External Anatomical Shapes Reconstruction from Turntable Image Sequences using a Single off-the-shelf Camera

Size: px
Start display at page:

Download "External Anatomical Shapes Reconstruction from Turntable Image Sequences using a Single off-the-shelf Camera"

Transcription

1 External Anatomical Shapes Reconstruction from Turntable Image Sequences using a Single off-the-shelf Camera Teresa C. S. Azevedo INEGI Inst. de Eng. Mecânica e Gestão Industrial, LOME Lab. Óptica e Mecânica Experimental FEUP Faculdade de Engenharia da Universidade do Porto, PORTUGAL João Manuel R. S. Tavares & Mário A. P. Vaz INEGI, LOME DEMEGI Departamento de Engenharia Mecânica e Gestão Industrial, FEUP ABSTRACT: Three-dimensional (3D) human body reconstruction and modeling from multiple twodimensional (2D) images is a topic of great interest and research but still remains a difficult problem. Volumetric based methods are commonly used to solve this type of problem. With those methods, from a turntable image sequence of an object, a 3D model can be built. The final goal of the work presented in this paper is to reconstruct all-round 3D models of the human body, using a single off-the-shelf camera and volumetric techniques, with the best accuracy and photorealistic appearance. 1 HUMAN BODY 3D RECONSTRUCTION 3D imaging of physical objects has become a strong topic of research, mostly due to the increasing improvements in computational resources. Particularly, 3D reconstruction of the human body promise to open a very wide variety of applications: medicine, virtual reality, ergonomics applications, etc. Classical devices for external anatomical shape reconstruction are 3D scanners ((Levoy, Pulli et al., 2000), (Rocchini, Cignoni et al., 2001)). They are expensive but simple to use and fast. The technology involved can vary from laser light, structured light or time of flight, with an accuracy of millions of points ((Boehler, Heinz et al., 2001), (Remondino, 2004)). There are other techniques called image-based. 3D human body models are built from images, using approaches such as anthropometric statistics ((Barrón and Kakadiaris, 2000), (Mori and Malik, 2006)), multi-view geometry ((Remondino, 2004)) or occluding contours (Boyer and Berger, 1997). Shape from silhouettes ((Laurentini, 1994), (Srivastava and Ahuja, 1990)) is one of the most used volumetric methods. It combines silhouette images of an object with calibration information to set the visual rays in scene space for all silhouette points, which define a generalized cone within the object must be placed. The intersection of these cones defines a volume of scene space (visual hull) in which the object is guaranteed to be (Figure 1). Accuracy depends on the number of views used, the positions of each viewpoint, the calibration quality and the object s complexity. 1.1 Volumetric methods Traditional methods, like stereo matching or disparity maps, fail to capture shapes with complicated topology, like the human body because of its smoothness (Zeng, Lhuillier et al., 2005). Volumetric or voxel-based approaches have been quite popular for some time ((Seitz and Dyer, 1997), (Slabaugh, Culbertson et al., 2001)). They assume that there is a bounded volume in which the object of interest is placed. Figure 1. Visual hull from three viewpoints. Much refined voxel models can be obtained using space carving ((Kutulatos and Steiz, 1998), (Sainz, Bagherzadeh et al., 2002)). The reconstruction is initialized with a bounding box of voxels containing the true 3D object. The 3D shape of the object is constructed by removing (carving) voxels that are not photo-consistent with the reference views (Figure 2).

2 From a reconstructed volumetric model, a polygonal surface approximation can be constructed using, for example, the Marching Cubes algorithm ((Heckbert and Garland, 1997), (Lorensen and Cline, 1987)). Figure 2. Non photo-consistency lemma: if p isn t photoconsistent with some camera(s), it is non consistent with the entire set of cameras. 2 OUR METHODOLOGY In this paper, we present a volumetric method - Space Carving - for object 3D reconstruction. First step is camera calibration, which means finding the map between the 3D world and the 2D image space (Figure 3). We based our approach in Zhang s algorithm (Zhang, 2000). Several views of a chessboard pattern were used, acquired with a single off-the-shelf camera. Taken as inputs the correspondences between 2D image points and 3D scene points, Zhang s algorithm outputs the intrinsic camera matrix (focal length and principal point; skew γ is admited as zero), distortion coefficients and extrinsic parameters. For each calibration image, keeping the camera untouched, the object to reconstruct is placed on top of the pattern and another image is taken. So, for each turntable position we have a pattern image (for calibration) and an object image (for 3D reconstruction). To avoid all calibration images from having the pattern on the same plane, some extra images of the pattern in different orientations were taken. After calibration is done, for each object image of the turntable sequence, background/foreground segmentation is performed using some basic image processing tools. After the segmentation process, the object s model is built using a Generalized Voxel Coloring (GVC) technique (Loper, 2002). It allows arbitrary camera placement and generally provides better results than some other color-consistency algorithms (Slabaugh, Culbertson et al., 1999). Specifics of the algorithm are on Table 1. Finally, the volumetric model is polygonized (smoothed) using the Marching Cubes algorithm. Table 1. Pseudo-code for GVC algorithm. initialize surface voxel list (SVL) for every voxel V carved(v) = false loop { visibilitychanged = false compute item buffers by rendering voxels on SVL for every voxel V in SVL { compute vis(v) if (consist(vis(v)) = false) { visibilitychanged = true carved(v) = true remove V from SVL for all voxels N that are adjacent to V if (carved(n) = false and N is not in SVL) add N to SVL if (visibilitychanged = false) { save voxel space quit 3 EXPERIMENTAL RESULTS Figure 3. Camera s intrinsic and extrinsic parameters, mapping 3D world point coordinates into 2D image point coordinates. Our method was tested on two objects, very different on size and shape complexity: an human upper-torso (Figure 4) and an hand model (Figure 5). 3.1 Calibration results The camera to be calibrated was a NIKON D200 CCD camera. The chessboard plane contained 7x9 squares, so there where 48 inner corners, each square measuring 30x30mm. On Table 2 and Table 3 are the intrinsic results for the torso and hand model, respectively. Regarding extrinsic calibration results, the standard deviation of the reprojection error (in pixel), in both x and y directions, was [0.3584;0.3648] for the upper-torso object and [0.5513; ] for the hand object. It can be seen that, although the reprojection error is slightly higher for the hand model, the intrinsic parameters are much more accurate.

3 Figure 5. Hand object image sample. Three top pairs: object and pattern pair of turntable sequence; last pair: extra images used in calibration. Table 2. Intrinsic camera calibration results for torso model. Intrinsic camera matrix Distortion coefficients f x ± k ± f y ± k ± c x ± p ± c y ± p ± Table 3. Intrinsic camera calibration results for hand model. Intrinsic camera matrix Distortion coefficients f x ± k ± f y ± k ± c x ± p ± c y ± p ± Figure 4. Torso object image sample. Three top pairs: object and pattern pair of turntable sequence; last pair: extra images used in calibration. 3.2 Segmentation results Background/foreground segmentation means to binarize an image, extracting the object of interest (foreground) from the rest of the image (background). Using some image processing tools, like Sobel operator for edge detection, and different morphology functions in combination, as flood-fill operation to fill separated regions, it was possible to obtain reasonably good silhouettes for both objects turntable image sequence (Figure 6 and Figure 7). 3.3 Carving results Some snapshots of the 3D models obtained for both objects can be seen in Figure 8 and Figure 9.

4 Figure 6. Torso image and respective silhouette. Figure 9. 3D model of the hand model: left, original image; middle, voxel model; right, polygonized model. Although not very good for any of the objects, three-dimensional modelling had better results for the upper-torso object, because its shape has no abrupt changes comparing to the hand object and also because the higher distance between camera and object minimizes the effects of calibration errors. Figure 7. Hand image and respective silhouette. 4 CONCLUSIONS AND FUTURE WORK We can easily conclude that to have a complete and accurate 3D model of an object is very difficult. It gets even harder when the objects to modelize have strong shape variations, like the fingers in our hand model. Also, good calibration results are essential to get exact information about the object placement in 3D space. Further work will concentrate on improving the calibration method, specially on dividing into intrinsic and extrinsic calibration. Some chessboard pattern images will be used for intrinsic parameters estimation and the rotation and translation of the object will be estimated directly by the object images. Other improvements will be on Space Carving, mainly on the study of the influency of voxel coloring (since our objects have smooth colors). 5 ACKNOWLEDGMENTS This work was partially done in the scope of the project Segmentation, Tracking and Motion Analysis of Deformable (2D/3D) Objects using Physical Principles, with reference POSC/EEA- SRI/55386/2004, financially supported by FCT Fundação para a Ciência e a Tecnologia from Portugal. Figure 8. 3D model of the upper-torso model: left, original image; middle, voxel model; right, polygonized model.

5 REFERENCES C. Barrón, I. A. Kakadiaris, Estimating Anthropometry and Pose from a Single Image, IEEE Computer Society Conference on Computer Vision and Pattern Recognition Proceedings, New York: , W. Boehler, G. Heinz, A. Marbs, The potential of non-contact close range laser scanners for cultural heritage recording, XVIII International Symposium of CIPA Proceedings, Working Group VI, Potsdam, Germany, E. Boyer, M.-O. Berger, 3D Surface Reconstruction Using Occluding Contours, International Journal of Computer Vision, 22 (3): , P. S. Heckbert, M. Garland, Survey of Polygonal Simplification Algorithms, Multiresolution Surface Modeling Course, Siggraph Course Notes, ACM Press, New York (25), K. N. Kutulatos, S. M. Steiz, A Theory of Shape by Space Carving, Technical Report TR692, Computer Science Department, University of Rochester, New York, USA, A. Laurentini, The visual hull concept for silhouettebased image understanding, IEEE Transactions on Pattern Analysis and Machine Intelligence, 16 (2): , M. Levoy, K. Pulli, B. Curless, et al., The Digital Michelangelo Project: 3D scanning of large statues, Siggraph 2000, Computer Graphics Proceedings, ACM Press, ACM SIGGRAPH, Addison Wesley: , M. Loper, Archimedes - A Generalized Voxel Coloring Implementation, s_docs/html/main.html, W. E. Lorensen, H. E. Cline, Marching cubes: A high resolution 3D surface construction algorithm, International Conference on Computer Graphics and Interactive Techniques Proceedings, ACM Press, New York, USA, 21 (4): , G. Mori, J. Malik, Recovering 3D Human Body Configurations Using Shape Contexts, IEEE Transactions on Pattern Analysis and Machine Intelligence, 28 (7): , F. Remondino, 3-D Reconstruction of Static Human Body Shape from Image Sequence, Computer Vision and Image Understanding, 93 (1):65-85, C. Rocchini, P. Cignoni, C. Montani, et al., A low cost 3D scanner based on structured light, EURO- GRAPHICS Proceedings, Interlaken, Switzerland, 20 (3): , M. Sainz, N. Bagherzadeh, A. Susin, Carving 3D Models from Uncalibrated Views, Proceedings of the 5th IASTED International Conference Computer Graphics and Imaging, Hawaii, USA: , S. N. Seitz, C. R. Dyer, Photorealistic Scene Reconstruction by Voxel Coloring, Proceedings of the Computer Vision and Pattern Recognition Conference, San Juan, Puerto Rico: , G. Slabaugh, W. B. Culbertson, T. Malzbender, et al., A survey of methods for volumetric scene reconstruction from photographs, International Workshop on Volume Graphics Proceedings, New York, USA:21-22, G. G. Slabaugh, W. B. Culbertson, T. Malzbender, Generalized Voxel Coloring, Workshop on Vision Algorithms Proceedings, Corfu, Greece: , S. K. Srivastava, N. Ahuja, Octree generation from object silhouettes in perspective views, Computer Vision, Graphics and Image Processing, 49:68-84, G. Zeng, M. Lhuillier, L. Quan, Recent Methods for Reconstructing Surfaces from Multiple Images, Lecture Notes in Computer Science, Springer Verlag, 3519: , Z. Zhang, A Flexible New Technique for Camera Calibration, IEEE Transactions on Pattern Analysis and Machine Intelligence, 22 (11): , 2000.

Lecture 8 Active stereo & Volumetric stereo

Lecture 8 Active stereo & Volumetric stereo Lecture 8 Active stereo & Volumetric stereo Active stereo Structured lighting Depth sensing Volumetric stereo: Space carving Shadow carving Voxel coloring Reading: [Szelisky] Chapter 11 Multi-view stereo

More information

PHOTOREALISTIC OBJECT RECONSTRUCTION USING VOXEL COLORING AND ADJUSTED IMAGE ORIENTATIONS INTRODUCTION

PHOTOREALISTIC OBJECT RECONSTRUCTION USING VOXEL COLORING AND ADJUSTED IMAGE ORIENTATIONS INTRODUCTION PHOTOREALISTIC OBJECT RECONSTRUCTION USING VOXEL COLORING AND ADJUSTED IMAGE ORIENTATIONS Yasemin Kuzu, Olaf Sinram Photogrammetry and Cartography Technical University of Berlin Str. des 17 Juni 135, EB

More information

TRACKING FEATURES WITH KALMAN FILTERING, MAHALANOBIS DISTANCE AND A MANAGEMENT MODEL

TRACKING FEATURES WITH KALMAN FILTERING, MAHALANOBIS DISTANCE AND A MANAGEMENT MODEL USNCCM IX, San Francisco, CA, USA, July 22-26 2007 TRACKING FEATURES WITH KALMAN FILTERING, MAHALANOBIS Raquel R. Pinho, Miguel V. Correia, João Manuel R. S. Tavares FEUP Faculdade de Engenharia da Universidade

More information

Automatic Modelling Image Represented Objects Using a Statistic Based Approach

Automatic Modelling Image Represented Objects Using a Statistic Based Approach Automatic Modelling Image Represented Objects Using a Statistic Based Approach Maria João M. Vasconcelos 1, João Manuel R. S. Tavares 1,2 1 FEUP Faculdade de Engenharia da Universidade do Porto 2 LOME

More information

Lecture 8 Active stereo & Volumetric stereo

Lecture 8 Active stereo & Volumetric stereo Lecture 8 Active stereo & Volumetric stereo In this lecture, we ll first discuss another framework for describing stereo systems called active stereo, and then introduce the problem of volumetric stereo,

More information

Volumetric Scene Reconstruction from Multiple Views

Volumetric Scene Reconstruction from Multiple Views Volumetric Scene Reconstruction from Multiple Views Chuck Dyer University of Wisconsin dyer@cs cs.wisc.edu www.cs cs.wisc.edu/~dyer Image-Based Scene Reconstruction Goal Automatic construction of photo-realistic

More information

Ray casting for incremental voxel colouring

Ray casting for incremental voxel colouring Ray casting for incremental voxel colouring O.W. Batchelor, R. Mukundan, R. Green University of Canterbury, Dept. Computer Science& Software Engineering. Email: {owb13, mukund@cosc.canterbury.ac.nz, richard.green@canterbury.ac.nz

More information

Some books on linear algebra

Some books on linear algebra Some books on linear algebra Finite Dimensional Vector Spaces, Paul R. Halmos, 1947 Linear Algebra, Serge Lang, 2004 Linear Algebra and its Applications, Gilbert Strang, 1988 Matrix Computation, Gene H.

More information

Multiple View Geometry

Multiple View Geometry Multiple View Geometry Martin Quinn with a lot of slides stolen from Steve Seitz and Jianbo Shi 15-463: Computational Photography Alexei Efros, CMU, Fall 2007 Our Goal The Plenoptic Function P(θ,φ,λ,t,V

More information

EECS 442 Computer vision. Announcements

EECS 442 Computer vision. Announcements EECS 442 Computer vision Announcements Midterm released after class (at 5pm) You ll have 46 hours to solve it. it s take home; you can use your notes and the books no internet must work on it individually

More information

Multiview Reconstruction

Multiview Reconstruction Multiview Reconstruction Why More Than 2 Views? Baseline Too short low accuracy Too long matching becomes hard Why More Than 2 Views? Ambiguity with 2 views Camera 1 Camera 2 Camera 3 Trinocular Stereo

More information

Freehand Voxel Carving Scanning on a Mobile Device

Freehand Voxel Carving Scanning on a Mobile Device Technion Institute of Technology Project in Image Processing and Analysis 234329 Freehand Voxel Carving Scanning on a Mobile Device Author: Student Number: 305950099 Supervisors: Aaron Wetzler, Yaron Honen,

More information

Image Based Reconstruction II

Image Based Reconstruction II Image Based Reconstruction II Qixing Huang Feb. 2 th 2017 Slide Credit: Yasutaka Furukawa Image-Based Geometry Reconstruction Pipeline Last Lecture: Multi-View SFM Multi-View SFM This Lecture: Multi-View

More information

COMPARISON OF PHOTOCONSISTENCY MEASURES USED IN VOXEL COLORING

COMPARISON OF PHOTOCONSISTENCY MEASURES USED IN VOXEL COLORING COMPARISON OF PHOTOCONSISTENCY MEASURES USED IN VOXEL COLORING Oğuz Özün a, Ulaş Yılmaz b, Volkan Atalay a a Department of Computer Engineering, Middle East Technical University, Turkey oguz, volkan@ceng.metu.edu.tr

More information

Department of Computer Engineering, Middle East Technical University, Ankara, Turkey, TR-06531

Department of Computer Engineering, Middle East Technical University, Ankara, Turkey, TR-06531 INEXPENSIVE AND ROBUST 3D MODEL ACQUISITION SYSTEM FOR THREE-DIMENSIONAL MODELING OF SMALL ARTIFACTS Ulaş Yılmaz, Oğuz Özün, Burçak Otlu, Adem Mulayim, Volkan Atalay {ulas, oguz, burcak, adem, volkan}@ceng.metu.edu.tr

More information

Multi-View 3D-Reconstruction

Multi-View 3D-Reconstruction Multi-View 3D-Reconstruction Cedric Cagniart Computer Aided Medical Procedures (CAMP) Technische Universität München, Germany 1 Problem Statement Given several calibrated views of an object... can we automatically

More information

VOLUMETRIC MODEL REFINEMENT BY SHELL CARVING

VOLUMETRIC MODEL REFINEMENT BY SHELL CARVING VOLUMETRIC MODEL REFINEMENT BY SHELL CARVING Y. Kuzu a, O. Sinram b a Yıldız Technical University, Department of Geodesy and Photogrammetry Engineering 34349 Beşiktaş Istanbul, Turkey - kuzu@yildiz.edu.tr

More information

Modeling, Combining, and Rendering Dynamic Real-World Events From Image Sequences

Modeling, Combining, and Rendering Dynamic Real-World Events From Image Sequences Modeling, Combining, and Rendering Dynamic Real-World Events From Image s Sundar Vedula, Peter Rander, Hideo Saito, and Takeo Kanade The Robotics Institute Carnegie Mellon University Abstract Virtualized

More information

BIL Computer Vision Apr 16, 2014

BIL Computer Vision Apr 16, 2014 BIL 719 - Computer Vision Apr 16, 2014 Binocular Stereo (cont d.), Structure from Motion Aykut Erdem Dept. of Computer Engineering Hacettepe University Slide credit: S. Lazebnik Basic stereo matching algorithm

More information

Multi-view stereo. Many slides adapted from S. Seitz

Multi-view stereo. Many slides adapted from S. Seitz Multi-view stereo Many slides adapted from S. Seitz Beyond two-view stereo The third eye can be used for verification Multiple-baseline stereo Pick a reference image, and slide the corresponding window

More information

A Statistical Consistency Check for the Space Carving Algorithm.

A Statistical Consistency Check for the Space Carving Algorithm. A Statistical Consistency Check for the Space Carving Algorithm. A. Broadhurst and R. Cipolla Dept. of Engineering, Univ. of Cambridge, Cambridge, CB2 1PZ aeb29 cipolla @eng.cam.ac.uk Abstract This paper

More information

3-D Shape Reconstruction from Light Fields Using Voxel Back-Projection

3-D Shape Reconstruction from Light Fields Using Voxel Back-Projection 3-D Shape Reconstruction from Light Fields Using Voxel Back-Projection Peter Eisert, Eckehard Steinbach, and Bernd Girod Telecommunications Laboratory, University of Erlangen-Nuremberg Cauerstrasse 7,

More information

3D Dynamic Scene Reconstruction from Multi-View Image Sequences

3D Dynamic Scene Reconstruction from Multi-View Image Sequences 3D Dynamic Scene Reconstruction from Multi-View Image Sequences PhD Confirmation Report Carlos Leung Supervisor : A/Prof Brian Lovell (University Of Queensland) Dr. Changming Sun (CSIRO Mathematical and

More information

A Study of Medical Image Analysis System

A Study of Medical Image Analysis System Indian Journal of Science and Technology, Vol 8(25), DOI: 10.17485/ijst/2015/v8i25/80492, October 2015 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 A Study of Medical Image Analysis System Kim Tae-Eun

More information

Algorithm of dynamic programming for optimization. defined by ordered points

Algorithm of dynamic programming for optimization. defined by ordered points Algorithm of dynamic programming for optimization of the global matching between two contours defined by ordered points Francisco P. M. Oliveira, i João Manuel R. S. Tavares tavares@fe.up.pt www.fe.up.pt/~tavares

More information

Some books on linear algebra

Some books on linear algebra Some books on linear algebra Finite Dimensional Vector Spaces, Paul R. Halmos, 1947 Linear Algebra, Serge Lang, 2004 Linear Algebra and its Applications, Gilbert Strang, 1988 Matrix Computation, Gene H.

More information

3D Surface Reconstruction from 2D Multiview Images using Voxel Mapping

3D Surface Reconstruction from 2D Multiview Images using Voxel Mapping 74 3D Surface Reconstruction from 2D Multiview Images using Voxel Mapping 1 Tushar Jadhav, 2 Kulbir Singh, 3 Aditya Abhyankar 1 Research scholar, 2 Professor, 3 Dean 1 Department of Electronics & Telecommunication,Thapar

More information

Volumetric Warping for Voxel Coloring on an Infinite Domain Gregory G. Slabaugh Λ Thomas Malzbender, W. Bruce Culbertson y School of Electrical and Co

Volumetric Warping for Voxel Coloring on an Infinite Domain Gregory G. Slabaugh Λ Thomas Malzbender, W. Bruce Culbertson y School of Electrical and Co Volumetric Warping for Voxel Coloring on an Infinite Domain Gregory G. Slabaugh Λ Thomas Malzbender, W. Bruce Culbertson y School of Electrical and Comp. Engineering Client and Media Systems Lab Georgia

More information

Human motion analysis: methodologies and applications

Human motion analysis: methodologies and applications Human motion analysis: methodologies and applications Maria João M. Vasconcelos, João Manuel R. S. Tavares maria.vasconcelos@fe.up.pt CMBBE 2008 8th International Symposium on Computer Methods in Biomechanics

More information

Image-Based Modeling and Rendering. Image-Based Modeling and Rendering. Final projects IBMR. What we have learnt so far. What IBMR is about

Image-Based Modeling and Rendering. Image-Based Modeling and Rendering. Final projects IBMR. What we have learnt so far. What IBMR is about Image-Based Modeling and Rendering Image-Based Modeling and Rendering MIT EECS 6.837 Frédo Durand and Seth Teller 1 Some slides courtesy of Leonard McMillan, Wojciech Matusik, Byong Mok Oh, Max Chen 2

More information

Project Updates Short lecture Volumetric Modeling +2 papers

Project Updates Short lecture Volumetric Modeling +2 papers Volumetric Modeling Schedule (tentative) Feb 20 Feb 27 Mar 5 Introduction Lecture: Geometry, Camera Model, Calibration Lecture: Features, Tracking/Matching Mar 12 Mar 19 Mar 26 Apr 2 Apr 9 Apr 16 Apr 23

More information

Multi-View Image Coding in 3-D Space Based on 3-D Reconstruction

Multi-View Image Coding in 3-D Space Based on 3-D Reconstruction Multi-View Image Coding in 3-D Space Based on 3-D Reconstruction Yongying Gao and Hayder Radha Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48823 email:

More information

Shape from Silhouettes I

Shape from Silhouettes I Shape from Silhouettes I Guido Gerig CS 6320, Spring 2013 Credits: Marc Pollefeys, UNC Chapel Hill, some of the figures and slides are also adapted from J.S. Franco, J. Matusik s presentations, and referenced

More information

Recap from Previous Lecture

Recap from Previous Lecture Recap from Previous Lecture Tone Mapping Preserve local contrast or detail at the expense of large scale contrast. Changing the brightness within objects or surfaces unequally leads to halos. We are now

More information

ENGN D Photography / Spring 2018 / SYLLABUS

ENGN D Photography / Spring 2018 / SYLLABUS ENGN 2502 3D Photography / Spring 2018 / SYLLABUS Description of the proposed course Over the last decade digital photography has entered the mainstream with inexpensive, miniaturized cameras routinely

More information

Projective Surface Refinement for Free-Viewpoint Video

Projective Surface Refinement for Free-Viewpoint Video Projective Surface Refinement for Free-Viewpoint Video Gregor Miller, Jonathan Starck and Adrian Hilton Centre for Vision, Speech and Signal Processing, University of Surrey, UK {Gregor.Miller, J.Starck,

More information

Foundations of Image Understanding, L. S. Davis, ed., c Kluwer, Boston, 2001, pp

Foundations of Image Understanding, L. S. Davis, ed., c Kluwer, Boston, 2001, pp Foundations of Image Understanding, L. S. Davis, ed., c Kluwer, Boston, 2001, pp. 469-489. Chapter 16 VOLUMETRIC SCENE RECONSTRUCTION FROM MULTIPLE VIEWS Charles R. Dyer, University of Wisconsin Abstract

More information

Surface Model Reconstruction of 3D Objects From Multiple Views

Surface Model Reconstruction of 3D Objects From Multiple Views Surface Model Reconstruction of 3D Objects From Multiple Views Vincenzo Lippiello and Fabio Ruggiero Abstract A points surface reconstruction algorithm of 3D object models from multiple silhouettes is

More information

Epipolar Geometry in Stereo, Motion and Object Recognition

Epipolar Geometry in Stereo, Motion and Object Recognition Epipolar Geometry in Stereo, Motion and Object Recognition A Unified Approach by GangXu Department of Computer Science, Ritsumeikan University, Kusatsu, Japan and Zhengyou Zhang INRIA Sophia-Antipolis,

More information

Stereo. 11/02/2012 CS129, Brown James Hays. Slides by Kristen Grauman

Stereo. 11/02/2012 CS129, Brown James Hays. Slides by Kristen Grauman Stereo 11/02/2012 CS129, Brown James Hays Slides by Kristen Grauman Multiple views Multi-view geometry, matching, invariant features, stereo vision Lowe Hartley and Zisserman Why multiple views? Structure

More information

Stereo vision. Many slides adapted from Steve Seitz

Stereo vision. Many slides adapted from Steve Seitz Stereo vision Many slides adapted from Steve Seitz What is stereo vision? Generic problem formulation: given several images of the same object or scene, compute a representation of its 3D shape What is

More information

Space carving with a hand-held camera

Space carving with a hand-held camera Space carving with a hand-held camera Anselmo Antunes Montenegro, Paulo C. P. Carvalho, Luiz Velho IMPA Instituto Nacional de Matemática Pura e Aplicada Estrada Dona Castorina, 110, 22460-320 Rio de Janeiro,

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 12 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

Dense 3D Reconstruction. Christiano Gava

Dense 3D Reconstruction. Christiano Gava Dense 3D Reconstruction Christiano Gava christiano.gava@dfki.de Outline Previous lecture: structure and motion II Structure and motion loop Triangulation Today: dense 3D reconstruction The matching problem

More information

Stereo Image Rectification for Simple Panoramic Image Generation

Stereo Image Rectification for Simple Panoramic Image Generation Stereo Image Rectification for Simple Panoramic Image Generation Yun-Suk Kang and Yo-Sung Ho Gwangju Institute of Science and Technology (GIST) 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 Korea Email:{yunsuk,

More information

Efficient View-Dependent Sampling of Visual Hulls

Efficient View-Dependent Sampling of Visual Hulls Efficient View-Dependent Sampling of Visual Hulls Wojciech Matusik Chris Buehler Leonard McMillan Computer Graphics Group MIT Laboratory for Computer Science Cambridge, MA 02141 Abstract In this paper

More information

MERGING POINT CLOUDS FROM MULTIPLE KINECTS. Nishant Rai 13th July, 2016 CARIS Lab University of British Columbia

MERGING POINT CLOUDS FROM MULTIPLE KINECTS. Nishant Rai 13th July, 2016 CARIS Lab University of British Columbia MERGING POINT CLOUDS FROM MULTIPLE KINECTS Nishant Rai 13th July, 2016 CARIS Lab University of British Columbia Introduction What do we want to do? : Use information (point clouds) from multiple (2+) Kinects

More information

Appearance-Based Virtual View Generation From Multicamera Videos Captured in the 3-D Room

Appearance-Based Virtual View Generation From Multicamera Videos Captured in the 3-D Room IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 5, NO. 3, SEPTEMBER 2003 303 Appearance-Based Virtual View Generation From Multicamera Videos Captured in the 3-D Room Hideo Saito, Member, IEEE, Shigeyuki Baba, and

More information

Shape from Silhouettes I

Shape from Silhouettes I Shape from Silhouettes I Guido Gerig CS 6320, Spring 2015 Credits: Marc Pollefeys, UNC Chapel Hill, some of the figures and slides are also adapted from J.S. Franco, J. Matusik s presentations, and referenced

More information

Surround Structured Lighting for Full Object Scanning

Surround Structured Lighting for Full Object Scanning Surround Structured Lighting for Full Object Scanning Douglas Lanman, Daniel Crispell, and Gabriel Taubin Brown University, Dept. of Engineering August 21, 2007 1 Outline Introduction and Related Work

More information

Lecture 10: Multi view geometry

Lecture 10: Multi view geometry Lecture 10: Multi view geometry Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Stereo vision Correspondence problem (Problem Set 2 (Q3)) Active stereo vision systems Structure from

More information

Shape from Silhouettes I CV book Szelisky

Shape from Silhouettes I CV book Szelisky Shape from Silhouettes I CV book Szelisky 11.6.2 Guido Gerig CS 6320, Spring 2012 (slides modified from Marc Pollefeys UNC Chapel Hill, some of the figures and slides are adapted from M. Pollefeys, J.S.

More information

Introduction to 3D Machine Vision

Introduction to 3D Machine Vision Introduction to 3D Machine Vision 1 Many methods for 3D machine vision Use Triangulation (Geometry) to Determine the Depth of an Object By Different Methods: Single Line Laser Scan Stereo Triangulation

More information

3D Models from Range Sensors. Gianpaolo Palma

3D Models from Range Sensors. Gianpaolo Palma 3D Models from Range Sensors Gianpaolo Palma Who Gianpaolo Palma Researcher at Visual Computing Laboratory (ISTI-CNR) Expertise: 3D scanning, Mesh Processing, Computer Graphics E-mail: gianpaolo.palma@isti.cnr.it

More information

A BENCHMARK DATASET FOR PERFORMANCE EVALUATION OF SHAPE-FROM-X ALGORITHMS

A BENCHMARK DATASET FOR PERFORMANCE EVALUATION OF SHAPE-FROM-X ALGORITHMS A BENCHMARK DATASET FOR PERFORMANCE EVALUATION OF SHAPE-FROM-X ALGORITHMS Bellmann Anke, Hellwich Olaf, Rodehorst Volker, Yilmaz Ulas Berlin University of Technology, Sekr. 3-1, Franklinstr. 28/29, 10587

More information

3D Sensing and Reconstruction Readings: Ch 12: , Ch 13: ,

3D Sensing and Reconstruction Readings: Ch 12: , Ch 13: , 3D Sensing and Reconstruction Readings: Ch 12: 12.5-6, Ch 13: 13.1-3, 13.9.4 Perspective Geometry Camera Model Stereo Triangulation 3D Reconstruction by Space Carving 3D Shape from X means getting 3D coordinates

More information

Outline. ETN-FPI Training School on Plenoptic Sensing

Outline. ETN-FPI Training School on Plenoptic Sensing Outline Introduction Part I: Basics of Mathematical Optimization Linear Least Squares Nonlinear Optimization Part II: Basics of Computer Vision Camera Model Multi-Camera Model Multi-Camera Calibration

More information

Computing Surface-based Photo-Consistency on Graphics Hardware

Computing Surface-based Photo-Consistency on Graphics Hardware Computing Surface-based Photo-Consistency on Graphics Hardware J. W. Bastian and A. J. van den Hengel The University of Adelaide, Adelaide, South Australia Centre for Sensor Signal and Information Processing,

More information

3D Sensing. 3D Shape from X. Perspective Geometry. Camera Model. Camera Calibration. General Stereo Triangulation.

3D Sensing. 3D Shape from X. Perspective Geometry. Camera Model. Camera Calibration. General Stereo Triangulation. 3D Sensing 3D Shape from X Perspective Geometry Camera Model Camera Calibration General Stereo Triangulation 3D Reconstruction 3D Shape from X shading silhouette texture stereo light striping motion mainly

More information

Image Transformations & Camera Calibration. Mašinska vizija, 2018.

Image Transformations & Camera Calibration. Mašinska vizija, 2018. Image Transformations & Camera Calibration Mašinska vizija, 2018. Image transformations What ve we learnt so far? Example 1 resize and rotate Open warp_affine_template.cpp Perform simple resize

More information

Shape-from-Silhouette with Two Mirrors and an Uncalibrated Camera

Shape-from-Silhouette with Two Mirrors and an Uncalibrated Camera Shape-from-Silhouette with Two Mirrors and an Uncalibrated Camera Keith Forbes 1, Fred Nicolls 1, Gerhard de Jager 1, and Anthon Voigt 2 1 Department of Electrical Engineering, University of Cape Town,

More information

3D Digitization of a Hand-held Object with a Wearable Vision Sensor

3D Digitization of a Hand-held Object with a Wearable Vision Sensor 3D Digitization of a Hand-held Object with a Wearable Vision Sensor Sotaro TSUKIZAWA, Kazuhiko SUMI, and Takashi MATSUYAMA tsucky@vision.kuee.kyoto-u.ac.jp sumi@vision.kuee.kyoto-u.ac.jp tm@i.kyoto-u.ac.jp

More information

An Efficient Visual Hull Computation Algorithm

An Efficient Visual Hull Computation Algorithm An Efficient Visual Hull Computation Algorithm Wojciech Matusik Chris Buehler Leonard McMillan Laboratory for Computer Science Massachusetts institute of Technology (wojciech, cbuehler, mcmillan)@graphics.lcs.mit.edu

More information

Acquisition and Visualization of Colored 3D Objects

Acquisition and Visualization of Colored 3D Objects Acquisition and Visualization of Colored 3D Objects Kari Pulli Stanford University Stanford, CA, U.S.A kapu@cs.stanford.edu Habib Abi-Rached, Tom Duchamp, Linda G. Shapiro and Werner Stuetzle University

More information

A Desktop 3D Scanner Exploiting Rotation and Visual Rectification of Laser Profiles

A Desktop 3D Scanner Exploiting Rotation and Visual Rectification of Laser Profiles A Desktop 3D Scanner Exploiting Rotation and Visual Rectification of Laser Profiles Carlo Colombo, Dario Comanducci, and Alberto Del Bimbo Dipartimento di Sistemi ed Informatica Via S. Marta 3, I-5139

More information

What Do N Photographs Tell Us About 3D Shape?

What Do N Photographs Tell Us About 3D Shape? What Do N Photographs Tell Us About 3D Shape? Kiriakos N. Kutulakos kyros@cs.rochester.edu Steven M. Seitz sseitz@microsoft.com Abstract In this paper we consider the problem of computing the 3D shape

More information

3-Dimensional Object Modeling with Mesh Simplification Based Resolution Adjustment

3-Dimensional Object Modeling with Mesh Simplification Based Resolution Adjustment 3-Dimensional Object Modeling with Mesh Simplification Based Resolution Adjustment Özgür ULUCAY Sarp ERTÜRK University of Kocaeli Electronics & Communication Engineering Department 41040 Izmit, Kocaeli

More information

Project 3 code & artifact due Tuesday Final project proposals due noon Wed (by ) Readings Szeliski, Chapter 10 (through 10.5)

Project 3 code & artifact due Tuesday Final project proposals due noon Wed (by  ) Readings Szeliski, Chapter 10 (through 10.5) Announcements Project 3 code & artifact due Tuesday Final project proposals due noon Wed (by email) One-page writeup (from project web page), specifying:» Your team members» Project goals. Be specific.

More information

Polyhedral Visual Hulls for Real-Time Rendering

Polyhedral Visual Hulls for Real-Time Rendering Polyhedral Visual Hulls for Real-Time Rendering Wojciech Matusik Chris Buehler Leonard McMillan MIT Laboratory for Computer Science Abstract. We present new algorithms for creating and rendering visual

More information

Dense 3D Reconstruction. Christiano Gava

Dense 3D Reconstruction. Christiano Gava Dense 3D Reconstruction Christiano Gava christiano.gava@dfki.de Outline Previous lecture: structure and motion II Structure and motion loop Triangulation Wide baseline matching (SIFT) Today: dense 3D reconstruction

More information

Incremental Voxel Colouring by Ray Traversal

Incremental Voxel Colouring by Ray Traversal Incremental Voxel Colouring by Ray Traversal O. Batchelor, R. Mukundan, R. Green University of Canterbury, Dept. Computer Science& Software Engineering. owb13@student.canterbury.ac.nz, {Mukundan, Richard.Green@canterbury.ac.nz

More information

arxiv: v1 [cs.cv] 28 Sep 2018

arxiv: v1 [cs.cv] 28 Sep 2018 Camera Pose Estimation from Sequence of Calibrated Images arxiv:1809.11066v1 [cs.cv] 28 Sep 2018 Jacek Komorowski 1 and Przemyslaw Rokita 2 1 Maria Curie-Sklodowska University, Institute of Computer Science,

More information

Shape Reconstruction of Human Foot from Multi-camera Images Based on PCA of Human Shape Database

Shape Reconstruction of Human Foot from Multi-camera Images Based on PCA of Human Shape Database Shape Reconstruction of Human Foot from Multi-camera Images Based on PCA of Human Shape Database Jiahui Wang, Hideo Saito Department of Information and Computer Science, Keio University, Japan wjh, saito@ozawa.ics.keio.ac.jp

More information

5LSH0 Advanced Topics Video & Analysis

5LSH0 Advanced Topics Video & Analysis 1 Multiview 3D video / Outline 2 Advanced Topics Multimedia Video (5LSH0), Module 02 3D Geometry, 3D Multiview Video Coding & Rendering Peter H.N. de With, Sveta Zinger & Y. Morvan ( p.h.n.de.with@tue.nl

More information

Rate-distortion Optimized Progressive 3D Reconstruction from Multi-view Images

Rate-distortion Optimized Progressive 3D Reconstruction from Multi-view Images Rate-distortion Optimized Progressive 3D Reconstruction from Multi-view Images Viet Nam Nghiem, Jianfei Cai, Jianmin Zheng School of Computer Engineering Nanyang Technological University, Singapore Email:

More information

3D Reconstruction using Voxel Coloring. Koen van de Sande and Rein van den Boomgaard Informatics Institute University of Amsterdam The Netherlands

3D Reconstruction using Voxel Coloring. Koen van de Sande and Rein van den Boomgaard Informatics Institute University of Amsterdam The Netherlands 3D Reconstruction using Voxel Coloring Koen van de Sande and Rein van den Boomgaard Informatics Institute University of Amsterdam The Netherlands October 9, 2004 Introduction During a Bachelors project

More information

Today. Stereo (two view) reconstruction. Multiview geometry. Today. Multiview geometry. Computational Photography

Today. Stereo (two view) reconstruction. Multiview geometry. Today. Multiview geometry. Computational Photography Computational Photography Matthias Zwicker University of Bern Fall 2009 Today From 2D to 3D using multiple views Introduction Geometry of two views Stereo matching Other applications Multiview geometry

More information

PERFORMANCE CAPTURE FROM SPARSE MULTI-VIEW VIDEO

PERFORMANCE CAPTURE FROM SPARSE MULTI-VIEW VIDEO Stefan Krauß, Juliane Hüttl SE, SoSe 2011, HU-Berlin PERFORMANCE CAPTURE FROM SPARSE MULTI-VIEW VIDEO 1 Uses of Motion/Performance Capture movies games, virtual environments biomechanics, sports science,

More information

Interactive Free-Viewpoint Video

Interactive Free-Viewpoint Video Interactive Free-Viewpoint Video Gregor Miller, Adrian Hilton and Jonathan Starck Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH, UK {gregor.miller, a.hilton,

More information

Computer Vision / Computer Graphics Collaboration for Model-based Imaging, Rendering, image Analysis and Graphical special Effects

Computer Vision / Computer Graphics Collaboration for Model-based Imaging, Rendering, image Analysis and Graphical special Effects Mirage 2003 Proceedings Computer Vision / Computer Graphics Collaboration for Model-based Imaging, Rendering, image Analysis and Graphical special Effects INRIA Rocquencourt, France, March, 10-11 2003

More information

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Structured Light II Johannes Köhler Johannes.koehler@dfki.de Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Introduction Previous lecture: Structured Light I Active Scanning Camera/emitter

More information

Passive 3D Photography

Passive 3D Photography SIGGRAPH 2000 Course on 3D Photography Passive 3D Photography Steve Seitz Carnegie Mellon University University of Washington http://www.cs cs.cmu.edu/~ /~seitz Visual Cues Shading Merle Norman Cosmetics,

More information

Novel view image synthesis based on photo-consistent 3D model deformation

Novel view image synthesis based on photo-consistent 3D model deformation 316 Int. J. Computational Science and Engineering, Vol. 8, No. 4, 2013 Novel view image synthesis based on photo-consistent 3D model deformation Meng-Hsuan Chia, Chien-Hsing He and Huei-Yung Lin* Department

More information

Flexible Calibration of a Portable Structured Light System through Surface Plane

Flexible Calibration of a Portable Structured Light System through Surface Plane Vol. 34, No. 11 ACTA AUTOMATICA SINICA November, 2008 Flexible Calibration of a Portable Structured Light System through Surface Plane GAO Wei 1 WANG Liang 1 HU Zhan-Yi 1 Abstract For a portable structured

More information

A Probabilistic Framework for Surface Reconstruction from Multiple Images

A Probabilistic Framework for Surface Reconstruction from Multiple Images A Probabilistic Framework for Surface Reconstruction from Multiple Images Motilal Agrawal and Larry S. Davis Department of Computer Science, University of Maryland, College Park, MD 20742, USA email:{mla,lsd}@umiacs.umd.edu

More information

Body Trunk Shape Estimation from Silhouettes by Using Homologous Human Body Model

Body Trunk Shape Estimation from Silhouettes by Using Homologous Human Body Model Body Trunk Shape Estimation from Silhouettes by Using Homologous Human Body Model Shunta Saito* a, Makiko Kochi b, Masaaki Mochimaru b, Yoshimitsu Aoki a a Keio University, Yokohama, Kanagawa, Japan; b

More information

Virtual Reality Model of Koumokuten Generated from Measurement

Virtual Reality Model of Koumokuten Generated from Measurement Virtual Reality Model of Koumokuten Generated from Measurement Hiroki UNTEN Graduate School of Information Science and Technology The University of Tokyo unten@cvl.iis.u-tokyo.ac.jp Katsushi IKEUCHI Graduate

More information

calibrated coordinates Linear transformation pixel coordinates

calibrated coordinates Linear transformation pixel coordinates 1 calibrated coordinates Linear transformation pixel coordinates 2 Calibration with a rig Uncalibrated epipolar geometry Ambiguities in image formation Stratified reconstruction Autocalibration with partial

More information

3D Reconstruction Using Labeled Image Regions

3D Reconstruction Using Labeled Image Regions 3D Reconstruction Using Labeled Image Regions The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Ziegler, Remo, Wojciech

More information

Dynamic 3D Shape From Multi-viewpoint Images Using Deformable Mesh Model

Dynamic 3D Shape From Multi-viewpoint Images Using Deformable Mesh Model Dynamic 3D Shape From Multi-viewpoint Images Using Deformable Mesh Model Shohei Nobuhara Takashi Matsuyama Graduate School of Informatics, Kyoto University Sakyo, Kyoto, 606-8501, Japan {nob, tm}@vision.kuee.kyoto-u.ac.jp

More information

Image-Based Rendering

Image-Based Rendering Image-Based Rendering COS 526, Fall 2016 Thomas Funkhouser Acknowledgments: Dan Aliaga, Marc Levoy, Szymon Rusinkiewicz What is Image-Based Rendering? Definition 1: the use of photographic imagery to overcome

More information

Prof. Trevor Darrell Lecture 18: Multiview and Photometric Stereo

Prof. Trevor Darrell Lecture 18: Multiview and Photometric Stereo C280, Computer Vision Prof. Trevor Darrell trevor@eecs.berkeley.edu Lecture 18: Multiview and Photometric Stereo Today Multiview stereo revisited Shape from large image collections Voxel Coloring Digital

More information

Real-time surface tracking with uncoded structured light

Real-time surface tracking with uncoded structured light Real-time surface tracking with uncoded structured light Willie Brink Council for Scientific and Industrial Research, South Africa wbrink@csircoza Abstract A technique for tracking the orientation and

More information

A Review of Image- based Rendering Techniques Nisha 1, Vijaya Goel 2 1 Department of computer science, University of Delhi, Delhi, India

A Review of Image- based Rendering Techniques Nisha 1, Vijaya Goel 2 1 Department of computer science, University of Delhi, Delhi, India A Review of Image- based Rendering Techniques Nisha 1, Vijaya Goel 2 1 Department of computer science, University of Delhi, Delhi, India Keshav Mahavidyalaya, University of Delhi, Delhi, India Abstract

More information

Multi-View Stereo for Static and Dynamic Scenes

Multi-View Stereo for Static and Dynamic Scenes Multi-View Stereo for Static and Dynamic Scenes Wolfgang Burgard Jan 6, 2010 Main references Yasutaka Furukawa and Jean Ponce, Accurate, Dense and Robust Multi-View Stereopsis, 2007 C.L. Zitnick, S.B.

More information

Geometric Reconstruction Dense reconstruction of scene geometry

Geometric Reconstruction Dense reconstruction of scene geometry Lecture 5. Dense Reconstruction and Tracking with Real-Time Applications Part 2: Geometric Reconstruction Dr Richard Newcombe and Dr Steven Lovegrove Slide content developed from: [Newcombe, Dense Visual

More information

Surround Structured Lighting for Full Object Scanning

Surround Structured Lighting for Full Object Scanning Surround Structured Lighting for Full Object Scanning Douglas Lanman, Daniel Crispell, and Gabriel Taubin Department of Engineering, Brown University {dlanman,daniel crispell,taubin}@brown.edu Abstract

More information

Shape from the Light Field Boundary

Shape from the Light Field Boundary Appears in: Proc. CVPR'97, pp.53-59, 997. Shape from the Light Field Boundary Kiriakos N. Kutulakos kyros@cs.rochester.edu Department of Computer Sciences University of Rochester Rochester, NY 4627-226

More information

PHOTOGRAMMETRIC TECHNIQUE FOR TEETH OCCLUSION ANALYSIS IN DENTISTRY

PHOTOGRAMMETRIC TECHNIQUE FOR TEETH OCCLUSION ANALYSIS IN DENTISTRY PHOTOGRAMMETRIC TECHNIQUE FOR TEETH OCCLUSION ANALYSIS IN DENTISTRY V. A. Knyaz a, *, S. Yu. Zheltov a, a State Research Institute of Aviation System (GosNIIAS), 539 Moscow, Russia (knyaz,zhl)@gosniias.ru

More information

Image Based Rendering. D.A. Forsyth, with slides from John Hart

Image Based Rendering. D.A. Forsyth, with slides from John Hart Image Based Rendering D.A. Forsyth, with slides from John Hart Topics Mosaics translating cameras reveal extra information, break occlusion Optical flow for very small movements of the camera Explicit

More information