism Design and Analysis

Chapter 4. Mechanism Design and Analysis Chapter 4. Mechanism Design and Analysis All mechanical devices containing moving parts are composed of some type of mechanism. A mechanism is a group of links interacting with each other through joints

More information

Stable Pushing: Mechanics, Controllability, and Planning

Stable Pushing: Mechanics, Controllability, and Planning Kevin M. Lynch Matthew T. Mason The Robotics Institute Carnegie Mellon University Pittsburgh, Pennsylvania 15213 Stable Pushing: Mechanics, Controllability, and Planning Abstract We would like to give

More information

Jacobians. 6.1 Linearized Kinematics. Y: = k2( e6)

Jacobians. 6.1 Linearized Kinematics. Y: = k2( e6) Jacobians 6.1 Linearized Kinematics In previous chapters we have seen how kinematics relates the joint angles to the position and orientation of the robot's endeffector. This means that, for a serial robot,

More information

Kinematics. Kinematics analyzes the geometry of a manipulator, robot or machine motion. The essential concept is a position.

Kinematics. Kinematics analyzes the geometry of a manipulator, robot or machine motion. The essential concept is a position. Kinematics Kinematics analyzes the geometry of a manipulator, robot or machine motion. The essential concept is a position. 1/31 Statics deals with the forces and moments which are aplied on the mechanism

More information

Robot mechanics and kinematics

Robot mechanics and kinematics University of Pisa Master of Science in Computer Science Course of Robotics (ROB) A.Y. 2016/17 cecilia.laschi@santannapisa.it http://didawiki.cli.di.unipi.it/doku.php/magistraleinformatica/rob/start Robot

More information

Position and Displacement Analysis

Position and Displacement Analysis Position and Displacement Analysis Introduction: In this chapter we introduce the tools to identifying the position of the different points and links in a given mechanism. Recall that for linkages with

More information

Table of Contents. Chapter 1. Modeling and Identification of Serial Robots... 1 Wisama KHALIL and Etienne DOMBRE

Table of Contents. Chapter 1. Modeling and Identification of Serial Robots... 1 Wisama KHALIL and Etienne DOMBRE Chapter 1. Modeling and Identification of Serial Robots.... 1 Wisama KHALIL and Etienne DOMBRE 1.1. Introduction... 1 1.2. Geometric modeling... 2 1.2.1. Geometric description... 2 1.2.2. Direct geometric

More information

The basics of rigidity

The basics of rigidity The basics of rigidity Lectures I and II Session on Granular Matter Institut Henri Poincaré R. Connelly Cornell University Department of Mathematics 1 What determines rigidity? 2 What determines rigidity?

More information

Adapting polytopes dimension for managing degrees of freedom in tolerancing analysis

Adapting polytopes dimension for managing degrees of freedom in tolerancing analysis Available online at www.sciencedirect.com Procedia CIRP 00 (2016) 000 000 www.elsevier.com/locate/procedia 14th CIRP Conference on Computer Aided Tolerancing (CAT) Adapting polytopes dimension for managing

More information

Modelling of mechanical system CREATING OF KINEMATIC CHAINS

Modelling of mechanical system CREATING OF KINEMATIC CHAINS Modelling of mechanical system CREATING OF KINEMATIC CHAINS Mechanism Definitions 1. a system or structure of moving parts that performs some function 2. is each system reciprocally joined moveable bodies

More information

CONSTRAINT ANALYSIS OF ASSEMBLIES USING SCREW THEORY AND TOLERANCE SENSITIVITIES. Daniel K. Smith. A thesis submitted to the faculty of

CONSTRAINT ANALYSIS OF ASSEMBLIES USING SCREW THEORY AND TOLERANCE SENSITIVITIES. Daniel K. Smith. A thesis submitted to the faculty of CONSTRAINT ANALYSIS OF ASSEMBLIES USING SCREW THEORY AND TOLERANCE SENSITIVITIES by Daniel K. Smith A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements

More information

CHAPTER 3 MATHEMATICAL MODEL

CHAPTER 3 MATHEMATICAL MODEL 38 CHAPTER 3 MATHEMATICAL MODEL 3.1 KINEMATIC MODEL 3.1.1 Introduction The kinematic model of a mobile robot, represented by a set of equations, allows estimation of the robot s evolution on its trajectory,

More information

Model Library Mechanics

Model Library Mechanics Model Library Mechanics Using the libraries Mechanics 1D (Linear), Mechanics 1D (Rotary), Modal System incl. ANSYS interface, and MBS Mechanics (3D) incl. CAD import via STL and the additional options

More information

ADJUSTABLE GEOMETRIC CONSTRAINTS 2001 MIT PSDAM AND PERG LABS

ADJUSTABLE GEOMETRIC CONSTRAINTS 2001 MIT PSDAM AND PERG LABS ADJUSTABLE GEOMETRIC CONSTRAINTS Why adjust kinematic couplings? KC Repeatability is orders of magnitude better than accuracy Accuracy = f ( manufacture and assemble ) Kinematic Coupling Accuracy Adjusted

More information

Centre for Autonomous Systems

Centre for Autonomous Systems Robot Henrik I Centre for Autonomous Systems Kungl Tekniska Högskolan hic@kth.se 27th April 2005 Outline 1 duction 2 Kinematic and Constraints 3 Mobile Robot 4 Mobile Robot 5 Beyond Basic 6 Kinematic 7

More information

Motion Control (wheeled robots)

Motion Control (wheeled robots) Motion Control (wheeled robots) Requirements for Motion Control Kinematic / dynamic model of the robot Model of the interaction between the wheel and the ground Definition of required motion -> speed control,

More information

Principles of Robot Motion

Principles of Robot Motion Principles of Robot Motion Theory, Algorithms, and Implementation Howie Choset, Kevin Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia Kavraki, and Sebastian Thrun A Bradford Book The MIT

More information

Lecture 2. Topology of Sets in R n. August 27, 2008

Lecture 2. Topology of Sets in R n. August 27, 2008 Lecture 2 Topology of Sets in R n August 27, 2008 Outline Vectors, Matrices, Norms, Convergence Open and Closed Sets Special Sets: Subspace, Affine Set, Cone, Convex Set Special Convex Sets: Hyperplane,

More information

Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur. Module 10 Lecture 1

Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur. Module 10 Lecture 1 Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur Module 10 Lecture 1 So far, in this course we have discussed planar linkages, which

More information

ACTIVITY FIVE-A NEWTON S SECOND LAW: THE ATWOOD MACHINE

ACTIVITY FIVE-A NEWTON S SECOND LAW: THE ATWOOD MACHINE 1 ACTIVITY FIVE-A NEWTON S SECOND LAW: THE ATWOOD MACHINE PURPOSE For this experiment, the Motion Visualizer (MV) is used to capture the motion of two masses which are suspended above the ground and connected

More information

MEM380 Applied Autonomous Robots Winter Robot Kinematics

MEM380 Applied Autonomous Robots Winter Robot Kinematics MEM38 Applied Autonomous obots Winter obot Kinematics Coordinate Transformations Motivation Ultimatel, we are interested in the motion of the robot with respect to a global or inertial navigation frame

More information

Two-View Geometry (Course 23, Lecture D)

Two-View Geometry (Course 23, Lecture D) Two-View Geometry (Course 23, Lecture D) Jana Kosecka Department of Computer Science George Mason University http://www.cs.gmu.edu/~kosecka General Formulation Given two views of the scene recover the

More information

Kinematics of Wheeled Robots

Kinematics of Wheeled Robots CSE 390/MEAM 40 Kinematics of Wheeled Robots Professor Vijay Kumar Department of Mechanical Engineering and Applied Mechanics University of Pennsylvania September 16, 006 1 Introduction In this chapter,

More information

Inverse Kinematics Analysis for Manipulator Robot With Wrist Offset Based On the Closed-Form Algorithm

Inverse Kinematics Analysis for Manipulator Robot With Wrist Offset Based On the Closed-Form Algorithm Inverse Kinematics Analysis for Manipulator Robot With Wrist Offset Based On the Closed-Form Algorithm Mohammed Z. Al-Faiz,MIEEE Computer Engineering Dept. Nahrain University Baghdad, Iraq Mohammed S.Saleh

More information

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute Jane Li Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute We know how to describe the transformation of a single rigid object w.r.t. a single

More information

MC-E - Motion Control

MC-E - Motion Control IDC Technologies - Books - 1031 Wellington Street West Perth WA 6005 Phone: +61 8 9321 1702 - Email: books@idconline.com MC-E - Motion Control Price: $139.94 Ex Tax: $127.22 Short Description This manual

More information

Immobilizing hinged polygons

Immobilizing hinged polygons Immobilizing hinged polygons Jae-Sook Cheong Ken Goldberg Mark H. Overmars Elon Rimon A. Frank van der Stappen Abstract: We study the problem of fixturing a chain of hinged objects in a given placement

More information

Kinematics Fundamentals CREATING OF KINEMATIC CHAINS

Kinematics Fundamentals CREATING OF KINEMATIC CHAINS Kinematics Fundamentals CREATING OF KINEMATIC CHAINS Mechanism Definitions 1. a system or structure of moving parts that performs some function 2. is each system reciprocally joined moveable bodies the

More information

Kinematics, Kinematics Chains CS 685

Kinematics, Kinematics Chains CS 685 Kinematics, Kinematics Chains CS 685 Previously Representation of rigid body motion Two different interpretations - as transformations between different coord. frames - as operators acting on a rigid body

More information

Finding All Gravitationally Stable Orientations of Assemblies 3

Finding All Gravitationally Stable Orientations of Assemblies 3 Finding All Gravitationally Stable Orientations of Assemblies 3 Raju Mattikalli David Baraff Pradeep Khosla Robotics Institute Carnegie Mellon University Pittsburgh, PA, 15213 Abstract Previous work by

More information

Mobile Robots Locomotion

Mobile Robots Locomotion Mobile Robots Locomotion Institute for Software Technology 1 Course Outline 1. Introduction to Mobile Robots 2. Locomotion 3. Sensors 4. Localization 5. Environment Modelling 6. Reactive Navigation 2 Today

More information

MACHINES AND MECHANISMS

MACHINES AND MECHANISMS MACHINES AND MECHANISMS APPLIED KINEMATIC ANALYSIS Fourth Edition David H. Myszka University of Dayton PEARSON ж rentice Hall Pearson Education International Boston Columbus Indianapolis New York San Francisco

More information

Massachusetts Institute of Technology Department of Computer Science and Electrical Engineering 6.801/6.866 Machine Vision QUIZ II

Massachusetts Institute of Technology Department of Computer Science and Electrical Engineering 6.801/6.866 Machine Vision QUIZ II Massachusetts Institute of Technology Department of Computer Science and Electrical Engineering 6.801/6.866 Machine Vision QUIZ II Handed out: 001 Nov. 30th Due on: 001 Dec. 10th Problem 1: (a (b Interior

More information

Robotics (Kinematics) Winter 1393 Bonab University

Robotics (Kinematics) Winter 1393 Bonab University Robotics () Winter 1393 Bonab University : most basic study of how mechanical systems behave Introduction Need to understand the mechanical behavior for: Design Control Both: Manipulators, Mobile Robots

More information

ME/CS 133(a): Final Exam (Fall Quarter 2017/2018)

ME/CS 133(a): Final Exam (Fall Quarter 2017/2018) ME/CS 133(a): Final Exam (Fall Quarter 2017/2018) Instructions 1. Limit your total time to 5 hours. You can take a break in the middle of the exam if you need to ask a question, or go to dinner, etc. That

More information

Structure from Motion. Prof. Marco Marcon

Structure from Motion. Prof. Marco Marcon Structure from Motion Prof. Marco Marcon Summing-up 2 Stereo is the most powerful clue for determining the structure of a scene Another important clue is the relative motion between the scene and (mono)

More information

Homogeneous coordinates, lines, screws and twists

Homogeneous coordinates, lines, screws and twists Homogeneous coordinates, lines, screws and twists In lecture 1 of module 2, a brief mention was made of homogeneous coordinates, lines in R 3, screws and twists to describe the general motion of a rigid

More information

International Journal of Advanced Research in Computer Science and Software Engineering

International Journal of Advanced Research in Computer Science and Software Engineering Volume 2, Issue 10, October 2012 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Force Closure

More information

Anatomy of a Physics Engine. Erwin Coumans

Anatomy of a Physics Engine. Erwin Coumans Anatomy of a Physics Engine Erwin Coumans erwin_coumans@playstation.sony.com How it fits together» Terminology» Rigid Body Dynamics» Collision Detection» Software Design Decisions» Trip through the Physics

More information

3. Manipulator Kinematics. Division of Electronic Engineering Prof. Jaebyung Park

3. Manipulator Kinematics. Division of Electronic Engineering Prof. Jaebyung Park 3. Manipulator Kinematics Division of Electronic Engineering Prof. Jaebyung Park Introduction Kinematics Kinematics is the science of motion which treats motion without regard to the forces that cause

More information

Autonomous and Mobile Robotics Prof. Giuseppe Oriolo. Humanoid Robots 2: Dynamic Modeling

Autonomous and Mobile Robotics Prof. Giuseppe Oriolo. Humanoid Robots 2: Dynamic Modeling Autonomous and Mobile Robotics rof. Giuseppe Oriolo Humanoid Robots 2: Dynamic Modeling modeling multi-body free floating complete model m j I j R j ω j f c j O z y x p ZM conceptual models for walking/balancing

More information

a triangle with all acute angles acute triangle angles that share a common side and vertex adjacent angles alternate exterior angles

a triangle with all acute angles acute triangle angles that share a common side and vertex adjacent angles alternate exterior angles acute triangle a triangle with all acute angles adjacent angles angles that share a common side and vertex alternate exterior angles two non-adjacent exterior angles on opposite sides of the transversal;

More information

CMPUT 412 Motion Control Wheeled robots. Csaba Szepesvári University of Alberta

CMPUT 412 Motion Control Wheeled robots. Csaba Szepesvári University of Alberta CMPUT 412 Motion Control Wheeled robots Csaba Szepesvári University of Alberta 1 Motion Control (wheeled robots) Requirements Kinematic/dynamic model of the robot Model of the interaction between the wheel

More information

WEEKS 1-2 MECHANISMS

WEEKS 1-2 MECHANISMS References WEEKS 1-2 MECHANISMS (METU, Department of Mechanical Engineering) Text Book: Mechanisms Web Page: http://www.me.metu.edu.tr/people/eres/me301/in dex.ht Analitik Çözümlü Örneklerle Mekanizma

More information

MSMS (02PCYQW)

MSMS (02PCYQW) MSMS (02PCYQW) 2016-2017 Organization: the course is composed of two parts: the first part is devoted to the Lagrange (LAG) approach the second part is devoted to the Bond-Graph (BG) approach Each part

More information

Chapter 12 Solid Modeling. Disadvantages of wireframe representations

Chapter 12 Solid Modeling. Disadvantages of wireframe representations Chapter 12 Solid Modeling Wireframe, surface, solid modeling Solid modeling gives a complete and unambiguous definition of an object, describing not only the shape of the boundaries but also the object

More information

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder]

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Preliminaries Recall: Given a smooth function f:r R, the function

More information

MDP646: ROBOTICS ENGINEERING. Mechanical Design & Production Department Faculty of Engineering Cairo University Egypt. Prof. Said M.

MDP646: ROBOTICS ENGINEERING. Mechanical Design & Production Department Faculty of Engineering Cairo University Egypt. Prof. Said M. MDP646: ROBOTICS ENGINEERING Mechanical Design & Production Department Faculty of Engineering Cairo University Egypt Prof. Said M. Megahed APPENDIX A: PROBLEM SETS AND PROJECTS Problem Set # Due 3 rd week

More information

ME 115(b): Final Exam, Spring

ME 115(b): Final Exam, Spring ME 115(b): Final Exam, Spring 2011-12 Instructions 1. Limit your total time to 5 hours. That is, it is okay to take a break in the middle of the exam if you need to ask me a question, or go to dinner,

More information

INSTITUTE OF AERONAUTICAL ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING Name Code Class Branch Page 1 INSTITUTE OF AERONAUTICAL ENGINEERING : ROBOTICS (Autonomous) Dundigal, Hyderabad - 500 0 MECHANICAL ENGINEERING TUTORIAL QUESTION BANK : A7055 : IV B. Tech I Semester : MECHANICAL

More information

AC : AN ALTERNATIVE APPROACH FOR TEACHING MULTIBODY DYNAMICS

AC : AN ALTERNATIVE APPROACH FOR TEACHING MULTIBODY DYNAMICS AC 2009-575: AN ALTERNATIVE APPROACH FOR TEACHING MULTIBODY DYNAMICS George Sutherland, Rochester Institute of Technology DR. GEORGE H. SUTHERLAND is a professor in the Manufacturing & Mechanical Engineering

More information

CSG obj. oper3. obj1 obj2 obj3. obj5. obj4

CSG obj. oper3. obj1 obj2 obj3. obj5. obj4 Solid Modeling Solid: Boundary + Interior Volume occupied by geometry Solid representation schemes Constructive Solid Geometry (CSG) Boundary representations (B-reps) Space-partition representations Operations

More information

Geometric Modeling. Introduction

Geometric Modeling. Introduction Geometric Modeling Introduction Geometric modeling is as important to CAD as governing equilibrium equations to classical engineering fields as mechanics and thermal fluids. intelligent decision on the

More information

Internet-Based CAD Tool for Design of Gripper Jaws 1 Mike T. Zhang and Ken Goldberg 2 IEOR Dept. and EECS Dept., UC Berkeley

Internet-Based CAD Tool for Design of Gripper Jaws 1 Mike T. Zhang and Ken Goldberg 2 IEOR Dept. and EECS Dept., UC Berkeley Internet-Based CAD Tool for Design of Gripper Jaws 1 Mike T. hang and Ken Goldberg IEOR Dept. and EECS Dept., UC Berkeley ABSTRACT We describe an Internet-based CAD tool that automatically designs gripper

More information

SCREW-BASED RELATIVE JACOBIAN FOR MANIPULATORS COOPERATING IN A TASK USING ASSUR VIRTUAL CHAINS

SCREW-BASED RELATIVE JACOBIAN FOR MANIPULATORS COOPERATING IN A TASK USING ASSUR VIRTUAL CHAINS Copyright Proceedings 2010 of COBEM by ABCM 2009 Copyright 2009 by ABCM 20th International Congress of Mechanical Engineering November 15-20, 2009, Gramado, RS, Brazil SCREW-BASED RELATIVE JACOBIAN FOR

More information

Simulation (last lecture and this one)

Simulation (last lecture and this one) Simulation (last lecture and this one) How used in games? Dynamics Collisions simple ------------------------------- Collisions harder detection bounding boxes response Controllers Mocap + simulation User

More information

Cobots

Cobots Cobots http://cobot.com Michael Peshkin J. Edward Colgate Witaya Wannasuphoprasit ( Wit ) Intelligent Assist Devices IADs use computer control of motion to create functionality greater than that of conventional

More information

On the Kinematics of Undulator Girder Motion

On the Kinematics of Undulator Girder Motion LCLS-TN-09-02 On the Kinematics of Undulator Girder Motion J. Welch March 23, 2009 The theory of rigid body kinematics is used to derive equations that govern the control and measurement of the position

More information

Extension of Graph Theory to the Duality Between Static Systems and Mechanisms

Extension of Graph Theory to the Duality Between Static Systems and Mechanisms Extension of Graph Theory to the Duality Between Static Systems and Mechanisms Offer Shai Department of Mechanics, Materials and Systems, Tel Aviv University, Ramat Aviv 69978, Israel Gordon R. Pennock

More information

Structural Configurations of Manipulators

Structural Configurations of Manipulators Structural Configurations of Manipulators 1 In this homework, I have given information about the basic structural configurations of the manipulators with the concerned illustrations. 1) The Manipulator

More information

Introduction to Robotics

Introduction to Robotics Université de Strasbourg Introduction to Robotics Bernard BAYLE, 2013 http://eavr.u-strasbg.fr/ bernard Modelling of a SCARA-type robotic manipulator SCARA-type robotic manipulators: introduction SCARA-type

More information

VIBRATION ISOLATION USING A MULTI-AXIS ROBOTIC PLATFORM G.

VIBRATION ISOLATION USING A MULTI-AXIS ROBOTIC PLATFORM G. VIBRATION ISOLATION USING A MULTI-AXIS ROBOTIC PLATFORM G. Satheesh Kumar, Y. G. Srinivasa and T. Nagarajan Precision Engineering and Instrumentation Laboratory Department of Mechanical Engineering Indian

More information

pine cone Ratio = 13:8 or 8:5

pine cone Ratio = 13:8 or 8:5 Chapter 10: Introducing Geometry 10.1 Basic Ideas of Geometry Geometry is everywhere o Road signs o Carpentry o Architecture o Interior design o Advertising o Art o Science Understanding and appreciating

More information

Automatic Control Industrial robotics

Automatic Control Industrial robotics Automatic Control Industrial robotics Prof. Luca Bascetta (luca.bascetta@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria Prof. Luca Bascetta Industrial robots

More information

Embedded Real-Time Systems

Embedded Real-Time Systems Embedded Real-Time Systems Reinhard von Hanxleden Christian-Albrechts-Universität zu Kiel Based on slides kindly provided by Edward A. Lee & Sanjit Seshia, UC Berkeley, All rights reserved Lecture 2: Model-Based

More information

What Is SimMechanics?

What Is SimMechanics? SimMechanics 1 simulink What Is Simulink? Simulink is a tool for simulating dynamic systems with a graphical interface specially developed for this purpose. Physical Modeling runs within the Simulink environment

More information

MTRX4700 Experimental Robotics

MTRX4700 Experimental Robotics MTRX 4700 : Experimental Robotics Lecture 2 Stefan B. Williams Slide 1 Course Outline Week Date Content Labs Due Dates 1 5 Mar Introduction, history & philosophy of robotics 2 12 Mar Robot kinematics &

More information

Unit 2: Locomotion Kinematics of Wheeled Robots: Part 3

Unit 2: Locomotion Kinematics of Wheeled Robots: Part 3 Unit 2: Locomotion Kinematics of Wheeled Robots: Part 3 Computer Science 4766/6778 Department of Computer Science Memorial University of Newfoundland January 28, 2014 COMP 4766/6778 (MUN) Kinematics of

More information

Graphical Singularity Analysis of Planar Parallel Manipulators

Graphical Singularity Analysis of Planar Parallel Manipulators Proceedings of the 006 IEEE International Conference on Robotics and Automation Orlando, Florida - May 006 Graphical Singularity Analysis of Planar Parallel Manipulators Amir Degani a The Robotics Institute

More information

Guidelines for proper use of Plate elements

Guidelines for proper use of Plate elements Guidelines for proper use of Plate elements In structural analysis using finite element method, the analysis model is created by dividing the entire structure into finite elements. This procedure is known

More information

Mobile Robot Kinematics

Mobile Robot Kinematics Mobile Robot Kinematics Dr. Kurtuluş Erinç Akdoğan kurtuluserinc@cankaya.edu.tr INTRODUCTION Kinematics is the most basic study of how mechanical systems behave required to design to control Manipulator

More information

INSTRUCTIONAL PLAN L( 3 ) T ( ) P ( ) Instruction Plan Details: DELHI COLLEGE OF TECHNOLOGY & MANAGEMENT(DCTM), PALWAL

INSTRUCTIONAL PLAN L( 3 ) T ( ) P ( ) Instruction Plan Details: DELHI COLLEGE OF TECHNOLOGY & MANAGEMENT(DCTM), PALWAL DELHI COLLEGE OF TECHNOLOGY & MANAGEMENT(DCTM), PALWAL INSTRUCTIONAL PLAN RECORD NO.: QF/ACD/009 Revision No.: 00 Name of Faculty: Course Title: Theory of elasticity L( 3 ) T ( ) P ( ) Department: Mechanical

More information

Engineering Effects of Boundary Conditions (Fixtures and Temperatures) J.E. Akin, Rice University, Mechanical Engineering

Engineering Effects of Boundary Conditions (Fixtures and Temperatures) J.E. Akin, Rice University, Mechanical Engineering Engineering Effects of Boundary Conditions (Fixtures and Temperatures) J.E. Akin, Rice University, Mechanical Engineering Here SolidWorks stress simulation tutorials will be re-visited to show how they

More information