Collision Detection II. These slides are mainly from Ming Lin s course notes at UNC Chapel Hill

Size: px
Start display at page:

Download "Collision Detection II. These slides are mainly from Ming Lin s course notes at UNC Chapel Hill"

Transcription

1 Collision Detection II These slides are mainly from Ming Lin s course notes at UNC Chapel Hill

2 Some Possible Approaches Geometric methods Algebraic techniques Hierarchical Bounding Volumes Spatial Partitioning Others (e.g. optimization) ILE5030 Computer Animation and Special Effects 2

3 BVH vs. Spatial Partitioning BVH: SP: - Object centric - Space centric - Spatial redundancy - Object redundancy (Recall from Ming Lin s Notes) ILE5030 Computer Animation and Special Effects 3

4 BVH-Based Collision Detection ILE5030 Computer Animation and Special Effects 4

5 Type of Bounding Volumes Spheres Ellipsoids Axis-Aligned Bounding Boxes (AABB) Oriented Bounding Boxes (OBBs) Convex Hulls k-discrete Orientation Polytopes (k-dop) Spherical Shells Swept-Sphere Volumes (SSVs) ILE5030 Computer Animation and Special Effects 5

6 Trade-off in Choosing BV s Sphere AABB OBB 6-dop Convex Hull increasing complexity & tightness of fit decreasing cost of (overlap tests + BV update) ILE5030 Computer Animation and Special Effects 6

7 Evaluating Bounding Volume Hierarchies Cost Function: F = N u x C u + N bv x C bv + N p x C p F: total cost function for interference detection N u : no. of bounding volumes updated C u : cost of updating a bounding volume, N bv : no. of bounding volume pair overlap tests C bv : cost of overlap test between 2 BVs N p : no. of primitive pairs tested for interference C p : cost of testing 2 primitives for interference ILE5030 Computer Animation and Special Effects 7

8 Designing Bounding Volume Hierarchies The choice governed by these constraints: It should fit the original model as tightly as possible (to lower N bv and N p ) Testing two such volumes for overlap should be as fast as possible (to lower C bv ) It should require the BV updates as infrequently as possible (to lower N u ) ILE5030 Computer Animation and Special Effects 8

9 Observations Simple primitives (spheres, AABBs, etc.) do very well with respect to the second constraint. But they cannot fit some long skinny primitives tightly. More complex primitives (minimal ellipsoids, OBBs, etc.) provide tight fits, but checking for overlap between them is relatively expensive. Cost of BV updates needs to be considered. ILE5030 Computer Animation and Special Effects 9

10 Building Hierarchies Choices of Bounding Volumes cost function & constraints Top-Down vs. Bottum-up speed vs. fitting Depth vs. breadth branching factors Splitting factors where & how ILE5030 Computer Animation and Special Effects 10

11 BVH-based Methods Sphere-trees K discrete oriented polytopes (K-DOPs) OBB-trees ILE5030 Computer Animation and Special Effects 11

12 Sphere-Trees A sphere-tree is a hierarchy of sets of spheres, used to approximate an object Advantages: Simplicity in checking overlaps between two bounding spheres Invariant to rotations and can apply the same transformation to the centers, if objects are rigid Shortcomings: Not always the best approximation (esp bad for long, skinny objects) Lack of good methods on building sphere-trees ILE5030 Computer Animation and Special Effects 12

13 k-dop s k-dop: k-discrete orientation polytope a convex polytope whose facets are determined by half-spaces whose outward normals come from a small fixed set of k orientations For example: In 2D, an 8-dop is determined by the orientation at +/- {45,90,135,180} degrees In 3D, an AABB is a 6-dop with orientation vectors determined by the +/-coordinate axes. ILE5030 Computer Animation and Special Effects 13

14 Choices of k-dops in 3D 6-dop: defined by coordinate axes 14-dop: defined by the vectors (1,0,0), (0,1,0), (0,0,1), (1,1,1), (1,-1,1), (1,1,-1) and (1,-1,-1) 18-dop: defined by the vectors (1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,1,1), (1,-1,0), (1,0,-1) and (0,1,-1) 26-dop: defined by the vectors (1,0,0), (0,1,0), (0,0,1), (1,1,1), (1,-1,1), (1,1,-1), (1,-1,-1), (1,1,0), (1,0,1), (0,1,1), (1,-1,0), (1,0,-1) and (0,1,-1) ILE5030 Computer Animation and Special Effects 14

15 Building an OBBTree Recursive top-down construction: partition and refit ILE5030 Computer Animation and Special Effects 15

16 Building an OBB Tree Given some polygons, consider their vertices... ILE5030 Computer Animation and Special Effects 16

17 Building an OBB Tree and an arbitrary line ILE5030 Computer Animation and Special Effects 17

18 Building an OBB Tree and an arbitrary line ILE5030 Computer Animation and Special Effects 18

19 Building an OBB Tree Project onto the line Consider variance of distribution on the line ILE5030 Computer Animation and Special Effects 19

20 Building an OBB Tree Different line, different variance ILE5030 Computer Animation and Special Effects 20

21 Building an OBB Tree Maximum Variance ILE5030 Computer Animation and Special Effects 21

22 Building an OBB Tree Minimal Variance ILE5030 Computer Animation and Special Effects 22

23 Building an OBB Tree Given by eigenvectors of covariance matrix of coordinates of original points ILE5030 Computer Animation and Special Effects 23

24 Building an OBB Tree Choose bounding box oriented this way ILE5030 Computer Animation and Special Effects 24

25 Building an OBB Tree Good Box ILE5030 Computer Animation and Special Effects 25

26 Building an OBB Tree Add points: worse Box ILE5030 Computer Animation and Special Effects 26

27 Building an OBB Tree More points: terrible box ILE5030 Computer Animation and Special Effects 27

28 Building an OBB Tree Compute with extremal points only ILE5030 Computer Animation and Special Effects 28

29 Building an OBB Tree Even distribution: good box ILE5030 Computer Animation and Special Effects 29

30 Building an OBB Tree Uneven distribution: bad box ILE5030 Computer Animation and Special Effects 30

31 Building an OBB Tree Fix: Compute facets of convex hull... ILE5030 Computer Animation and Special Effects 31

32 Building an OBB Tree Better: Integrate over facets ILE5030 Computer Animation and Special Effects 32

33 Building an OBB Tree and sample them uniformly ILE5030 Computer Animation and Special Effects 33

34 OBB Overlap test L h a s h b L is a separating axis iff: s > h + h ILE5030 Computer Animation and Special Effects 34 a b

35 Separating Axis Theorem Given two convex shapes, if we can find an axis along which the projection of the two shapes does not overlap, then the shapes don't overlap ILE5030 Computer Animation and Special Effects 35

36 OBB Overlap Test Project boxes onto axis. If intervals don t overlap, it is a separating axis. A separating axis exists if and only if boxes are disjoint. ILE5030 Computer Animation and Special Effects 36

37 Building an OBB Tree: Summary OBB Fitting algorithm: covariance-based use of convex hull not foiled by extreme distributions O(n log n) fitting time for single BV O(n log 2 n) fitting time for entire tree ILE5030 Computer Animation and Special Effects 37

38 Hybrid Hierarchy of Swept Sphere Volumes E. Larsen, S. Gottschalk, M.C. Lin, D. Manocha, Fast Proximity Queries with Swept Sphere Volumes, ICRA 2000 Point Swept Spheres (PSS) Line Swept Spheres (LSS) Rectangle Swept Spheres (RSS) ILE5030 Computer Animation and Special Effects 38

39 Swept Sphere Volumes PSS LSS RSS ILE5030 Computer Animation and Special Effects 39

40 SSV Fitting Use OBB s code based upon Principle Component Analysis For PSS, use the largest dimension as the radius For LSS, use the two largest dimensions as the length and radius For RSS, use all three dimensions ILE5030 Computer Animation and Special Effects 40

41 Collision Detection in Large Environments Need to overcome the bottleneck of O(n 2 ) pairwise tests Two phases Broad phase: identify potential collisions (roughly) Spatial partitioning Sweep and prune Narrow phase: check each pair for exact collision Convex objects Spatial partitioning BVH ILE5030 Computer Animation and Special Effects 41

42 N-body Collision Detection Architecture Transform Sweep & Prune Overlap Simulation Exact Collision Detection Parameters Analysis & Response Collision ILE5030 Computer Animation and Special Effects 42

43 Sweep and Prune Compute the axis-aligned bounding box (fixed vs. dynamic) for each object Dimension Reduction by projecting boxes onto each x, y, z- axis Sort the endpoints and find overlapping intervals Possible collision -- only if projected intervals overlap in all 3 dimensions ILE5030 Computer Animation and Special Effects 43

44 Sweep & Prune T = 1 e 3 e 2 b e 3 1 b 2 b 1 b 2 e 1 e 2 b 3 e 3 b 1 T = 2 e 2 e 1 b 2 e 3 b 1 b 1 b 2 e 1 e 2 b 3 e 3 b 3 ILE5030 Computer Animation and Special Effects 44

45 Acceleration Using Graphics Hardware Govindaraju et al., CULLIDE, EWGH 03 Visibility-based pruning Compute image visibility to check for overlaps An object O does not collide with a set of objects S if O is fully-visible with respect to S Cull those objects that cannot be colliding Accuracy governed by image resolution Suitable for any polygon mesh, large scene Multiple deformable, breakable objects Cannot handle self-collision ILE5030 Computer Animation and Special Effects 45

46 Chromatic Decomposition Govindaraju et al., SIGGRAPH 05 Modify CULLIDE to handle self-collision transforms self-collision detection into pair-wise N-body CD between non-adjacent primitives Decompose the mesh into k independent sets S 1,,S k For every pair of independent set, (S i, S j ), ensure each primitive in S i has only one adjacent primitive that is in S j Building a corresponding graph G, and decompose it with graph coloring ILE5030 Computer Animation and Special Effects 46

47 Collision Detection Packages Various packages by UNC Chapel Hill QuickCD general-purpose CD library based on K-DOPs SOLID 3D polygonal objects undergo rigid motion Interactive 3D graphics OPCODE Similar to SOLID and RAPID, but more memory friendly and faster ILE5030 Computer Animation and Special Effects 47

48 Videos Govindaraju, Knott, Jain, Kabul, Tamstorf, Gayle, Lin, and Manocha, SIGGRAPH ILE5030 Computer Animation and Special Effects 48

49 Videos ILE5030 Computer Animation and Special Effects 49

50 Videos ILE5030 Computer Animation and Special Effects 50

Collision and Proximity Queries

Collision and Proximity Queries Collision and Proximity Queries Dinesh Manocha (based on slides from Ming Lin) COMP790-058 Fall 2013 Geometric Proximity Queries l Given two object, how would you check: If they intersect with each other

More information

Collision Detection. These slides are mainly from Ming Lin s course notes at UNC Chapel Hill

Collision Detection. These slides are mainly from Ming Lin s course notes at UNC Chapel Hill Collision Detection These slides are mainly from Ming Lin s course notes at UNC Chapel Hill http://www.cs.unc.edu/~lin/comp259-s06/ Computer Animation ILE5030 Computer Animation and Special Effects 2 Haptic

More information

Collision Detection with Bounding Volume Hierarchies

Collision Detection with Bounding Volume Hierarchies Simulation in Computer Graphics Collision Detection with Bounding Volume Hierarchies Matthias Teschner Computer Science Department University of Freiburg Outline introduction bounding volumes BV hierarchies

More information

Collision Detection. Motivation - Dynamic Simulation ETH Zurich. Motivation - Path Planning ETH Zurich. Motivation - Biomedical Simulation ETH Zurich

Collision Detection. Motivation - Dynamic Simulation ETH Zurich. Motivation - Path Planning ETH Zurich. Motivation - Biomedical Simulation ETH Zurich Collision Detection Motivation - Dynamic Simulation Collision detection is an essential part of physically realistic dynamic simulations. For each time step: compute dynamics detect collisions resolve

More information

Lesson 05. Mid Phase. Collision Detection

Lesson 05. Mid Phase. Collision Detection Lesson 05 Mid Phase Collision Detection Lecture 05 Outline Problem definition and motivations Generic Bounding Volume Hierarchy (BVH) BVH construction, fitting, overlapping Metrics and Tandem traversal

More information

Bounding Volume Hierarchies

Bounding Volume Hierarchies Tutorial: Real-Time Collision Detection for Dynamic Virtual Environments Bounding Volume Hierarchies Stefan Kimmerle WSI/GRIS University of Tübingen Outline Introduction Bounding Volume Types Hierarchy

More information

CAB: Fast Update of OBB Trees for Collision Detection between Articulated Bodies

CAB: Fast Update of OBB Trees for Collision Detection between Articulated Bodies CAB: Fast Update of OBB Trees for Collision Detection between Articulated Bodies Harald Schmidl Nolan Walker Ming C. Lin {schmidl walkern lin}@cs.unc.edu Department of Computer Science Sitterson Hall,

More information

CPSC / Sonny Chan - University of Calgary. Collision Detection II

CPSC / Sonny Chan - University of Calgary. Collision Detection II CPSC 599.86 / 601.86 Sonny Chan - University of Calgary Collision Detection II Outline Broad phase collision detection: - Problem definition and motivation - Bounding volume hierarchies - Spatial partitioning

More information

Using Bounding Volume Hierarchies Efficient Collision Detection for Several Hundreds of Objects

Using Bounding Volume Hierarchies Efficient Collision Detection for Several Hundreds of Objects Part 7: Collision Detection Virtuelle Realität Wintersemester 2007/08 Prof. Bernhard Jung Overview Bounding Volumes Separating Axis Theorem Using Bounding Volume Hierarchies Efficient Collision Detection

More information

Collision Detection. Pu Jiantao.

Collision Detection. Pu Jiantao. Collision Detection Pu Jiantao. 12-09 Content Introduction CD with rays Dynamic CD using BSP Trees Hierarchical Method OBBTree Method Some Other Topics 12-1717 2 Introduction Collision Collision is a fundamental

More information

Collision Detection based on Spatial Partitioning

Collision Detection based on Spatial Partitioning Simulation in Computer Graphics Collision Detection based on Spatial Partitioning Matthias Teschner Computer Science Department University of Freiburg Outline introduction uniform grid Octree and k-d tree

More information

Overview. Collision Detection. A Simple Collision Detection Algorithm. Collision Detection in a Dynamic Environment. Query Types.

Overview. Collision Detection. A Simple Collision Detection Algorithm. Collision Detection in a Dynamic Environment. Query Types. Overview Collision Detection Alan Liu aliu@usuhs.mil The Surgical Simulation Laboratory National Capital Area Medical Simulation Center Uniformed Services University http://simcen.usuhs.mil/miccai2003

More information

Overview. Collision detection. Collision detection. Brute force collision detection. Brute force collision detection. Motivation

Overview. Collision detection. Collision detection. Brute force collision detection. Brute force collision detection. Motivation Overview Collision detection Alan Liu aliu@simcen.usuhs.mil Surgical Simulation Laboratory National Capital Area Medical Simulation Center Uniformed Services University of the Health Sciences http://simcen.usuhs.mil/mmvr2002

More information

Dynamic Collision Detection

Dynamic Collision Detection Distance Computation Between Non-Convex Polyhedra June 17, 2002 Applications Dynamic Collision Detection Applications Dynamic Collision Detection Evaluating Safety Tolerances Applications Dynamic Collision

More information

References. Additional lecture notes for 2/18/02.

References. Additional lecture notes for 2/18/02. References Additional lecture notes for 2/18/02. I-COLLIDE: Interactive and Exact Collision Detection for Large-Scale Environments, by Cohen, Lin, Manocha & Ponamgi, Proc. of ACM Symposium on Interactive

More information

Real-Time Collision Detection for Dynamic Virtual Environments

Real-Time Collision Detection for Dynamic Virtual Environments Real-Time Collision Detection for Dynamic Virtual Environments Gabriel Zachmann, Matthias Teschner, Stefan Kimmerle, Bruno Heidelberger, Laks Raghupathi, Arnulph Fuhrmann To cite this version: Gabriel

More information

Fast continuous collision detection among deformable Models using graphics processors CS-525 Presentation Presented by Harish

Fast continuous collision detection among deformable Models using graphics processors CS-525 Presentation Presented by Harish Fast continuous collision detection among deformable Models using graphics processors CS-525 Presentation Presented by Harish Abstract: We present an interactive algorithm to perform continuous collision

More information

Homework 1: Implicit Surfaces, Collision Detection, & Volumetric Data Structures. Loop Subdivision. Loop Subdivision. Questions/Comments?

Homework 1: Implicit Surfaces, Collision Detection, & Volumetric Data Structures. Loop Subdivision. Loop Subdivision. Questions/Comments? Homework 1: Questions/Comments? Implicit Surfaces,, & Volumetric Data Structures Loop Subdivision Shirley, Fundamentals of Computer Graphics Loop Subdivision SIGGRAPH 2000 course notes Subdivision for

More information

Simulation in Computer Graphics Space Subdivision. Matthias Teschner

Simulation in Computer Graphics Space Subdivision. Matthias Teschner Simulation in Computer Graphics Space Subdivision Matthias Teschner Outline Introduction Uniform grid Octree and k-d tree BSP tree University of Freiburg Computer Science Department 2 Model Partitioning

More information

Collision Detection. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering

Collision Detection. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering RBE 550 MOTION PLANNING BASED ON DR. DMITRY BERENSON S RBE 550 Collision Detection Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering http://users.wpi.edu/~zli11 Euler Angle RBE

More information

Scene Management. Video Game Technologies 11498: MSc in Computer Science and Engineering 11156: MSc in Game Design and Development

Scene Management. Video Game Technologies 11498: MSc in Computer Science and Engineering 11156: MSc in Game Design and Development Video Game Technologies 11498: MSc in Computer Science and Engineering 11156: MSc in Game Design and Development Chap. 5 Scene Management Overview Scene Management vs Rendering This chapter is about rendering

More information

Efficient Collision Detection Using a Dual Bounding Volume Hierarchy

Efficient Collision Detection Using a Dual Bounding Volume Hierarchy Efficient Collision Detection Using a Dual Bounding Volume Hierarchy Jung-Woo Chang 1, Wenping Wang 2, and Myung-Soo Kim 1 1 Seoul National University, Korea 2 University of Hong Kong, Hong Kong Abstract.

More information

Spatial Data Structures

Spatial Data Structures CSCI 420 Computer Graphics Lecture 17 Spatial Data Structures Jernej Barbic University of Southern California Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees [Angel Ch. 8] 1 Ray Tracing Acceleration

More information

Real-time Continuous Collision Detection and Penetration Depth Computation

Real-time Continuous Collision Detection and Penetration Depth Computation Real-time Continuous Collision Detection and Penetration Depth Computation Young J. Kim http://graphics.ewha.ac.kr Ewha Womans University Non-penetration Constraint No overlap between geometric objects

More information

l Without collision detection (CD), it is practically impossible to construct e.g., games, movie production tools (e.g., Avatar)

l Without collision detection (CD), it is practically impossible to construct e.g., games, movie production tools (e.g., Avatar) Collision Detection Originally created by Tomas Akenine-Möller Updated by Ulf Assarsson Department of Computer Engineering Chalmers University of Technology Introduction l Without collision detection (CD),

More information

MCCD: Multi-Core Collision Detection between Deformable Models using Front-Based Decomposition

MCCD: Multi-Core Collision Detection between Deformable Models using Front-Based Decomposition MCCD: Multi-Core Collision Detection between Deformable Models using Front-Based Decomposition Min Tang 1, Dinesh Manocha 2, Ruofeng Tong 1 http://www.cs.unc.edu/ geom/pcd/ 1 Department of Computer Science,

More information

Efficient Interference Calculation by Tight Bounding Volumes

Efficient Interference Calculation by Tight Bounding Volumes Efficient Interference Calculation by Tight Bounding Volumes Masatake Higashi, Yasuyuki Suzuki, Takeshi Nogawa, Yoichi Sano, and Masakazu Kobayashi Mechanical Systems Engineering Division, Toyota Technological

More information

Spatial Data Structures

Spatial Data Structures CSCI 480 Computer Graphics Lecture 7 Spatial Data Structures Hierarchical Bounding Volumes Regular Grids BSP Trees [Ch. 0.] March 8, 0 Jernej Barbic University of Southern California http://www-bcf.usc.edu/~jbarbic/cs480-s/

More information

C 2 A: Controlled Conservative Advancement for Continuous Collision Detection of Polygonal Models

C 2 A: Controlled Conservative Advancement for Continuous Collision Detection of Polygonal Models C 2 A: Controlled Conservative Advancement for Continuous Collision Detection of Polygonal Models (http://graphics.ewha.ac.kr/c2a) Min Tang, Young J. Kim and Dinesh Manocha Abstract We present a simple

More information

MSBVH: An Efficient Acceleration Data Structure for Ray Traced Motion Blur

MSBVH: An Efficient Acceleration Data Structure for Ray Traced Motion Blur MSBVH: An Efficient Acceleration Data Structure for Ray Traced Motion Blur Leonhard Grünschloß Martin Stich Sehera Nawaz Alexander Keller August 6, 2011 Principles of Accelerated Ray Tracing Hierarchical

More information

Deformable Proximity Queries and their Application in Mobile Manipulation Planning

Deformable Proximity Queries and their Application in Mobile Manipulation Planning Deformable Proximity Queries and their Application in Mobile Manipulation Planning M. Gissler and C. Dornhege and B. Nebel and M. Teschner Computer Science Department, University of Freiburg, Germany Abstract.

More information

CMSC 425: Lecture 10 Geometric Data Structures for Games: Index Structures Tuesday, Feb 26, 2013

CMSC 425: Lecture 10 Geometric Data Structures for Games: Index Structures Tuesday, Feb 26, 2013 CMSC 2: Lecture 10 Geometric Data Structures for Games: Index Structures Tuesday, Feb 2, 201 Reading: Some of today s materials can be found in Foundations of Multidimensional and Metric Data Structures,

More information

Motivation. Culling Don t draw what you can t see! What can t we see? Low-level Culling

Motivation. Culling Don t draw what you can t see! What can t we see? Low-level Culling Motivation Culling Don t draw what you can t see! Thomas Larsson Mälardalen University April 7, 2016 Image correctness Rendering speed One day we will have enough processing power!? Goals of real-time

More information

Fast Proximity Computation among Deformable Models Using Discrete Voronoi Diagrams

Fast Proximity Computation among Deformable Models Using Discrete Voronoi Diagrams Fast Proximity Computation among Deformable Models Using Discrete Voronoi Diagrams Avneesh Sud Naga Govindaraju Russell Gayle Ilknur Kabul Dinesh Manocha Dept of Computer Science, University of North Carolina

More information

Simulation (last lecture and this one)

Simulation (last lecture and this one) Simulation (last lecture and this one) How used in games? Dynamics Collisions simple ------------------------------- Collisions harder detection bounding boxes response Controllers Mocap + simulation User

More information

Technical Section. Tribox bounds for three-dimensional objects

Technical Section. Tribox bounds for three-dimensional objects PERGAMON Computers & Graphics 23 (1999) 429-437 Technical Section Tribox bounds for three-dimensional objects A. Crosnier a, *, J.R. Rossignac b a LIMM, 161 rue Ada, 34392 Montpellier Cedex 5, France b

More information

Intersection Acceleration

Intersection Acceleration Advanced Computer Graphics Intersection Acceleration Matthias Teschner Computer Science Department University of Freiburg Outline introduction bounding volume hierarchies uniform grids kd-trees octrees

More information

GPU-based Image-space Approach to Collision Detection among Closed Objects

GPU-based Image-space Approach to Collision Detection among Closed Objects GPU-based Image-space Approach to Collision Detection among Closed Objects Han-Young Jang jhymail@gmail.com TaekSang Jeong nanocreation@gmail.com Game Research Center College of Information and Communications

More information

Acceleration Data Structures

Acceleration Data Structures CT4510: Computer Graphics Acceleration Data Structures BOCHANG MOON Ray Tracing Procedure for Ray Tracing: For each pixel Generate a primary ray (with depth 0) While (depth < d) { Find the closest intersection

More information

CS 563 Advanced Topics in Computer Graphics Culling and Acceleration Techniques Part 1 by Mark Vessella

CS 563 Advanced Topics in Computer Graphics Culling and Acceleration Techniques Part 1 by Mark Vessella CS 563 Advanced Topics in Computer Graphics Culling and Acceleration Techniques Part 1 by Mark Vessella Introduction Acceleration Techniques Spatial Data Structures Culling Outline for the Night Bounding

More information

Virtual Reality in Assembly Simulation

Virtual Reality in Assembly Simulation Virtual Reality in Assembly Simulation Collision Detection, Simulation Algorithms, and Interaction Techniques Contents 1. Motivation 2. Simulation and description of virtual environments 3. Interaction

More information

GI-COLLIDE Collision Detection with Geometry Images

GI-COLLIDE Collision Detection with Geometry Images Collision Detection with Geometry Images Bedřich Beneš ITESM CCM Nestor Goméz Villanueva ITESM CCM Figure 1: 512 bunnies tested for collisions Abstract A new collision detection algorithm is presented.

More information

A specialised collision detector for grape vines

A specialised collision detector for grape vines A specialised collision detector for grape vines Scott Paulin, Tom Botterill, XiaoQi Chen, Richard Green University of Canterbury, New Zealand scott.paulin@pg.canterbury.ac.nz Abstract Efficient motion

More information

Multi-Core Collision Detection between Deformable Models

Multi-Core Collision Detection between Deformable Models Multi-Core Collision Detection between Deformable Models Min Tang Zhejiang University tang_m@zju.edu.cn Dinesh Manocha University of North Carolina at Chapel Hill dm@cs.unc.edu Ruofeng Tong Zhejiang University

More information

Exact distance computation for deformable objects

Exact distance computation for deformable objects Exact distance computation for deformable objects Marc Gissler University of Freiburg, Germany Matthias Teschner University of Freiburg, Germany Udo Frese University of Bremen, Germany Abstract We present

More information

11 - Spatial Data Structures

11 - Spatial Data Structures 11 - Spatial Data Structures cknowledgement: Marco Tarini Types of Queries Graphic applications often require spatial queries Find the k points closer to a specific point p (k-nearest Neighbours, knn)

More information

Mobile Robot Path Planning: an Efficient Distance Computation between Obstacles using Discrete Boundary Model (DBM)

Mobile Robot Path Planning: an Efficient Distance Computation between Obstacles using Discrete Boundary Model (DBM) Mobile Robot Path Planning: an Efficient Distance Computation between Obstacles using Discrete Boundary Model (DBM) Md. Nasir Uddin Laskar, TaeChoong Chung Artificial Intelligence Lab, Dept. of Computer

More information

improving raytracing speed

improving raytracing speed ray tracing II computer graphics ray tracing II 2006 fabio pellacini 1 improving raytracing speed computer graphics ray tracing II 2006 fabio pellacini 2 raytracing computational complexity ray-scene intersection

More information

CS 4649/7649 Robot Intelligence: Planning

CS 4649/7649 Robot Intelligence: Planning CS 4649/7649 Robot Intelligence: Planning Probabilistic Roadmaps Sungmoon Joo School of Interactive Computing College of Computing Georgia Institute of Technology S. Joo (sungmoon.joo@cc.gatech.edu) 1

More information

BALANCED SPATIAL SUBDIVISION METHOD FOR CONTINUOUS COLLISION DETECTION

BALANCED SPATIAL SUBDIVISION METHOD FOR CONTINUOUS COLLISION DETECTION PROCEEDINGS 13th INTERNATIONAL CONFERENCE ON GEOMETRY AND GRAPHICS August 4-8, 2008, Dresden (Germany) ISBN: 978-3-86780-042-6 BALANCED SPATIAL SUBDIVISION METHOD FOR CONTINUOUS COLLISION DETECTION Sunhwa

More information

Deformable and Fracturing Objects

Deformable and Fracturing Objects Interactive ti Collision i Detection ti for Deformable and Fracturing Objects Sung-Eui Yoon ( 윤성의 ) IWON associate professor KAIST http://sglab.kaist.ac.kr/~sungeui/ Acknowledgements Research collaborators

More information

Efficient Probabilistic Collision Detection for Non-Convex Shapes

Efficient Probabilistic Collision Detection for Non-Convex Shapes Efficient Probabilistic Collision Detection for Non-Convex Shapes Jae Sung Park, Chonhyon Park, Dinesh Manocha http://gamma.cs.unc.edu/pcollision/ Abstract We present new algorithms to perform fast probabilistic

More information

Efficient Collision Detection Using Bounding Volume Hierarchies of k-dops Λ

Efficient Collision Detection Using Bounding Volume Hierarchies of k-dops Λ Efficient Collision Detection Using Bounding Volume Hierarchies of k-dops Λ James T. Klosowski y Martin Held z Joseph S.B. Mitchell x Henry Sowizral Karel Zikan k Abstract Collision detection is of paramount

More information

REAL TIME COLLISION DETECTION FOR COMPLEX SIMULATIONS BASED ON HYBRID MULTI RESOLUTION APPROXIMATION OF CAD MODELS

REAL TIME COLLISION DETECTION FOR COMPLEX SIMULATIONS BASED ON HYBRID MULTI RESOLUTION APPROXIMATION OF CAD MODELS REAL TIME COLLISION DETECTION FOR COMPLEX SIMULATIONS BASED ON HYBRID MULTI RESOLUTION APPROXIMATION OF CAD MODELS I.F. Ceruti (a), G. Dal Maso (b), D. Rovere (c), P. Pedrazzoli (d), C. R. Boër (e) (a)

More information

DiFi: Distance Fields - Fast Computation Using Graphics Hardware

DiFi: Distance Fields - Fast Computation Using Graphics Hardware DiFi: Distance Fields - Fast Computation Using Graphics Hardware Avneesh Sud Dinesh Manocha UNC-Chapel Hill http://gamma.cs.unc.edu/difi Distance Fields Distance Function For a site a scalar function f:r

More information

SCALABLE PARALLEL COLLISION DETECTION SIMULATION

SCALABLE PARALLEL COLLISION DETECTION SIMULATION SCALABLE PARALLEL COLLISION DETECTION SIMULATION Ilan Grinberg Computer Science Department Bar-Ilan University Ramat-Gan Israel ilan_grin@hotmail.com Abstract Several simulations for parallel collision

More information

Objects DO overlap. Objects DO NOT overlap. No calculations needed.

Objects DO overlap. Objects DO NOT overlap. No calculations needed. Physically Based Modeling for Interactive Simulation and Games Scribe Notes for the lecture on February 23rd Collision Detection Spring 2011 Recep Doga Siyli Collision detection involves "computational

More information

1 Introduction. 1.1 Main Contributions

1 Introduction. 1.1 Main Contributions Appeared in Proc. of IEEE Conf. on Robotics and Automation, 2000 Fast Distance Queries with Rectangular Swept Sphere Volumes Λ Eric Larsen Stefan Gottschalk Ming C. Lin Dinesh Manocha Department of Computer

More information

Topics. Ray Tracing II. Intersecting transformed objects. Transforming objects

Topics. Ray Tracing II. Intersecting transformed objects. Transforming objects Topics Ray Tracing II CS 4620 Lecture 16 Transformations in ray tracing Transforming objects Transformation hierarchies Ray tracing acceleration structures Bounding volumes Bounding volume hierarchies

More information

CS535 Fall Department of Computer Science Purdue University

CS535 Fall Department of Computer Science Purdue University Spatial Data Structures and Hierarchies CS535 Fall 2010 Daniel G Aliaga Daniel G. Aliaga Department of Computer Science Purdue University Spatial Data Structures Store geometric information Organize geometric

More information

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute Jane Li Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute (3 pts) How to generate Delaunay Triangulation? (3 pts) Explain the difference

More information

Adaptive Medial-Axis Approximation for Sphere-Tree Construction

Adaptive Medial-Axis Approximation for Sphere-Tree Construction Adaptive Medial-Axis Approximation for Sphere-Tree Construction GARETH BRADSHAW and CAROL O SULLIVAN Image Synthesis Group, Trinity College, Dublin Hierarchical object representations play an important

More information

A Survey on Collision Detection Techniques for Virtual Environments

A Survey on Collision Detection Techniques for Virtual Environments A Survey on Collision Detection Techniques for Virtual Environments Mauro Figueiredo 1,2, Luis Marcelino 1, Terrence Fernando 1 1 Centre for Virtual Environments, University of Salford University Road,

More information

Spatial Data Structures and Speed-Up Techniques. Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology

Spatial Data Structures and Speed-Up Techniques. Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology Spatial Data Structures and Speed-Up Techniques Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology Spatial data structures What is it? Data structure that organizes

More information

Volumetric Particle Separating Planes for Collision Detection

Volumetric Particle Separating Planes for Collision Detection Volumetric Particle Separating Planes for Collision Detection by Brent M. Dingle Fall 2004 Texas A&M University Abstract In this paper we describe a method of determining the separation plane of two objects

More information

Topics. Ray Tracing II. Transforming objects. Intersecting transformed objects

Topics. Ray Tracing II. Transforming objects. Intersecting transformed objects Topics Ray Tracing II CS 4620 ations in ray tracing ing objects ation hierarchies Ray tracing acceleration structures Bounding volumes Bounding volume hierarchies Uniform spatial subdivision Adaptive spatial

More information

Ray Tracing Acceleration. CS 4620 Lecture 20

Ray Tracing Acceleration. CS 4620 Lecture 20 Ray Tracing Acceleration CS 4620 Lecture 20 2013 Steve Marschner 1 Will this be on the exam? or, Prelim 2 syllabus You can expect emphasis on topics related to the assignment (Shaders 1&2) and homework

More information

Accelerating Geometric Queries. Computer Graphics CMU /15-662, Fall 2016

Accelerating Geometric Queries. Computer Graphics CMU /15-662, Fall 2016 Accelerating Geometric Queries Computer Graphics CMU 15-462/15-662, Fall 2016 Geometric modeling and geometric queries p What point on the mesh is closest to p? What point on the mesh is closest to p?

More information

Accurate and Fast Proximity Queries Between Polyhedra Using Convex Surface Decomposition

Accurate and Fast Proximity Queries Between Polyhedra Using Convex Surface Decomposition EUROGRAPHICS 2001 / A. Chalmers and T.-M. Rhyne (Guest Editors) Volume 20 (2001), Number 3 Accurate and Fast Proximity Queries Between Polyhedra Using Convex Surface Decomposition Stephen A. Ehmann and

More information

Path Planning for Deformable Robots in Complex Environments

Path Planning for Deformable Robots in Complex Environments Robotics: Science and Systems 2005 Cambridge, MA, USA, June 8-11, 2005 Path Planning for Deformable Robots in Complex Environments Russell Gayle, Paul Segars, Ming C. Lin, and Dinesh Manocha Department

More information

Computer Graphics Ray Casting. Matthias Teschner

Computer Graphics Ray Casting. Matthias Teschner Computer Graphics Ray Casting Matthias Teschner Outline Context Implicit surfaces Parametric surfaces Combined objects Triangles Axis-aligned boxes Iso-surfaces in grids Summary University of Freiburg

More information

Recall: Inside Triangle Test

Recall: Inside Triangle Test 1/45 Recall: Inside Triangle Test 2D Bounding Boxes rasterize( vert v[3] ) { bbox b; bound3(v, b); line l0, l1, l2; makeline(v[0],v[1],l2); makeline(v[1],v[2],l0); makeline(v[2],v[0],l1); for( y=b.ymin;

More information

Ray Tracing III. Wen-Chieh (Steve) Lin National Chiao-Tung University

Ray Tracing III. Wen-Chieh (Steve) Lin National Chiao-Tung University Ray Tracing III Wen-Chieh (Steve) Lin National Chiao-Tung University Shirley, Fundamentals of Computer Graphics, Chap 10 Doug James CG slides, I-Chen Lin s CG slides Ray-tracing Review For each pixel,

More information

Kinetic BV Hierarchies and Collision Detection

Kinetic BV Hierarchies and Collision Detection Kinetic BV Hierarchies and Collision Detection Gabriel Zachmann Clausthal University, Germany zach@tu-clausthal.de Bonn, 25. January 2008 Bounding Volume Hierarchies BVHs are standard DS for collision

More information

CLODs: Dual Hierarchies for Multiresolution Collision Detection

CLODs: Dual Hierarchies for Multiresolution Collision Detection CLODs: Dual Hierarchies for Multiresolution Collision Detection Miguel A. Otaduy and Ming C. Lin Department of Computer Science University of North Carolina at Chapel Hill Abstract We present a novel framework

More information

Adaptive Bounding Volume Hierarchies For Deformable Surface Models. Master of Science Thesis in Complex Adaptive Systems FADI BITAR

Adaptive Bounding Volume Hierarchies For Deformable Surface Models. Master of Science Thesis in Complex Adaptive Systems FADI BITAR Adaptive Bounding Volume Hierarchies For Deformable Surface Models Master of Science Thesis in Complex Adaptive Systems FADI BITAR Chalmers University of Technology University of Gothenburg Department

More information

Page 1. Area-Subdivision Algorithms z-buffer Algorithm List Priority Algorithms BSP (Binary Space Partitioning Tree) Scan-line Algorithms

Page 1. Area-Subdivision Algorithms z-buffer Algorithm List Priority Algorithms BSP (Binary Space Partitioning Tree) Scan-line Algorithms Visible Surface Determination Visibility Culling Area-Subdivision Algorithms z-buffer Algorithm List Priority Algorithms BSP (Binary Space Partitioning Tree) Scan-line Algorithms Divide-and-conquer strategy:

More information

Spatial Data Structures

Spatial Data Structures 15-462 Computer Graphics I Lecture 17 Spatial Data Structures Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees Constructive Solid Geometry (CSG) April 1, 2003 [Angel 9.10] Frank Pfenning Carnegie

More information

Introduction to Collision Detection

Introduction to Collision Detection Computing and Software Department, McMaster University Introduction to Collision Detection John McCutchan November 9, 2006 McCutchan: Introduction to Collision Detection(slide 1), 1 Introduction Collision

More information

An iterative, octree-based algorithm for distance computation between polyhedra with complex surfaces 1

An iterative, octree-based algorithm for distance computation between polyhedra with complex surfaces 1 An iterative, octree-based algorithm for distance computation between polyhedra with complex surfaces 1 André Borrmann, Stefanie Schraufstetter, Christoph van Treeck, Ernst Rank {borrmann, schraufstetter,

More information

Ray Tracing. Cornell CS4620/5620 Fall 2012 Lecture Kavita Bala 1 (with previous instructors James/Marschner)

Ray Tracing. Cornell CS4620/5620 Fall 2012 Lecture Kavita Bala 1 (with previous instructors James/Marschner) CS4620/5620: Lecture 37 Ray Tracing 1 Announcements Review session Tuesday 7-9, Phillips 101 Posted notes on slerp and perspective-correct texturing Prelim on Thu in B17 at 7:30pm 2 Basic ray tracing Basic

More information

Real-Time Collision Detection Between Cloth And Skinned Avatars. Using OBB

Real-Time Collision Detection Between Cloth And Skinned Avatars. Using OBB Real-Time Collision Detection Between Cloth And Skinned Avatars Using OBB Nuria Pelechano September 9, 2002 Department of Computer Science University College London Supervisor: Mel Slater This report is

More information

Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology

Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology A tool needed for the graphics people all the time Very important components: Need to make them fast! Finding if

More information

Software Structures for Virtual Environments

Software Structures for Virtual Environments Software Structures for Virtual Environments Michael Zyda Naval Postgraduate School { Zyda }@cs.nps.navy.mil What does VR software look like? One Thread, Multiple Threads Important Subsystems Real-Time

More information

The Construction of Balanced Bounding-Volume Hierarchies using Spatial Object Median Splitting Method for Collision Detection

The Construction of Balanced Bounding-Volume Hierarchies using Spatial Object Median Splitting Method for Collision Detection The Construction of Balanced Bounding-Volume Hierarchies using Spatial Object Median Splitting Method for Collision Detection Hamzah Asyrani Sulaiman 1, and Abdullah Bade 2 1 Universiti Teknikal Malaysia

More information

GPU-Accelerated Minimum Distance and Clearance Queries

GPU-Accelerated Minimum Distance and Clearance Queries 1 GPU-Accelerated Minimum Distance and Clearance Queries Adarsh Krishnamurthy, Sara McMains, Kirk Haller Abstract We present practical algorithms for accelerating distance queries on models made of trimmed

More information

Spatial Data Structures

Spatial Data Structures 15-462 Computer Graphics I Lecture 17 Spatial Data Structures Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees Constructive Solid Geometry (CSG) March 28, 2002 [Angel 8.9] Frank Pfenning Carnegie

More information

Kinetic Bounding Volume Hierarchies for Deformable Objects

Kinetic Bounding Volume Hierarchies for Deformable Objects Kinetic Bounding Volume Hierarchies for Deformable Objects René Weller Clausthal University of Technology, Germany weller@in.tu-clausthal.de VRCIA 06, June 2006, Hong Kong Motivation Bounding volume hierarchies

More information

Collision handling: detection and response

Collision handling: detection and response Collision handling: detection and response Collision handling overview Detection Discrete collision detection Convex polygon intersection test General polygon intersection test Continuous collision detection

More information

Honours Project Colin Dembovsky

Honours Project Colin Dembovsky VRPhysicsEnvironment A Framework For Collision Detection and Physical Modelling in a Virtual Environment submitted in partial fulfilment of requirements of degree Bachelor of Science (Honours) by Colin

More information

40 COLLISION AND PROXIMITY QUERIES

40 COLLISION AND PROXIMITY QUERIES 40 COLLISION AND PROXIMITY QUERIES Ming C. Lin, Dinesh Manocha and Young J. Kim INTRODUCTION In a geometric context, a collision or proximity query reports information about the relative configuration

More information

08: CONTACT MODELLING 15/02/2016

08: CONTACT MODELLING 15/02/2016 08: CONTACT MODELLING 15/02/2016 2 THE NARROW PHASE The purpose of Narrow Phase: Exact collision detection AND also where precisely have objects touched, where to apply forces, torques? Image 2004 Pauly,

More information

Geometry proxies (in 2D): a Convex Polygon

Geometry proxies (in 2D): a Convex Polygon Geometry proxies (in 2D): a Convex Polygon Intersection of half-planes each delimited by a line Stored as: Test: a collection of (oriented) lines a point is inside iff it is in each half-plane A very good

More information

Logistics. CS 586/480 Computer Graphics II. Questions from Last Week? Slide Credits

Logistics. CS 586/480 Computer Graphics II. Questions from Last Week? Slide Credits CS 586/480 Computer Graphics II Dr. David Breen Matheson 408 Thursday 6PM Æ 8:50PM Presentation 4 10/28/04 Logistics Read research paper and prepare summary and question P. Hanrahan, "Ray Tracing Algebraic

More information

Rigid Body Simulation. Jeremy Ulrich Advised by David Mount Fall 2013

Rigid Body Simulation. Jeremy Ulrich Advised by David Mount Fall 2013 Rigid Body Simulation Jeremy Ulrich Advised by David Mount Fall 2013 Overview The project presented here is a real-time 3D rigid body physics engine, and is the result of an Independent Study on collision

More information

CLODs: Dual Hierarchies for Multiresolution Collision Detection

CLODs: Dual Hierarchies for Multiresolution Collision Detection Eurographics Symposium on Geometry Processing (2003) L. Kobbelt, P. Schröder, H. Hoppe (Editors) CLODs: Dual Hierarchies for Multiresolution Collision Detection Miguel A. Otaduy and Ming C. Lin Department

More information

Fast Computation of Tight Fitting Oriented Bounding Boxes

Fast Computation of Tight Fitting Oriented Bounding Boxes 1 Fast Computation of Tight Fitting Oriented Bounding Boxes Thomas Larsson Linus Källberg Mälardalen University, Sweden 1.1 Introduction Bounding shapes, or containers, are frequently used to speed up

More information

Deformable Distance Fields for Simulation of Non- Penetrating Flexible Bodies

Deformable Distance Fields for Simulation of Non- Penetrating Flexible Bodies Deformable Distance Fields for Simulation of Non- Penetrating Flexible Bodies Susan Fisher and Ming C. Lin {sfisher, lin}@cs.unc.edu http://gamma.cs.unc.edu/ddf/ Department of Computer Science University

More information

Ray Tracing Acceleration. CS 4620 Lecture 22

Ray Tracing Acceleration. CS 4620 Lecture 22 Ray Tracing Acceleration CS 4620 Lecture 22 2014 Steve Marschner 1 Topics Transformations in ray tracing Transforming objects Transformation hierarchies Ray tracing acceleration structures Bounding volumes

More information

An Adaptive Collision Detection and Resolution for Deformable Objects Using Spherical Implicit Surface

An Adaptive Collision Detection and Resolution for Deformable Objects Using Spherical Implicit Surface An Adaptive Collision Detection and Resolution for Deformable Objects Using Spherical Implicit Surface Sunhwa Jung 1, Min Hong 2, and Min-Hyung Choi 1 1 Department of Computer Science and Engineering,

More information