Visualization of Hyperbolic Tessellations

Size: px
Start display at page:

Download "Visualization of Hyperbolic Tessellations"

Transcription

1 Visualization of Hyperbolic Tessellations Jakob von Raumer April 9, 2013 KARLSRUHE INSTITUTE OF TECHNOLOGY KIT University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

2 Escher s Art Figure: Circle Limit III and Circle Limit IV by M. C. Escher, 1959 and 1960 Jakob von Raumer Visualization of Hyperbolic Tessellations April 9, /29

3 Escher s Art Escher s works were inspired by illustrations in a book by H.S.M. Coxeter He used woodcuts to replicate the tiles To his son George: I had an enthusiastic letter from Coxeter about my colored fish, which I sent him. Three pages of explanation of what I actually did.... It s a pity that I understand nothing, absolutely nothing of it. Jakob von Raumer Visualization of Hyperbolic Tessellations April 9, /29

4 Aims of my thesis Document and summarize theoretical basics of hyperbolic tessellations Construct suitable tiles Implement algorithms to replicate those Jakob von Raumer Visualization of Hyperbolic Tessellations April 9, /29

5 Comparison: Euclidean and hyperbolic Geometry Euclidean For a line g there is exactly one line parrallel to g that contain a point p / g. Each triangle has an angle sum of π. Hyperbolic For a line g there are more than one lines parallel to g that contain a point p / g. Each triangle has an angle sum of < π. Jakob von Raumer Visualization of Hyperbolic Tessellations April 9, /29

6 Comparison: Euclidean and hyperbolic Geometry Length of a path γ : [0, 1] H := {z C I(z) > 0}: L(γ) = Euclidean 1 0 γ (t) dt L(γ) = Hyperbolic 1 0 γ (t) I(γ(t)) dt The distance of two points a, b H is the length of the shortest path between them. Euclidean d(a, b) = b a Hyperbolic d(a, b) = ln a b + a b a b a b Jakob von Raumer Visualization of Hyperbolic Tessellations April 9, /29

7 Geodesics on the upper half-plane I g a b R 1 Figure: Geodesics on the upper half-plane. Jakob von Raumer Visualization of Hyperbolic Tessellations April 9, /29

8 From the upper half-plane to the Poincaré disk model The contiuous map f : H U : z zi+1 z+i induces a bounded presentation of H. I I f R R 1 Figure: Geodesics on the upper half-plane and their correspondents on the Poincaré disk model. Jakob von Raumer Visualization of Hyperbolic Tessellations April 9, /29

9 The Beltrami-Klein model g Figure: A polygon, shown in the Poincaré disk model and in the Beltrami-Klein model Jakob von Raumer Visualization of Hyperbolic Tessellations April 9, /29

10 Isometries on H Theorem The isometries on H are a group isomorphic to PS L(2, R) := S L(2, R)/ {±I 2 }. The orientation preserving isometries on H are isomorphic to PSL(2, R) := SL(2, R)/ {±I 2 }. ( a b c d ) PSL(2, R) corresponds to the Möbius transformation z az+b cz+d Examples: Translation z z + 1 Dilation z 2z Rotation z 1 z Jakob von Raumer Visualization of Hyperbolic Tessellations April 9, /29

11 3 types of transformations ( a b ) c d is trace fixed points figure elliptic a + d < 2 one in H parabolic a + d = 2 hyperbolic a + d > 2 one at infinity two at infinity Jakob von Raumer Visualization of Hyperbolic Tessellations April 9, /29

12 3 types of transformations ( a b c d ) is trace fixed points figure elliptic a + d < 2 one in H parabolic a + d = 2 one at infinity hyperbolic a + d > 2 two at infinity Jakob von Raumer Visualization of Hyperbolic Tessellations April 9, /29

13 3 types of transformations ( a b c d ) is trace fixed points figure elliptic a + d < 2 one in H parabolic a + d = 2 one at infinity hyperbolic a + d > 2 two at infinity Jakob von Raumer Visualization of Hyperbolic Tessellations April 9, /29

14 Fuchsian and Kleinian groups A discrete subgroup Γ of PS L(2, R), is called Kleinian group. If additionally Γ PSL(2, R), then it s called Γ Fuchsian group. Jakob von Raumer Visualization of Hyperbolic Tessellations April 9, /29

15 Fundamental domains Definition A closed subset F H is a fundamental domain for Γ, iff: Γ F := T Γ T (F) = H. For all T Γ, F and T (F) intersect only in their boundary. If F is a fundamental domain for Γ, then {T (F) T Γ} is called a tessellation. Jakob von Raumer Visualization of Hyperbolic Tessellations April 9, /29

16 Fuchsian Groups: Elliptic and parabolic subgroups Elliptic subgroup: T Γ where T is elliptic Parabolic subgroup: T Γ where T is parabolic Maximal elliptic or parabolic subgroups which are conjugate to each other, have the same order. They are called periods of Γ Jakob von Raumer Visualization of Hyperbolic Tessellations April 9, /29

17 The orbit space of a Fuchsian group Jakob von Raumer Visualization of Hyperbolic Tessellations April 9, /29

18 The signature of a Fuchsian group Definition Let Γ be a Fuchsian group with periods m 1,..., m n N 0 { }, m 1... m n and genus g N 0. Then the vector (g, m 1,..., m n ) is called the signature of Γ. Jakob von Raumer Visualization of Hyperbolic Tessellations April 9, /29

19 The program s features The program should create tessellations which are induced by a Fuchsian group with a given signature or consists of polygons with a given sequence of inner angles 2π m i. Jakob von Raumer Visualization of Hyperbolic Tessellations April 9, /29

20 Polygons for tiling by reflections β i = 2π m i lim r 0 θ i = π lim r 1 θ i = 0 Find r 0 (0, 1) such that n i+0 θ i = 2π. I 0.2 c θi b b r a βi R d 0.4 Jakob von Raumer Visualization of Hyperbolic Tessellations April 9, /29

21 Polygons for tiling by Fuchsian groups β 1 v9 α2 v8 v10 α 1 β2 v11 v7 t β1 α 2 v6 v12 α1 β 2 v5 s4 s3 s1 v1 ξ 4 w4 s2 ξ1 ξ4 v4 v3 v2 ξ 1 w1 ξ 3 w3 ξ3 ξ 2 ξ2 w2 Motivation Figure: Construction Hyperbolicof Geometry the polygon for g = 2 and Drawing n = hyperbolic 4 tessellations Jakob von Raumer Visualization of Hyperbolic Tessellations April 9, /29

22 Replication algorithm by Dunham It s based on a depth-first search. It s a combinatorial algorithm: Approach only depends on the corner valencies of the polygon. It can replicate arbitrary polygons, except for: Triangular fundamental domains or at least one corner valency of three. Jakob von Raumer Visualization of Hyperbolic Tessellations April 9, /29

23 Search trees of the Dunham algorithm Jakob von Raumer Visualization of Hyperbolic Tessellations April 9, /29

24 Separating the tessellation into layers Jakob von Raumer Visualization of Hyperbolic Tessellations April 9, /29

25 Search trees of the Dunham algorithm Jakob von Raumer Visualization of Hyperbolic Tessellations April 9, /29

26 Repliction using a priority queue Basic approach: Transform each tile by all transformations mapping it to edge adjacent tiles Discard tiles we already met Jakob von Raumer Visualization of Hyperbolic Tessellations April 9, /29

27 Repliction using a priority queue Three data structures: Liste inactivepolys: Polygons yet expanded Priority queue activepolys: Polygons still to be expanded Hash set midpoints: Midpoints of polygons we met so far Jakob von Raumer Visualization of Hyperbolic Tessellations April 9, /29

28 Repliction using a priority queue Three data structures: Liste inactivepolys: Polygons yet expanded Priority queue activepolys: Polygons still to be expanded Hash set midpoints: Midpoints of polygons we met so far Jakob von Raumer Visualization of Hyperbolic Tessellations April 9, /29

29 Repliction using a priority queue Three data structures: Liste inactivepolys: Polygons yet expanded Priority queue activepolys: Polygons still to be expanded Hash set midpoints: Midpoints of polygons we met so far Jakob von Raumer Visualization of Hyperbolic Tessellations April 9, /29

30 Comparing the run time Run time in milliseconds Dunham Algorithm Priority Queue Algorithm x 3 50 x Number of polygons Jakob von Raumer Visualization of Hyperbolic Tessellations April 9, /29

31 Comparing the run time 10 4 Dunham Algorithm Priority Queue Algorithm Run time in milliseconds Number of edges Jakob von Raumer Visualization of Hyperbolic Tessellations April 9, /29

32 Outlook Questions and Work still to accomplish: Try to solve the restrictions of the Dunham algorithm Optimizing the approximation used in the creation of the base polygons Replicate arbitrary vector graphics on the base polygons Interactive zoom and pan Adapting the stroke width according to hyperbolic geometry Jakob von Raumer Visualization of Hyperbolic Tessellations April 9, /29

33 On something completely unrelated... obw.ouinternational.ca Jakob von Raumer Visualization of Hyperbolic Tessellations April 9, /29

Investigating Hyperbolic Geometry

Investigating Hyperbolic Geometry Investigating Hyperbolic Geometry Sean Douglas and Caleb Springer September 11, 2013 1 Preliminaries: Hyperbolic Geometry Euclidean Geometry has several very nice and intuitive features: the shortest path

More information

274 Curves on Surfaces, Lecture 5

274 Curves on Surfaces, Lecture 5 274 Curves on Surfaces, Lecture 5 Dylan Thurston Notes by Qiaochu Yuan Fall 2012 5 Ideal polygons Previously we discussed three models of the hyperbolic plane: the Poincaré disk, the upper half-plane,

More information

6.3 Poincare's Theorem

6.3 Poincare's Theorem Figure 6.5: The second cut. for some g 0. 6.3 Poincare's Theorem Theorem 6.3.1 (Poincare). Let D be a polygon diagram drawn in the hyperbolic plane such that the lengths of its edges and the interior angles

More information

Generating Functions for Hyperbolic Plane Tessellations

Generating Functions for Hyperbolic Plane Tessellations Generating Functions for Hyperbolic Plane Tessellations by Jiale Xie A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Mathematics in

More information

Bending Circle Limits

Bending Circle Limits Proceedings of Bridges 2013: Mathematics, Music, Art, Architecture, Culture Bending Circle Limits Vladimir Bulatov Corvallis Oregon, USA info@bulatov.org Abstract M.C.Escher s hyperbolic tessellations

More information

7. The Gauss-Bonnet theorem

7. The Gauss-Bonnet theorem 7. The Gauss-Bonnet theorem 7.1 Hyperbolic polygons In Euclidean geometry, an n-sided polygon is a subset of the Euclidean plane bounded by n straight lines. Thus the edges of a Euclidean polygon are formed

More information

COMPUTER DESIGN OF REPEATING HYPERBOLIC PATTERNS

COMPUTER DESIGN OF REPEATING HYPERBOLIC PATTERNS COMPUTER DESIGN OF REPEATING HYPERBOLIC PATTERNS Douglas Dunham University of Minnesota Duluth Department of Computer Science 1114 Kirby Drive Duluth, Minnesota 55812-2496 USA ddunham@d.umn.edu Abstract:

More information

Escher s Circle Limit Anneke Bart Saint Louis University Introduction

Escher s Circle Limit Anneke Bart Saint Louis University  Introduction Escher s Circle Limit Anneke Bart Saint Louis University http://math.slu.edu/escher/ Introduction What are some of the most fundamental things we do in geometry? In the beginning we mainly look at lines,

More information

Punctured Torus Groups

Punctured Torus Groups Punctured Torus Groups Talk by Yair Minsky August, 7 One of the simplest classes of examples of Kleinian surface groups is given by punctured torus groups. We define a punctured torus group to be a discrete

More information

WUSTL Math Circle Sept 27, 2015

WUSTL Math Circle Sept 27, 2015 WUSTL Math Circle Sept 7, 015 The K-1 geometry, as we know it, is based on the postulates in Euclid s Elements, which we take for granted in everyday life. Here are a few examples: 1. The distance between

More information

OPTi s Algorithm for Discreteness Determination

OPTi s Algorithm for Discreteness Determination OPTi s Algorithm for Discreteness Determination Masaaki Wada CONTENTS 1. Introduction 2. Basics of Once-Punctured Torus Groups 3. Indiscreteness Determination by Jørgensen s Inequality 4. The Ford Region

More information

COMPUTING SURFACE UNIFORMIZATION USING DISCRETE BELTRAMI FLOW

COMPUTING SURFACE UNIFORMIZATION USING DISCRETE BELTRAMI FLOW COMPUTING SURFACE UNIFORMIZATION USING DISCRETE BELTRAMI FLOW Abstract. In this paper, we propose a novel algorithm for computing surface uniformization for surfaces with arbitrary topology. According

More information

Reversible Hyperbolic Triangulations

Reversible Hyperbolic Triangulations Reversible Hyperbolic Triangulations Circle Packing and Random Walk Tom Hutchcroft 1 Joint work with O. Angel 1, A. Nachmias 1 and G. Ray 2 1 University of British Columbia 2 University of Cambridge Probability

More information

Mathematics and the prints of M.C. Escher. Joe Romano Les Houches Summer School 23 July 2018

Mathematics and the prints of M.C. Escher. Joe Romano Les Houches Summer School 23 July 2018 Mathematics and the prints of M.C. Escher Joe Romano Les Houches Summer School 23 July 2018 Possible topics projective geometry non-euclidean geometry topology & knots ambiguous perspective impossible

More information

The Interplay Between Hyperbolic Symmetry and History

The Interplay Between Hyperbolic Symmetry and History The Interplay Between Hyperbolic Symmetry and History Douglas Dunham Department of Computer Science University of Minnesota, Duluth Duluth, MN 55812-3036, USA E-mail: ddunham@d.umn.edu Web Site: http://www.d.umn.edu/

More information

Portraits of Groups on Bordered Surfaces

Portraits of Groups on Bordered Surfaces Bridges Finland Conference Proceedings Portraits of Groups on Bordered Surfaces Jay Zimmerman Mathematics Department Towson University 8000 York Road Towson, MD 21252, USA E-mail: jzimmerman@towson.edu

More information

Genus 2 Belyĭ surfaces with a unicellular uniform dessin

Genus 2 Belyĭ surfaces with a unicellular uniform dessin Genus 2 Belyĭ surfaces with a unicellular uniform dessin State College, PA October 20, 2009 Definition A dessin d enfant is a bipartite graph embedded into an oriented compact surface S and dividing it

More information

More Circle Limit III Patterns

More Circle Limit III Patterns More Circle Limit III Patterns Douglas Dunham Department of Computer Science University of Minnesota, Duluth Duluth, MN 55812-2496, USA E-mail: ddunham@d.umn.edu Web Site: http://www.d.umn.edu/ ddunham/

More information

TESSELLATING THE HYPERBOLIC PLANE

TESSELLATING THE HYPERBOLIC PLANE TESSELLATING THE HYPERBOLIC PLANE JEAN MORRISON Abstract. The main goal of this paper will be to determine which hyperbolic polygons can be used to tessellate the hyperbolic plane. Sections 1-4 will be

More information

Joint Mathematics Meetings 2014

Joint Mathematics Meetings 2014 Joint Mathematics Meetings 2014 Patterns with Color Symmetry on Triply Periodic Polyhedra Douglas Dunham University of Minnesota Duluth Duluth, Minnesota USA Outline Background Triply periodic polyhedra

More information

An Algorithm to Generate Repeating Hyperbolic Patterns

An Algorithm to Generate Repeating Hyperbolic Patterns An Algorithm to Generate Repeating Hyperbolic Patterns Douglas Dunham Department of Computer Science University of innesota, Duluth Duluth, N 5581-3036, USA E-mail: ddunham@d.umn.edu Web Site: http://www.d.umn.edu/

More information

The Use of Repeating Patterns to Teach Hyperbolic Geometry Concepts

The Use of Repeating Patterns to Teach Hyperbolic Geometry Concepts The Use of Repeating Patterns to Teach Hyperbolic Geometry Concepts Douglas Dunham Department of Computer Science University of Minnesota, Duluth Duluth, MN 55812-3036, USA E-mail: ddunham@d.umn.edu Web

More information

Aspects of Geometry. Finite models of the projective plane and coordinates

Aspects of Geometry. Finite models of the projective plane and coordinates Review Sheet There will be an exam on Thursday, February 14. The exam will cover topics up through material from projective geometry through Day 3 of the DIY Hyperbolic geometry packet. Below are some

More information

AMS Sectional Meeting, Richmond VA Special Session on Mathematics and the Arts

AMS Sectional Meeting, Richmond VA Special Session on Mathematics and the Arts AMS Sectional Meeting, Richmond VA Special Session on Mathematics and the Arts Hyperbolic Truchet Tilings: First Steps Douglas Dunham University of Minnesota Duluth Duluth, Minnesota USA Outline A brief

More information

CS 177 Homework 1. Julian Panetta. October 22, We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F:

CS 177 Homework 1. Julian Panetta. October 22, We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F: CS 177 Homework 1 Julian Panetta October, 009 1 Euler Characteristic 1.1 Polyhedral Formula We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F: V E + F = 1 First,

More information

Teaching diary. Francis Bonahon University of Southern California

Teaching diary. Francis Bonahon University of Southern California Teaching diary In the Fall 2010, I used the book Low-dimensional geometry: from euclidean surfaces to hyperbolic knots as the textbook in the class Math 434, Geometry and Transformations, at USC. Most

More information

Shape Modeling and Geometry Processing

Shape Modeling and Geometry Processing 252-0538-00L, Spring 2018 Shape Modeling and Geometry Processing Discrete Differential Geometry Differential Geometry Motivation Formalize geometric properties of shapes Roi Poranne # 2 Differential Geometry

More information

William P. Thurston. The Geometry and Topology of Three-Manifolds

William P. Thurston. The Geometry and Topology of Three-Manifolds William P. Thurston The Geometry and Topology of Three-Manifolds Electronic version 1.1 - March 2002 http://www.msri.org/publications/books/gt3m/ This is an electronic edition of the 1980 notes distributed

More information

Geometric structures on manifolds

Geometric structures on manifolds CHAPTER 3 Geometric structures on manifolds In this chapter, we give our first examples of hyperbolic manifolds, combining ideas from the previous two chapters. 3.1. Geometric structures 3.1.1. Introductory

More information

Coxeter Decompositions of Hyperbolic Polygons

Coxeter Decompositions of Hyperbolic Polygons Europ. J. Combinatorics (1998) 19, 801 817 Article No. ej980238 Coxeter Decompositions of Hyperbolic Polygons A. A. FELIKSON Let P be a polygon on hyperbolic plane H 2. A Coxeter decomposition of a polygon

More information

168 Butterflies on a Polyhedron of Genus 3

168 Butterflies on a Polyhedron of Genus 3 168 Butterflies on a Polyhedron of Genus 3 Douglas Dunham Department of Computer Science University of Minnesota, Duluth Duluth, MN 55812-2496, USA E-mail: ddunham@d.umn.edu Web Site: http://www.d.umn.edu/

More information

Some irrational polygons have many periodic billiard paths

Some irrational polygons have many periodic billiard paths Some irrational polygons have many periodic billiard paths W. Patrick Hooper Northwestern University Spring Topology and Dynamics Conference Milwaukee, Wisconsin March 5, 8 Lower bounds on growth rates

More information

pα i + q, where (n, m, p and q depend on i). 6. GROMOV S INVARIANT AND THE VOLUME OF A HYPERBOLIC MANIFOLD

pα i + q, where (n, m, p and q depend on i). 6. GROMOV S INVARIANT AND THE VOLUME OF A HYPERBOLIC MANIFOLD 6. GROMOV S INVARIANT AND THE VOLUME OF A HYPERBOLIC MANIFOLD of π 1 (M 2 )onπ 1 (M 4 ) by conjugation. π 1 (M 4 ) has a trivial center, so in other words the action of π 1 (M 4 ) on itself is effective.

More information

A Circle Limit III Calculation

A Circle Limit III Calculation A Circle Limit III Calculation Douglas Dunham Department of Computer Science University of Minnesota, Duluth Duluth, MN 55812-3036, USA E-mail: ddunham@d.umn.edu Web Site: http://www.d.umn.edu/ ddunham/

More information

Mathematical Research Letters 1, (1994) MÖBIUS CONE STRUCTURES ON 3-DIMENSIONAL MANIFOLDS. Feng Luo

Mathematical Research Letters 1, (1994) MÖBIUS CONE STRUCTURES ON 3-DIMENSIONAL MANIFOLDS. Feng Luo Mathematical Research Letters 1, 257 261 (1994) MÖBIUS CONE STRUCTURES ON 3-DIMENSIONAL MANIFOLDS Feng Luo Abstract. We show that for any given angle α (0, 2π), any closed 3- manifold has a Möbius cone

More information

GEOMETRY OF PLANAR SURFACES AND EXCEPTIONAL FILLINGS

GEOMETRY OF PLANAR SURFACES AND EXCEPTIONAL FILLINGS GEOMETRY OF PLANAR SURFACES AND EXCEPTIONAL FILLINGS NEIL R. HOFFMAN AND JESSICA S. PURCELL Abstract. If a hyperbolic 3 manifold admits an exceptional Dehn filling, then the length of the slope of that

More information

THIS IS NOT THE LEGIT VERSION DIMACS REU 2018 Project: Sphere Packings and Number Theory

THIS IS NOT THE LEGIT VERSION DIMACS REU 2018 Project: Sphere Packings and Number Theory THIS IS NOT THE LEGIT VERSION DIMACS REU 2018 Project: Sphere Packings and Number Theory Alisa Cui, Devora Chait, Zachary Stier Mentor: Prof. Alex Kontorovich July 13, 2018 Apollonian circle packings What

More information

Model Manifolds for Punctured Torus Groups and Constructions in Higher Complexity

Model Manifolds for Punctured Torus Groups and Constructions in Higher Complexity Model Manifolds for Punctured Torus Groups and Constructions in Higher Complexity Talk by Yair Minsky August 22, 2007 For the first part of this lecture, we will finish up the discussion of punctured torus

More information

The geometry and combinatorics of closed geodesics on hyperbolic surfaces

The geometry and combinatorics of closed geodesics on hyperbolic surfaces The geometry and combinatorics of closed geodesics on hyperbolic surfaces CUNY Graduate Center September 8th, 2015 Motivating Question: How are the algebraic/combinatoric properties of closed geodesics

More information

Artistic Patterns in Hyperbolic Geometry

Artistic Patterns in Hyperbolic Geometry Artistic Patterns in Hyperbolic Geometry Douglas Dunham Department of Computer Science University of Minnesota, Duluth Duluth, MN 55812-2496, USA E-mail: ddunha.m.(qd. umn. edu BRIDGES Mathematical Connections

More information

Ratcliffe, Foundations of hyperbolic manifolds, Springer (elementary)

Ratcliffe, Foundations of hyperbolic manifolds, Springer (elementary) 1 Introduction About this lecture P SL(2, C) and hyperbolic 3-spaces. Subgroups of P SL(2, C) Hyperbolic manifolds and orbifolds Examples 3-manifold topology and Dehn surgery Rigidity Volumes and ideal

More information

Heegaard splittings and virtual fibers

Heegaard splittings and virtual fibers Heegaard splittings and virtual fibers Joseph Maher maher@math.okstate.edu Oklahoma State University May 2008 Theorem: Let M be a closed hyperbolic 3-manifold, with a sequence of finite covers of bounded

More information

The Farey Tessellation

The Farey Tessellation The Farey Tessellation Seminar: Geometric Structures on manifolds Mareike Pfeil supervised by Dr. Gye-Seon Lee 15.12.2015 Introduction In this paper, we are going to introduce the Farey tessellation. Since

More information

Hyperbolic structures and triangulations

Hyperbolic structures and triangulations CHAPTER Hyperbolic structures and triangulations In chapter 3, we learned that hyperbolic structures lead to developing maps and holonomy, and that the developing map is a covering map if and only if the

More information

Symmetry: The Quarterly of the International Society for the Interdisciplinary Study of Symmetry (ISIS-Symmetry) Volume 9, Numbers 2 o 4.

Symmetry: The Quarterly of the International Society for the Interdisciplinary Study of Symmetry (ISIS-Symmetry) Volume 9, Numbers 2 o 4. Symmetry: The Quarterly of the International Society for the Interdisciplinary Study of Symmetry (ISIS-Symmetry) Volume 9, Numbers 2 o 4. i998 Symmetry: Culture and Sctence 199 Vol 9, Nos. 2-4, 199-205,

More information

CS 523: Computer Graphics, Spring Shape Modeling. Differential Geometry of Surfaces

CS 523: Computer Graphics, Spring Shape Modeling. Differential Geometry of Surfaces CS 523: Computer Graphics, Spring 2011 Shape Modeling Differential Geometry of Surfaces Andrew Nealen, Rutgers, 2011 2/22/2011 Differential Geometry of Surfaces Continuous and Discrete Motivation Smoothness

More information

Escher and Coxeter. A Mathematical Conversation

Escher and Coxeter. A Mathematical Conversation A Mathematical Conversation 5 June 2017 M. C. Escher (1898 1972) Hand with Reflecting Sphere (Lithograph, 1935) Education I Early education in Arnhem. I Admitted 1919 to School for Architecture and Decorative

More information

A Circle Limit III Backbone Arc Formula

A Circle Limit III Backbone Arc Formula A Circle Limit III Backbone Arc Formula Douglas Dunham 1 1 Department of Computer Science University of Minnesota, Duluth Duluth, MN 55812-3036, USA ddunham@d.umn.edu http://www.d.umn.edu/ ddunham/ Luns

More information

Greedy Routing with Guaranteed Delivery Using Ricci Flow

Greedy Routing with Guaranteed Delivery Using Ricci Flow Greedy Routing with Guaranteed Delivery Using Ricci Flow Jie Gao Stony Brook University Joint work with Rik Sarkar, Xiaotian Yin, Wei Zeng, Feng Luo, Xianfeng David Gu Greedy Routing Assign coordinatesto

More information

Introduction to Coxeter Groups

Introduction to Coxeter Groups OSU April 25, 2011 http://www.math.ohio-state.edu/ mdavis/ 1 Geometric reflection groups Some history Properties 2 Some history Properties Dihedral groups A dihedral gp is any gp which is generated by

More information

Optimal Möbius Transformation for Information Visualization and Meshing

Optimal Möbius Transformation for Information Visualization and Meshing Optimal Möbius Transformation for Information Visualization and Meshing Marshall Bern Xerox Palo Alto Research Ctr. David Eppstein Univ. of California, Irvine Dept. of Information and Computer Science

More information

1 We plan to describe the construction, by straightedge and compass, of certain geodesic triangles in the hyperbolic plane.

1 We plan to describe the construction, by straightedge and compass, of certain geodesic triangles in the hyperbolic plane. YPERBOLIC TRINGLES Thomas Wieting Reed College, 2010 1 We plan to describe the construction, by straightedge and compass, of certain geodesic triangles in the hyperbolic plane. 2 Let us begin by explaining

More information

SubTile 2013, Marseille. An Algorithm to Create Hyperbolic Escher Tilings

SubTile 2013, Marseille. An Algorithm to Create Hyperbolic Escher Tilings SubTile 2013, Marseille An Algorithm to Create Hyperbolic Escher Tilings Douglas Dunham University of Minnesota Duluth Duluth, Minnesota USA Email: ddunham@d.umn.edu Web: http://www.d.umn.edu/~ddunham

More information

Bridges 2011 University of Coimbra, Portugal. Hyperbolic Truchet Tilings Douglas Dunham University of Minnesota Duluth Duluth, Minnesota USA

Bridges 2011 University of Coimbra, Portugal. Hyperbolic Truchet Tilings Douglas Dunham University of Minnesota Duluth Duluth, Minnesota USA Bridges 2011 University of Coimbra, Portugal Hyperbolic Truchet Tilings Douglas Dunham University of Minnesota Duluth Duluth, Minnesota USA Outline A brief history of Truchet tilings Truchet s investigation

More information

Hyperbolic Semi-Regular Tilings and their Symmetry Properties

Hyperbolic Semi-Regular Tilings and their Symmetry Properties Hyperbolic Semi-Regular Tilings and their Symmetry Properties Ma. Louise Antonette N. De Las Peñas, mlp@mathsci.math.admu.edu.ph Glenn R. Laigo, glaigo@yahoo.com Eden Delight B. Provido, edenprovido@yahoo.com

More information

Algorithms for arithmetic Kleinian groups

Algorithms for arithmetic Kleinian groups supervised by John Voight September 6, 2011 Université Bordeaux 1 Definition A quaternion algebra over a field F is a central simple algebra of dimension 4. Explicitely, if char F 2 it admits a presentation

More information

2. Draw a non-isosceles triangle. Now make a template of this triangle out of cardstock or cardboard.

2. Draw a non-isosceles triangle. Now make a template of this triangle out of cardstock or cardboard. Tessellations The figure at the left shows a tiled floor. Because the floor is entirely covered by the tiles we call this arrangement a tessellation of the plane. A regular tessellation occurs when: The

More information

ISAMA 2011 Columbia College, Chicago IL. Enumerations of Hyperbolic Truchet Tiles Douglas Dunham University of Minnesota Duluth Duluth, Minnesota USA

ISAMA 2011 Columbia College, Chicago IL. Enumerations of Hyperbolic Truchet Tiles Douglas Dunham University of Minnesota Duluth Duluth, Minnesota USA ISAMA 2011 Columbia College, Chicago IL Enumerations of Hyperbolic Truchet Tiles Douglas Dunham University of Minnesota Duluth Duluth, Minnesota USA Outline A brief history of Truchet tilings Examples

More information

Branched coverings and three manifolds Third lecture

Branched coverings and three manifolds Third lecture J.M.Montesinos (Institute) Branched coverings Hiroshima, March 2009 1 / 97 Branched coverings and three manifolds Third lecture José María Montesinos-Amilibia Universidad Complutense Hiroshima, March 2009

More information

Special Links. work in progress with Jason Deblois & Henry Wilton. Eric Chesebro. February 9, 2008

Special Links. work in progress with Jason Deblois & Henry Wilton. Eric Chesebro. February 9, 2008 work in progress with Jason Deblois & Henry Wilton February 9, 2008 Thanks for listening! Construction Properties A motivating question Virtually fibered: W. Thurston asked whether every hyperbolic 3-manifold

More information

Teichmüller Space and Fenchel-Nielsen Coordinates

Teichmüller Space and Fenchel-Nielsen Coordinates Teichmüller Space and Fenchel-Nielsen Coordinates Nathan Lopez November 30, 2015 Abstract Here we give an overview of Teichmüller space and its realization as a smooth manifold through Fenchel- Nielsen

More information

The geometry of embedded surfaces

The geometry of embedded surfaces CHAPTER 12 The geometry of embedded surfaces In this chapter, we discuss the geometry of essential surfaces embedded in hyperbolic 3-manifolds. In the first section, we show that specific surfaces embedded

More information

GEOMETRY OF PLANAR SURFACES AND EXCEPTIONAL FILLINGS

GEOMETRY OF PLANAR SURFACES AND EXCEPTIONAL FILLINGS GEOMETRY OF PLANAR SURFACES AND EXCEPTIONAL FILLINGS NEIL R. HOFFMAN AND JESSICA S. PURCELL Abstract. If a hyperbolic 3 manifold admits an exceptional Dehn filling, then the length of the slope of that

More information

A Family of Butterfly Patterns Inspired by Escher Douglas Dunham University of Minnesota Duluth Duluth, Minnesota

A Family of Butterfly Patterns Inspired by Escher Douglas Dunham University of Minnesota Duluth Duluth, Minnesota 15 th International Conference on Geometry and Graphics A Family of Butterfly Patterns Inspired by Escher Douglas Dunham University of Minnesota Duluth Duluth, Minnesota Outline Families of patterns -

More information

COMMENSURABILITY FOR CERTAIN RIGHT-ANGLED COXETER GROUPS AND GEOMETRIC AMALGAMS OF FREE GROUPS

COMMENSURABILITY FOR CERTAIN RIGHT-ANGLED COXETER GROUPS AND GEOMETRIC AMALGAMS OF FREE GROUPS COMMENSURABILITY FOR CERTAIN RIGHT-ANGLED COXETER GROUPS AND GEOMETRIC AMALGAMS OF FREE GROUPS PALLAVI DANI, EMILY STARK AND ANNE THOMAS Abstract. We give explicit necessary and sufficient conditions for

More information

4.2 and 4.6 filled in notes.notebook. December 08, Integration. Copyright Cengage Learning. All rights reserved.

4.2 and 4.6 filled in notes.notebook. December 08, Integration. Copyright Cengage Learning. All rights reserved. 4 Integration Copyright Cengage Learning. All rights reserved. 1 4.2 Area Copyright Cengage Learning. All rights reserved. 2 Objectives Use sigma notation to write and evaluate a sum. Understand the concept

More information

Creating Escher-Style Tessellations

Creating Escher-Style Tessellations Creating Escher-Style Tessellations Focus on After this lesson, you will be able to... create tessellations from combinations of regular and irregular polygons describe the tessellations in terms of the

More information

A FAMILY OF THREE ELEMENT M.C. ESCHER PATTERNS

A FAMILY OF THREE ELEMENT M.C. ESCHER PATTERNS A FAMILY OF THREE ELEMENT M.C. ESCHER PATTERNS Douglas J. DUNHAM University of Minnesota Duluth, USA ABSTRACT: In 1952, the Dutch artist M.C. Escher created his striking Notebook Drawing 85. It is a repeating

More information

Shocking and. Hyperbolic. Dutch artist M. C. Escher wrote in 1958, upon seeing. A Tale Both

Shocking and. Hyperbolic. Dutch artist M. C. Escher wrote in 1958, upon seeing. A Tale Both A Tale Both Shocking and Escher was quite excited by that figure, since it showed him how to solve a problem that he had wondered about for a long time: how to create a repeating pattern within a limiting

More information

ACT Math and Science - Problem Drill 11: Plane Geometry

ACT Math and Science - Problem Drill 11: Plane Geometry ACT Math and Science - Problem Drill 11: Plane Geometry No. 1 of 10 1. Which geometric object has no dimensions, no length, width or thickness? (A) Angle (B) Line (C) Plane (D) Point (E) Polygon An angle

More information

UNIFORM TILINGS OF THE HYPERBOLIC PLANE

UNIFORM TILINGS OF THE HYPERBOLIC PLANE UNIFORM TILINGS OF THE HYPERBOLIC PLANE BASUDEB DATTA AND SUBHOJOY GUPTA Abstract. A uniform tiling of the hyperbolic plane is a tessellation by regular geodesic polygons with the property that each vertex

More information

An Interactive Java Program to Generate Hyperbolic Repeating Patterns Based on Regular Tessellations Including Hyperbolic Lines and Equidistant Curves

An Interactive Java Program to Generate Hyperbolic Repeating Patterns Based on Regular Tessellations Including Hyperbolic Lines and Equidistant Curves An Interactive Java Program to Generate Hyperbolic Repeating Patterns Based on Regular Tessellations Including Hyperbolic Lines and Equidistant Curves A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE

More information

Repeating Hyperbolic Pattern Algorithms Special Cases

Repeating Hyperbolic Pattern Algorithms Special Cases Repeating Hyperbolic Pattern Algorithms Special Cases Douglas Dunham Department of Computer Science University of Minnesota, Duluth Duluth, MN 55812-3036, USA E-mail: ddunham@d.umn.edu Web Site: http://www.d.umn.edu/

More information

Two Connections between Combinatorial and Differential Geometry

Two Connections between Combinatorial and Differential Geometry Two Connections between Combinatorial and Differential Geometry John M. Sullivan Institut für Mathematik, Technische Universität Berlin Berlin Mathematical School DFG Research Group Polyhedral Surfaces

More information

Creating Repeating Hyperbolic Patterns Based on Regular Tessellations

Creating Repeating Hyperbolic Patterns Based on Regular Tessellations Creating Repeating Hyperbolic Patterns Based on Regular Tessellations A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Christopher D. Becker IN PARTIAL FULFILLMENT

More information

Geometric structures on manifolds

Geometric structures on manifolds CHAPTER 3 Geometric structures on manifolds In this chapter, we give our first examples of hyperbolic manifolds, combining ideas from the previous two chapters. 3.1. Geometric structures 3.1.1. Introductory

More information

H.S.M. Coxeter and Tony Bomford s Colored Hyperbolic Rugs

H.S.M. Coxeter and Tony Bomford s Colored Hyperbolic Rugs H.S.M. Coxeter and Tony Bomford s Colored Hyperbolic Rugs Douglas Dunham Department of Computer Science University of Minnesota, Duluth Duluth, MN 55812-2496, USA E-mail: ddunham@d.umn.edu Web Site: http://www.d.umn.edu/

More information

Math 462: Review questions

Math 462: Review questions Math 462: Review questions Paul Hacking 4/22/10 (1) What is the angle between two interior diagonals of a cube joining opposite vertices? [Hint: It is probably quickest to use a description of the cube

More information

a triangle with all acute angles acute triangle angles that share a common side and vertex adjacent angles alternate exterior angles

a triangle with all acute angles acute triangle angles that share a common side and vertex adjacent angles alternate exterior angles acute triangle a triangle with all acute angles adjacent angles angles that share a common side and vertex alternate exterior angles two non-adjacent exterior angles on opposite sides of the transversal;

More information

Geometrically maximal knots

Geometrically maximal knots Geometrically maximal knots Abhijit Champanerkar Department of Mathematics, College of Staten Island & The Graduate Center, CUNY Discussion Meeting on Knot theory and its Applications IISER Mohali, India

More information

Dr. Anna Felikson, Durham University Geometry, Outline

Dr. Anna Felikson, Durham University Geometry, Outline Dr. Anna Felikson, Durham University Geometry, 26.02.2015 Outline 1 Euclidean geometry 1.1 Isometry group of Euclidean plane, Isom(E 2 ). A distance on a space X is a function d : X X R, (A, B) d(a, B)

More information

Lesson 10. Unit 3. Creating Designs. Transformational Designs. Reflection

Lesson 10. Unit 3. Creating Designs. Transformational Designs. Reflection Lesson 10 Transformational Designs Creating Designs M.C. Escher was an artist that made remarkable pieces of art using geometric transformations. He was first inspired by the patterns in mosaic tiles.

More information

5. THE ISOPERIMETRIC PROBLEM

5. THE ISOPERIMETRIC PROBLEM Math 501 - Differential Geometry Herman Gluck March 1, 2012 5. THE ISOPERIMETRIC PROBLEM Theorem. Let C be a simple closed curve in the plane with length L and bounding a region of area A. Then L 2 4 A,

More information

High-Dimensional Computational Geometry. Jingbo Shang University of Illinois at Urbana-Champaign Mar 5, 2018

High-Dimensional Computational Geometry. Jingbo Shang University of Illinois at Urbana-Champaign Mar 5, 2018 High-Dimensional Computational Geometry Jingbo Shang University of Illinois at Urbana-Champaign Mar 5, 2018 Outline 3-D vector geometry High-D hyperplane intersections Convex hull & its extension to 3

More information

Middle School Geometry. Session 3

Middle School Geometry. Session 3 Middle School Geometry Session 3 Topic Transformational Geometry: Tessellations Activity Name Sums of the Measures of Angles of Triangles Do Congruent Triangles Tessellate? Do Congruent Quadrilaterals

More information

Patterns on Triply Periodic Uniform Polyhedra

Patterns on Triply Periodic Uniform Polyhedra Patterns on Triply Periodic Uniform Polyhedra Douglas Dunham Department of Computer Science University of Minnesota, Duluth Duluth, MN 55812-3036, USA E-mail: ddunham@d.umn.edu Web Site: http://www.d.umn.edu/

More information

Graphs associated to CAT(0) cube complexes

Graphs associated to CAT(0) cube complexes Graphs associated to CAT(0) cube complexes Mark Hagen McGill University Cornell Topology Seminar, 15 November 2011 Outline Background on CAT(0) cube complexes The contact graph: a combinatorial invariant

More information

1 Quasi-isometry rigidity for hyperbolic buildings

1 Quasi-isometry rigidity for hyperbolic buildings 1 Quasi-isometry rigidity for hyperbolic buildings After M. Bourdon and H. Pajot A summary written by Seonhee Lim Abstract We summarize Boundon-Pajot s quasi-isometry rigidity for some negatively-curved

More information

6.2 Classification of Closed Surfaces

6.2 Classification of Closed Surfaces Table 6.1: A polygon diagram 6.1.2 Second Proof: Compactifying Teichmuller Space 6.2 Classification of Closed Surfaces We saw that each surface has a triangulation. Compact surfaces have finite triangulations.

More information

Groups acting on hyperbolic buildings

Groups acting on hyperbolic buildings Groups acting on hyperbolic buildings Aalto University, Analysis and Geometry Seminar Riikka Kangaslampi May 2nd, 2012 Abstract We construct and classify all groups, given by triangular presentations associated

More information

Introduction to Complex Analysis

Introduction to Complex Analysis Introduction to Complex Analysis George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 413 George Voutsadakis (LSSU) Complex Analysis October 2014 1 / 50 Outline

More information

Copyright 2009 Pearson Education, Inc. Chapter 9 Section 7 - Slide 1 AND

Copyright 2009 Pearson Education, Inc. Chapter 9 Section 7 - Slide 1 AND Copyright 2009 Pearson Education, Inc. Chapter 9 Section 7 - Slide 1 AND Chapter 9 Geometry Copyright 2009 Pearson Education, Inc. Chapter 9 Section 7 - Slide 2 WHAT YOU WILL LEARN Transformational geometry,

More information

What makes geometry Euclidean or Non-Euclidean?

What makes geometry Euclidean or Non-Euclidean? What makes geometry Euclidean or Non-Euclidean? I-1. Each two distinct points determine a line I-2. Three noncollinear points determine a plane The 5 Axioms of I-3. If two points lie in a plane, then any

More information

Glossary of dictionary terms in the AP geometry units

Glossary of dictionary terms in the AP geometry units Glossary of dictionary terms in the AP geometry units affine linear equation: an equation in which both sides are sums of terms that are either a number times y or a number times x or just a number [SlL2-D5]

More information

Final Exam 1:15-3:15 pm Thursday, December 13, 2018

Final Exam 1:15-3:15 pm Thursday, December 13, 2018 Final Exam 1:15-3:15 pm Thursday, December 13, 2018 Instructions: Answer all questions in the space provided (or attach additional pages as needed). You are permitted to use pencils/pens, one cheat sheet

More information

Vocabulary. Term Page Definition Clarifying Example. center of dilation. composition of transformations. enlargement. glide reflection.

Vocabulary. Term Page Definition Clarifying Example. center of dilation. composition of transformations. enlargement. glide reflection. CHAPTER 12 Vocabulary The table contains important vocabulary terms from Chapter 12. As you work through the chapter, fill in the page number, definition, and a clarifying example. center of dilation Term

More information

Self-similar Tilings Based on Prototiles Constructed from Segments of Regular Polygons

Self-similar Tilings Based on Prototiles Constructed from Segments of Regular Polygons Self-similar Tilings Based on Prototiles Constructed from Segments of Regular Polygons Robert W. Fathauer Tessellations Tempe, AZ 85281, U.S.A. E-mail: tessella@futureone.com Abstract Two infinite families

More information

CAT(0)-spaces. Münster, June 22, 2004

CAT(0)-spaces. Münster, June 22, 2004 CAT(0)-spaces Münster, June 22, 2004 CAT(0)-space is a term invented by Gromov. Also, called Hadamard space. Roughly, a space which is nonpositively curved and simply connected. C = Comparison or Cartan

More information

MATERIAL FOR A MASTERCLASS ON HYPERBOLIC GEOMETRY. Timeline. 10 minutes Exercise session: Introducing curved spaces

MATERIAL FOR A MASTERCLASS ON HYPERBOLIC GEOMETRY. Timeline. 10 minutes Exercise session: Introducing curved spaces MATERIAL FOR A MASTERCLASS ON HYPERBOLIC GEOMETRY Timeline 10 minutes Introduction and History 10 minutes Exercise session: Introducing curved spaces 5 minutes Talk: spherical lines and polygons 15 minutes

More information

Part XV. Drawing wallpaper patterns. The goal for this part is to draw Esher-style wallpaper patterns with interlocking figures.

Part XV. Drawing wallpaper patterns. The goal for this part is to draw Esher-style wallpaper patterns with interlocking figures. Part XV Drawing wallpaper patterns The goal for this part is to draw Esher-style wallpaper patterns with interlocking figures. Translation only What shape can be used to make a simple fundamental domain

More information