Non-Uniform Recursive Doo-Sabin Surfaces (NURDSes)

Size: px
Start display at page:

Download "Non-Uniform Recursive Doo-Sabin Surfaces (NURDSes)"

Transcription

1 Non-Uniform Recursive Doo-Sabin Surfaces Zhangjin Huang 1 Guoping Wang 2 1 University of Science and Technology of China 2 Peking University, China SIAM Conference on Geometric and Physical Modeling

2 Doo-Sabin Surfaces Generalization of uniform biquadratic B-spline surfaces to meshes of arbitrary topology [Doo and Sabin 1978]. Limit point rule: For an n-sided face, its centroid is the limit position of its associated extraordinary point. The extraordinary points are at the "centers" of n-sided faces. Convergence: The Doo-Sabin refinement is convergent for extraordinary points with arbitrary valence.

3 Quadratic NURSSes Generalization of non-uniform biquadratic B-spline surfaces to meshes of arbitrary topology [Sederberg et al. 1998]. No closed form limit point rules. Converge for n-sided faces with n 12, but may diverge if n > 12 [Qin et al. 1998].

4 Doo-Sabin Subdivision n 1 P i = w ij P j, i = 0,..., n 1. j=0 Doo-Sabin version [Doo and Sabin 1978], extended to quadratic NURSS: w ij = { n+5 4n, i = j 3+2 cos(2π(i j)/n) 4n, i j Catmull-Clark variant [Catmull and Clark 1978]: n, i j = 0 1 w ij = n, i j = 1, i j > 1 1 4n

5 Catmull-Clark Variant of Doo-Sabin Subdivision Repeated averaging [Stam 2001, Zorin and Schröder 2001]: Linear subdivision: Dual averaging: E i = 1 2 (P i + P i+1 ), P i = 1 4 (P i + E i 1 + E i + F) F = 1 n n 1 P j j=0 = ( n )P i + ( n )(P i+1 + P i 1 ) + 1 4n P j. Non-Uniform Recursive Doo-Sabin Surfaces i j >1(NURDSes)

6 Non-uniform Quadratic B-spline Subdivision Non-uniform Quadratic B-spline Curves For a quadratic B-spline curve, a knot interval d i is assigned to each control point P i. A knot interval is the difference between two adjacent knots in the knot vector, i.e., the parameter length of a B-spline curve segment.

7 Non-uniform Quadratic B-spline Subdivision Non-uniform Quadratic B-spline Subdivision Refinement rules Repeated averaging: Non-uniform linear subdivision: Averaging: E i = d i+1p i + d i P i+1 d i + d i+1 Q 2i = 1 2 (P i + E i ) == (d i + 2d i+1 )P i + d i P i+1 2(d i + d i+1 ) Q 2i+1 = 1 2 (P i+1 + E i ) = d i+1p i + (2d i + d i+1 )P i+1. 2(d i + d i+1 )

8 Non-uniform Quadratic B-spline Subdivision Non-uniform Biquadratic B-spline Surfaces A horizonal knot interval d i and a vertical knot interval e j is assigned to each control point P i,j, as each control point corresponds to a biquadratic surface patch.

9 Non-uniform Quadratic B-spline Subdivision Non-uniform Biquadratic B-spline Subdivision Refinement rules Repeated averaging: Non-uniform linear subdivision: E 1 = d i+1p i,j + d i P i+1,j d i + d i+1, E 2 = e j+1p i,j + e j P i,j+1 e j + e j+1 F = e j+1(d i+1 P i,j + d i P i+1,j ) + e j (d i+1 P i,j+1 + d i P i+1,j+1 ) (d i + d i+1 )(e j + e j+1 ) Dual averaging: Q 2i,2j = 1 4 (P i,j + E 1 + E 2 + F)

10 Non-uniform Doo-Sabin Surfaces Each vertex is assigned a knot interval (possibly different) for each edge incident to it. After subdivision, new knot intervals d ij k can be specified as follows: d i,i+1 0 = d 1 i,i 1 = d0 i,i+1. d i,i 1 0 = d i,i+1 1 = di,i 1 0

11 Non-uniform Recursive Doo-Sabin Surfaces Refinement rules Repeated averaging: Non-uniform linear subdivision: p i = d 0 i,i+1, q i = d 0 i,i 1 E i = q i+1p i + p i P i+1 p i + q i+1 n 1 F = c j P j j=0 Dual averaging: P i = 1 4 (P i + E i 1 + E i + F)

12 Non-uniform Recursive Doo-Sabin Surfaces Coefficients c j Similarly to that in the Catmull-Clark variant of Doo-Sabin subdivision and non-uniform biquadratic B-spline subdivision, the face point F is the (weighted) centroid of the corresponding face and is the limit point corresponding to the center of the face. And, n 1 n 1 F = c j P j = c j P j. j=0 j=0 P i = 1 4 (1 + c i + q i+1 + p i 1 )P i + 1 p i + q i+1 p i 1 + q i (c i 1 + i j >1 c j P j q i )P i p i 1 + q i 4 (c p i i+1 + )P i+1. p i + q i+1

13 Non-uniform Recursive Doo-Sabin Surfaces Coefficients c j Combining the two equations, one obtains a system of linear equations with respect to c j, j = 0,..., n 1. Then we have where c j = α j n 1 k=0 α, k α j = 1 n 1 2 ( n 1 p j+k + q j k ) + k=0 k=0 Here, indices are taken modulo n. n 1 m ( m=1 k=1 n 1 q j+k k=m p j+k ).

14 Non-uniform Recursive Doo-Sabin Surfaces Quad case α 0 = p 0p 1 p 2 p 3 + q 0 q 1 q 2 q 3 2 α 1 = p 0p 1 p 2 p 3 + q 0 q 1 q 2 q 3 2 α 2 = p 0p 1 p 2 p 3 + q 0 q 1 q 2 q 3 2 α 3 = p 0p 1 p 2 p 3 + q 0 q 1 q 2 q q 1 p 1 p 2 p 3 + q 1 q 2 p 2 p 3 + q 1 q 2 q 3 p 3 + q 2 p 2 p 3 p 0 + q 2 q 3 p 3 p 0 + q 2 q 3 q 0 p 0 + q 3 p 3 p 0 p 1 + q 3 q 0 p 0 p 1 + q 3 q 0 q 1 p 1 + q 0 p 0 p 1 p 2 + q 0 q 1 p 1 p 2 + q 0 q 1 q 2 p 2

15 Non-uniform Recursive Doo-Sabin Surfaces A closer look at α j α j is the sum of some products of the n knot intervals, which correspond to the n vertices respectively. where α j = α j,j + k=0 n 1 l=0,l j α j,l = 1 n 1 2 ( n 1 p j+k + q j k ) + k=0 α j,j = 1 n 1 2 ( n 1 p j+k + q j k ) α j,l = m k=1 k=0 n 1 q j+k k=m k=0 n 1 m ( m=1 k=1 n 1 q j+k k=m p j+k, m = (l j) mod n p j+k ).

16 Non-uniform Recursive Doo-Sabin Surfaces I A closer look at α j α j,j = 1 2 ( n 1 k=0 p j+k + n 1 k=0 q j k) can be associated with P j as follows. There are two paths of length n from P j to itself. The clockwise path: P j P j+1 P n 1 P 0 P j 1 then the product of the associated knot intervals is n 1 n 1 p j+k = k=0 k=0 p k

17 Non-uniform Recursive Doo-Sabin Surfaces II A closer look at α j The counterclockwise path: P j P j 1 P 0 P n 1 P j+1 then the product of the associated knot intervals is n 1 n 1 q j k = k=0 k=0 α j,j is the average of the previous two products. q k

18 Non-uniform Recursive Doo-Sabin Surfaces I A closer look at α j For l j, α j,l = m k=1 q n 1 j+k k=m p j+k can be associated with P l in the following way. Here, m = (l j) mod n. There exist one path of length l j and one path of length n l j from P l to P j. If l > j, then we have The counterclockwise path of length m = l j: P l P l 1 P j+1 P j then the m associated knot intervals are q l, q l 1,..., q j+1, and their product is m k=1 q j+k.

19 Non-uniform Recursive Doo-Sabin Surfaces II A closer look at α j The clockwise path of length n m = n (l j): P l P l+1 P n 1 P 0 P j 1 then the n m associated knot intervals are p l, p l+1,..., p n 1, p 0,..., p j 1, and their product is n 1 k=m p j+k. Here, indices are taken modulo n. α j,l is the product of the above two products. For l < j, we have a similar explanation for α j,l.

20 Non-uniform Recursive Doo-Sabin Surfaces Convergence Theorem (Convergence) The NURDS scheme is convergent at extraordinary points of arbitrary valence. Corollary (Limit point rule) For an n-sided face, its face point (i.e. the weighted centroid) is the limit point of its associated extraordinary point.

21 Non-uniform Recursive Doo-Sabin Surfaces Continuity NURDSes have stationary subdivision rules. We prove that the NURDS scheme is G 1 at vertices of valence 3 or 4. Because the subdivision matrix has no obvious symmetries, it is difficult to perform an eigenanalysis for extraordinary points with valence n 5. Numerical experiments and examples show that limit surfaces are G 1 at these points.

22 Non-uniform Recursive Doo-Sabin Surfaces Examples (a) (b) (c) (d) (a) initial control mesh, (b) uniform biquadratic B-spline surface, (c) biquadratic NURBS surface with a crease, (d) NURDS with a dart.

23 NURDSes vs Quadratic NURSSes Consider the configuration surrounding a type F face of valence n, and assume that p 0 = 1000 and all other knot intervals equal 1. For valence 3 n 30, we construct subdivision matrices for quadratic NURSSes and NURDSes respectively, and then investigate eigenstructure and continuity.

24 NURDSes vs Quadratic NURSSes Quadratic NURSSes Concerning spectrum and continuity, we have the following results. For 3 n 30, λ 0, λ 1 and λ 2 may be negative, while λ 3 is always positive. For n 15, λ 0 > 1, the subdivision process is divergent. For 3 n 14, λ 0 = 1 > λ 1, the subdivision process is convergent. For 3 n 10 and n = 12, λ 0 = 1 > λ 1 = λ 2 > λ 3, quadratic NURSSes are G 1 continuous at the extraordinary vertices. For n = 13 and 14, λ 0 = 1 > λ 1 > λ 2 > λ 3, quadratic NURSSes are G 1 continuous at the extraordinary vertices. For n = 11, λ 0 = 1 > λ 1 > λ 2 = λ 3, quadratic NURSSes are only G 0 continuous at the extraordinary vertices.

25 NURDSes vs Quadratic NURSSes Quadratic NURSSes Figure: Absolute values of the first four eigenvalues for quadratic NURSSes for 3 n 30.

26 NURDSes vs Quadratic NURSSes NURDSes Regarding spectrum and continuity, it follows that For 3 n 30, λ 0, λ 1, λ 2 and λ 3 are all positive. For 3 n 30, λ 0 = 1 > λ 1, the subdivision process is convergent. For 3 n 30, λ 0 = 1 > λ 1 = λ 2 > λ 3, NURDSes are G 1 continuous at the extraordinary vertices.

27 NURDSes vs Quadratic NURSSes NURDSes Figure: Values of the first four eigenvalues for NURDSes for 3 n 30.

28 NURDSes vs Quadratic NURSSes Both NURDSes and quadratic NURSSes are the subdivision surfaces that generalize non-uniform biquadratic B-spline surfaces to control grids of arbitrary topology. Differences: NURDSes reduce to Catmull-Clark-variant Doo-Sabin surfaces whereas quadratic NURSSes degenerate to original Doo-Sabin surfaces. NURDSes are convergent at extraordinary points of arbitrary valence while quadratic NURSSes may diverge for valences larger than 12. NURDSes have closed form limit point rules whereas quadratic NURSSes do not.

29 Summary Summary NURDSes are a generalization of Catmull-Clark-variant Doo-Sabin surfaces and biquadratic NURBS surfaces. NURDS refinement can be factored into non-uniform linear subdivision followed by dual averaging. NURDSes are convergent for arbitrary n-sided faces. NURDSes have closed form limit point rules. Future work: Rigorous analysis for G 1 continuity for valence n > 5. Boundary rules for open meshes. Generalization of repeated averaging to higher degree cases, such as bicubic NURBS.

30 Thanks Thanks!

Non-Uniform Recursive Doo-Sabin Surfaces

Non-Uniform Recursive Doo-Sabin Surfaces Non-Uniform Recursive Doo-Sabin Surfaces Zhangjin Huang a,b,c,, Guoping Wang d,e a School of Computer Science and Technology, University of Science and Technology of China, PR China b Key Laboratory of

More information

Subdivision Curves and Surfaces: An Introduction

Subdivision Curves and Surfaces: An Introduction Subdivision Curves and Surfaces: An Introduction Corner Cutting De Casteljau s and de Boor s algorithms all use corner-cutting procedures. Corner cutting can be local or non-local. A cut is local if it

More information

Subdivision Surfaces

Subdivision Surfaces Subdivision Surfaces 1 Geometric Modeling Sometimes need more than polygon meshes Smooth surfaces Traditional geometric modeling used NURBS Non uniform rational B-Spline Demo 2 Problems with NURBS A single

More information

Recursive Subdivision Surfaces for Geometric Modeling

Recursive Subdivision Surfaces for Geometric Modeling Recursive Subdivision Surfaces for Geometric Modeling Weiyin Ma City University of Hong Kong, Dept. of Manufacturing Engineering & Engineering Management Ahmad Nasri American University of Beirut, Dept.

More information

Subdivision Surfaces

Subdivision Surfaces Subdivision Surfaces 1 Geometric Modeling Sometimes need more than polygon meshes Smooth surfaces Traditional geometric modeling used NURBS Non uniform rational B-Spline Demo 2 Problems with NURBS A single

More information

Example: Loop Scheme. Example: Loop Scheme. What makes a good scheme? recursive application leads to a smooth surface.

Example: Loop Scheme. Example: Loop Scheme. What makes a good scheme? recursive application leads to a smooth surface. Example: Loop Scheme What makes a good scheme? recursive application leads to a smooth surface 200, Denis Zorin Example: Loop Scheme Refinement rule 200, Denis Zorin Example: Loop Scheme Two geometric

More information

Surfaces for CAGD. FSP Tutorial. FSP-Seminar, Graz, November

Surfaces for CAGD. FSP Tutorial. FSP-Seminar, Graz, November Surfaces for CAGD FSP Tutorial FSP-Seminar, Graz, November 2005 1 Tensor Product Surfaces Given: two curve schemes (Bézier curves or B splines): I: x(u) = m i=0 F i(u)b i, u [a, b], II: x(v) = n j=0 G

More information

Subdivision Curves and Surfaces

Subdivision Curves and Surfaces Subdivision Surfaces or How to Generate a Smooth Mesh?? Subdivision Curves and Surfaces Subdivision given polyline(2d)/mesh(3d) recursively modify & add vertices to achieve smooth curve/surface Each iteration

More information

Curve Corner Cutting

Curve Corner Cutting Subdivision ision Techniqueses Spring 2010 1 Curve Corner Cutting Take two points on different edges of a polygon and join them with a line segment. Then, use this line segment to replace all vertices

More information

Using Semi-Regular 4 8 Meshes for Subdivision Surfaces

Using Semi-Regular 4 8 Meshes for Subdivision Surfaces Using Semi-Regular 8 Meshes for Subdivision Surfaces Luiz Velho IMPA Instituto de Matemática Pura e Aplicada Abstract. Semi-regular 8 meshes are refinable triangulated quadrangulations. They provide a

More information

Subdivision based Interpolation with Shape Control

Subdivision based Interpolation with Shape Control Subdivision based Interpolation with Shape Control Fengtao Fan University of Kentucky Deparment of Computer Science Lexington, KY 40506, USA ffan2@uky.edu Fuhua (Frank) Cheng University of Kentucky Deparment

More information

Modified Catmull-Clark Methods for Modelling, Reparameterization and Grid Generation

Modified Catmull-Clark Methods for Modelling, Reparameterization and Grid Generation Modified Catmull-Clark Methods for Modelling, Reparameterization and Grid Generation Karl-Heinz Brakhage RWTH Aachen, 55 Aachen, Deutschland, Email: brakhage@igpm.rwth-aachen.de Abstract In this paper

More information

Subdivision. Outline. Key Questions. Subdivision Surfaces. Advanced Computer Graphics (Spring 2013) Video: Geri s Game (outside link)

Subdivision. Outline. Key Questions. Subdivision Surfaces. Advanced Computer Graphics (Spring 2013) Video: Geri s Game (outside link) Advanced Computer Graphics (Spring 03) CS 83, Lecture 7: Subdivision Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs83/sp3 Slides courtesy of Szymon Rusinkiewicz, James O Brien with material from Denis

More information

BICUBIC UNIFORM B-SPLINE SURFACE REFINEMENT

BICUBIC UNIFORM B-SPLINE SURFACE REFINEMENT On-Line Geometric Modeling Notes BICUBIC UNIFORM B-SPLINE SURFACE REFINEMENT Kenneth I. Joy Visualization and Graphics Research Group Department of Computer Science Uniersity of California, Dais Oeriew

More information

Grid Generation and Grid Conversion by Subdivision Schemes

Grid Generation and Grid Conversion by Subdivision Schemes Grid Generation and Grid Conversion by Subdivision Schemes Karl Heinz Brakhage Institute for Geometry and Applied Mathematics RWTH Aachen University D-55 Aachen brakhage@igpm.rwth-aachen.de Abstract In

More information

Subdivision overview

Subdivision overview Subdivision overview CS4620 Lecture 16 2018 Steve Marschner 1 Introduction: corner cutting Piecewise linear curve too jagged for you? Lop off the corners! results in a curve with twice as many corners

More information

G 2 Interpolation for Polar Surfaces

G 2 Interpolation for Polar Surfaces 1 G 2 Interpolation for Polar Surfaces Jianzhong Wang 1, Fuhua Cheng 2,3 1 University of Kentucky, jwangf@uky.edu 2 University of Kentucky, cheng@cs.uky.edu 3 National Tsinhua University ABSTRACT In this

More information

T-splines and T-NURCCs

T-splines and T-NURCCs T-splines and T-NURCCs Thomas W. Sederberg and Jianmin Zheng tom@cs.byu.edu zheng@cs.byu.edu Computer Science Department Brigham Young University Almaz Bakenov bakenov@kyrgyzstan.org Embassy of Kyrgyz

More information

Triangle Mesh Subdivision with Bounded Curvature and the Convex Hull Property

Triangle Mesh Subdivision with Bounded Curvature and the Convex Hull Property Triangle Mesh Subdivision with Bounded Curvature and the Convex Hull Property Charles Loop cloop@microsoft.com February 1, 2001 Technical Report MSR-TR-2001-24 The masks for Loop s triangle subdivision

More information

Curves and Surfaces 2

Curves and Surfaces 2 Curves and Surfaces 2 Computer Graphics Lecture 17 Taku Komura Today More about Bezier and Bsplines de Casteljau s algorithm BSpline : General form de Boor s algorithm Knot insertion NURBS Subdivision

More information

UNIVERSITY OF CALGARY. Subdivision Surfaces. Advanced Geometric Modeling Faramarz Samavati

UNIVERSITY OF CALGARY. Subdivision Surfaces. Advanced Geometric Modeling Faramarz Samavati Subdivision Surfaces Surfaces Having arbitrary Topologies Tensor Product Surfaces Non Tensor Surfaces We can t find u-curves and v-curves in general surfaces General Subdivision Coarse mesh Subdivision

More information

QUADRATIC UNIFORM B-SPLINE CURVE REFINEMENT

QUADRATIC UNIFORM B-SPLINE CURVE REFINEMENT On-Line Geometric Modeling Notes QUADRATIC UNIFORM B-SPLINE CURVE REFINEMENT Kenneth I. Joy Visualization and Graphics Research Group Department of Computer Science University of California, Davis Overview

More information

Technical Report. Removing polar rendering artifacts in subdivision surfaces. Ursula H. Augsdörfer, Neil A. Dodgson, Malcolm A. Sabin.

Technical Report. Removing polar rendering artifacts in subdivision surfaces. Ursula H. Augsdörfer, Neil A. Dodgson, Malcolm A. Sabin. Technical Report UCAM-CL-TR-689 ISSN 1476-2986 Number 689 Computer Laboratory Removing polar rendering artifacts in subdivision surfaces Ursula H. Augsdörfer, Neil A. Dodgson, Malcolm A. Sabin June 2007

More information

CS354 Computer Graphics Surface Representation IV. Qixing Huang March 7th 2018

CS354 Computer Graphics Surface Representation IV. Qixing Huang March 7th 2018 CS354 Computer Graphics Surface Representation IV Qixing Huang March 7th 2018 Today s Topic Subdivision surfaces Implicit surface representation Subdivision Surfaces Building complex models We can extend

More information

Interpolatory 3-Subdivision

Interpolatory 3-Subdivision EUROGRAPHICS 2000 / M. Gross and F.R.A. Hopgood (Guest Editors) Volume 19 (2000), Number 3 Interpolatory 3-Subdivision U. Labsik G. Greiner Computer Graphics Group University of Erlangen-Nuremberg Am Weichselgarten

More information

MA 323 Geometric Modelling Course Notes: Day 36 Subdivision Surfaces

MA 323 Geometric Modelling Course Notes: Day 36 Subdivision Surfaces MA 323 Geometric Modelling Course Notes: Day 36 Subdivision Surfaces David L. Finn Today, we continue our discussion of subdivision surfaces, by first looking in more detail at the midpoint method and

More information

Subdivision on Arbitrary Meshes: Algorithms and Theory

Subdivision on Arbitrary Meshes: Algorithms and Theory Subdivision on Arbitrary Meshes: Algorithms and Theory Denis Zorin New York University 719 Broadway, 12th floor, New York, USA E-mail: dzorin@mrl.nyu.edu Subdivision surfaces have become a standard geometric

More information

Approximating Catmull-Clark Subdivision Surfaces with Bicubic Patches

Approximating Catmull-Clark Subdivision Surfaces with Bicubic Patches Approximating Catmull-Clark Subdivision Surfaces with Bicubic Patches Charles Loop Microsoft Research Scott Schaefer Texas A&M University April 24, 2007 Technical Report MSR-TR-2007-44 Microsoft Research

More information

Polar Embedded Catmull-Clark Subdivision Surface

Polar Embedded Catmull-Clark Subdivision Surface Polar Embedded Catmull-Clark Subdivision Surface Anonymous submission Abstract In this paper, a new subdivision scheme with Polar embedded Catmull-Clark mesh structure is presented. In this new subdivision

More information

1. Introduction. 2. Parametrization of General CCSSs. 3. One-Piece through Interpolation. 4. One-Piece through Boolean Operations

1. Introduction. 2. Parametrization of General CCSSs. 3. One-Piece through Interpolation. 4. One-Piece through Boolean Operations Subdivision Surface based One-Piece Representation Shuhua Lai Department of Computer Science, University of Kentucky Outline. Introduction. Parametrization of General CCSSs 3. One-Piece through Interpolation

More information

Subdivision Depth Computation for Extra-Ordinary Catmull-Clark Subdivision Surface Patches

Subdivision Depth Computation for Extra-Ordinary Catmull-Clark Subdivision Surface Patches Subdivision Depth Computation for Extra-Ordinary Catmull-Clark Subdivision Surface Patches Fuhua Frank Cheng,GangChen, and Jun-Hai Yong University of Kentucky, Lexington, KY, USA Tsinghua University, Beijing,

More information

Advanced Graphics. Subdivision Surfaces. Alex Benton, University of Cambridge Supported in part by Google UK, Ltd

Advanced Graphics. Subdivision Surfaces. Alex Benton, University of Cambridge Supported in part by Google UK, Ltd Advanced Graphics Subdivision Surfaces Alex Benton, University of Cambridge A.Benton@damtp.cam.ac.uk Supported in part by Google UK, Ltd NURBS patches aren t the greatest NURBS patches are nxm, forming

More information

Subdivision surfaces. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Subdivision surfaces. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Subdivision surfaces University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Reading Recommended: Stollnitz, DeRose, and Salesin. Wavelets for Computer Graphics: Theory and Applications,

More information

CS354 Computer Graphics Surface Representation III. Qixing Huang March 5th 2018

CS354 Computer Graphics Surface Representation III. Qixing Huang March 5th 2018 CS354 Computer Graphics Surface Representation III Qixing Huang March 5th 2018 Today s Topic Bspline curve operations (Brief) Knot Insertion/Deletion Subdivision (Focus) Subdivision curves Subdivision

More information

Smooth Multi-Sided Blending of bi-2 Splines

Smooth Multi-Sided Blending of bi-2 Splines Smooth Multi-Sided Blending of bi-2 Splines Kȩstutis Karčiauskas Jörg Peters Vilnius University University of Florida K. Karčiauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 1 / 18 Quad

More information

A Unified Framework for Primal/Dual Quadrilateral Subdivision Schemes

A Unified Framework for Primal/Dual Quadrilateral Subdivision Schemes A Unified Framework for Primal/Dual Quadrilateral Subdivision Schemes Denis Zorin NYU Peter Schröder Caltech Abstract Most commonly used subdivision schemes are of primal type, i.e., they split faces.

More information

Honeycomb Subdivision

Honeycomb Subdivision Honeycomb Subdivision Ergun Akleman and Vinod Srinivasan Visualization Sciences Program, Texas A&M University Abstract In this paper, we introduce a new subdivision scheme which we call honeycomb subdivision.

More information

Exact Evaluation Of Catmull-Clark Subdivision Surfaces At Arbitrary Parameter Values

Exact Evaluation Of Catmull-Clark Subdivision Surfaces At Arbitrary Parameter Values Exact Evaluation Of Catmull-Clark Subdivision Surfaces At Arbitrary Parameter Values Jos Stam Alias wavefront Inc Abstract In this paper we disprove the belief widespread within the computer graphics community

More information

ECS 178 Course Notes REFINEMENT

ECS 178 Course Notes REFINEMENT ECS 78 Course Notes REFINEMENT Kenneth I Joy Institute for Data Analysis and Visualization Department of Computer Science University of California, Davis Overview Bézier curves, B-spline curves and subdivision

More information

Subdivision Surfaces

Subdivision Surfaces Subdivision Surfaces CS 4620 Lecture 31 Cornell CS4620 Fall 2015 1 Administration A5 due on Friday Dreamworks visiting Thu/Fri Rest of class Surfaces, Animation, Rendering w/ prior instructor Steve Marschner

More information

Removing Polar Rendering Artifacts in Subdivision Surfaces

Removing Polar Rendering Artifacts in Subdivision Surfaces This is an electronic version of an article published in Journal of Graphics, GPU, and Game Tools, Volume 14, Issue 2 pp. 61-76, DOI: 10.1080/2151237X.2009.10129278. The Journal of Graphics, GPU, and Game

More information

INF3320 Computer Graphics and Discrete Geometry

INF3320 Computer Graphics and Discrete Geometry INF3320 Computer Graphics and Discrete Geometry More smooth Curves and Surfaces Christopher Dyken, Michael Floater and Martin Reimers 10.11.2010 Page 1 More smooth Curves and Surfaces Akenine-Möller, Haines

More information

852 QIN Kaihuai, CHANG Zhengyi et al Vol7 are generated by the recursive subdivision Each subdivision step will bring new vertices, new edges, as well

852 QIN Kaihuai, CHANG Zhengyi et al Vol7 are generated by the recursive subdivision Each subdivision step will bring new vertices, new edges, as well Vol7 No6 J Comput Sci & Technol Nov 22 Physics-ased Loop Surface Modeling QIN Kaihuai ( ΠΞ), CHANG Zhengyi ( ffω), WANG Huawei (ΦΛΨ) and LI Denggao (± ) Department of Computer Science and Technology, Tsinghua

More information

Subdivision Surfaces. Homework 1: Questions on Homework? Last Time? Today. Tensor Product. What s an illegal edge collapse?

Subdivision Surfaces. Homework 1: Questions on Homework? Last Time? Today. Tensor Product. What s an illegal edge collapse? Homework 1: Questions/Comments? Subdivision Surfaces Questions on Homework? Last Time? What s an illegal edge collapse? Curves & Surfaces Continuity Definitions 2 3 C0, G1, C1, C 1 a b 4 Interpolation

More information

Computergrafik. Matthias Zwicker Universität Bern Herbst 2016

Computergrafik. Matthias Zwicker Universität Bern Herbst 2016 Computergrafik Matthias Zwicker Universität Bern Herbst 2016 Today Curves NURBS Surfaces Parametric surfaces Bilinear patch Bicubic Bézier patch Advanced surface modeling 2 Piecewise Bézier curves Each

More information

Evaluation of Loop Subdivision Surfaces

Evaluation of Loop Subdivision Surfaces Evaluation of Loop Subdivision Surfaces Jos Stam Alias wavefront, Inc. 8 Third Ave, 8th Floor, Seattle, WA 980, U.S.A. jstam@aw.sgi.com Abstract This paper describes a technique to evaluate Loop subdivision

More information

Subdivision Surfaces. Homework 1: Questions/Comments?

Subdivision Surfaces. Homework 1: Questions/Comments? Subdivision Surfaces Homework 1: Questions/Comments? 1 Questions on Homework? What s an illegal edge collapse? 1 2 3 a b 4 7 To be legal, the ring of vertex neighbors must be unique (have no duplicates)!

More information

Local Modification of Subdivision Surfaces Based on Curved Mesh

Local Modification of Subdivision Surfaces Based on Curved Mesh Local Modification of Subdivision Surfaces Based on Curved Mesh Yoshimasa Tokuyama Tokyo Polytechnic University tokuyama@image.t-kougei.ac.jp Kouichi Konno Iwate University konno@cis.iwate-u.ac.jp Junji

More information

Smooth Surfaces from 4-sided Facets

Smooth Surfaces from 4-sided Facets Smooth Surfaces from -sided Facets T. L. Ni, Y. Yeo, A. Myles, V. Goel and J. Peters Abstract We present a fast algorithm for converting quad meshes on the GPU to smooth surfaces. Meshes with 1,000 input

More information

Subdivision surfaces for CAD: integration through parameterization and local correction

Subdivision surfaces for CAD: integration through parameterization and local correction Workshop: New trends in subdivision and related applications September 4 7, 212 Department of Mathematics and Applications, University of Milano-Bicocca, Italy Subdivision surfaces for CAD: integration

More information

From curves to surfaces. Parametric surfaces and solid modeling. Extrusions. Surfaces of revolution. So far have discussed spline curves in 2D

From curves to surfaces. Parametric surfaces and solid modeling. Extrusions. Surfaces of revolution. So far have discussed spline curves in 2D From curves to surfaces Parametric surfaces and solid modeling CS 465 Lecture 12 2007 Doug James & Steve Marschner 1 So far have discussed spline curves in 2D it turns out that this already provides of

More information

A Study on Subdivision Scheme-Draft. Kwan Pyo Ko Dongseo University Busan, South Korea

A Study on Subdivision Scheme-Draft. Kwan Pyo Ko Dongseo University Busan, South Korea A Study on Subdivision Scheme-Draft Kwan Pyo Ko Dongseo University Busan, South Korea April 30, 007 Contents Introduction 9 Subdivision of Univariate Data 3. Definitions and Basic Results.............................

More information

Approximating Catmull-Clark Subdivision Surfaces with Bicubic Patches

Approximating Catmull-Clark Subdivision Surfaces with Bicubic Patches Approximating Catmull-Clark Subdivision Surfaces with Bicubic Patches CHARLES LOOP Microsoft Research and SCOTT SCHAEFER Texas A&M University We present a simple and computationally efficient algorithm

More information

u 0+u 2 new boundary vertex

u 0+u 2 new boundary vertex Combined Subdivision Schemes for the design of surfaces satisfying boundary conditions Adi Levin School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel. Email:fadilev@math.tau.ac.ilg

More information

BIQUADRATIC UNIFORM B-SPLINE SURFACE REFINEMENT

BIQUADRATIC UNIFORM B-SPLINE SURFACE REFINEMENT On-Line Geometric Modeling Notes BIQUADRATIC UNIFORM B-SPLINE SURFACE REFINEMENT Kenneth I. Joy Visualization and Graphics Research Group Department of Computer Science Uniersity of California, Dais Oeriew

More information

Parametrization of General Catmull-Clark Subdivision Surfaces and its Applications

Parametrization of General Catmull-Clark Subdivision Surfaces and its Applications Parametrization of General Catmull-Clark Subdivision Surfaces and its pplications Shuhua Lai and Fuhua (Frank) Cheng Graphics & Geometric Modeling Lab, Department of Computer Science University of Kentucky,

More information

An Efficient Data Structure for Representing Trilateral/Quadrilateral Subdivision Surfaces

An Efficient Data Structure for Representing Trilateral/Quadrilateral Subdivision Surfaces BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 3, No 3 Sofia 203 Print ISSN: 3-9702; Online ISSN: 34-408 DOI: 0.2478/cait-203-0023 An Efficient Data Structure for Representing

More information

Volume Enclosed by Example Subdivision Surfaces

Volume Enclosed by Example Subdivision Surfaces Volume Enclosed by Example Subdivision Surfaces by Jan Hakenberg - May 5th, this document is available at vixra.org and hakenberg.de Abstract Simple meshes such as the cube, tetrahedron, and tripod frequently

More information

EFFICIENT, TIGHT BOUNDING VOLUMES FOR SUBDIVISION SURFACES

EFFICIENT, TIGHT BOUNDING VOLUMES FOR SUBDIVISION SURFACES EFFICIENT, TIGHT BOUNDING VOLUMES FOR SUBDIVISION SURFACES By XIAOBIN WU A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

More information

Geometric modeling 1

Geometric modeling 1 Geometric Modeling 1 Look around the room. To make a 3D model of a room requires modeling every single object you can see. Leaving out smaller objects (clutter) makes the room seem sterile and unrealistic

More information

Computergrafik. Matthias Zwicker. Herbst 2010

Computergrafik. Matthias Zwicker. Herbst 2010 Computergrafik Matthias Zwicker Universität Bern Herbst 2010 Today Curves NURBS Surfaces Parametric surfaces Bilinear patch Bicubic Bézier patch Advanced surface modeling Piecewise Bézier curves Each segment

More information

An interpolating 4-point C 2 ternary stationary subdivision scheme

An interpolating 4-point C 2 ternary stationary subdivision scheme Computer Aided Geometric Design 9 (2002) 8 www.elsevier.com/locate/comaid An interpolating 4-point C 2 ternary stationary subdivision scheme M.F Hassan a,, I.P. Ivrissimitzis a, N.A. Dodgson a,m.a.sabin

More information

Taxonomy of interpolation. constraints on recursive subdivision. Ahmad H. Nasri 1, Malcolm A. Sabin 2. 1 Introduction

Taxonomy of interpolation. constraints on recursive subdivision. Ahmad H. Nasri 1, Malcolm A. Sabin 2. 1 Introduction 1 Introduction Taxonomy of interpolation constraints on recursive subdivision surfaces Ahmad H. Nasri 1, Malcolm A. Sabin 2 1 Department of Mathematics and Computer Science, American University of Beirut,

More information

Subdivision Surfaces. Homework 1: Last Time? Today. Bilinear Patch. Tensor Product. Spline Surfaces / Patches

Subdivision Surfaces. Homework 1: Last Time? Today. Bilinear Patch. Tensor Product. Spline Surfaces / Patches Homework 1: Questions/Comments? Subdivision Surfaces Last Time? Curves & Surfaces Continuity Definitions Spline Surfaces / Patches Tensor Product Bilinear Patches Bezier Patches Trimming Curves C0, G1,

More information

Physically-Based Modeling and Animation. University of Missouri at Columbia

Physically-Based Modeling and Animation. University of Missouri at Columbia Overview of Geometric Modeling Overview 3D Shape Primitives: Points Vertices. Curves Lines, polylines, curves. Surfaces Triangle meshes, splines, subdivision surfaces, implicit surfaces, particles. Solids

More information

On-Line Geometric Modeling Notes REFINEMENT

On-Line Geometric Modeling Notes REFINEMENT On-Line Geometric Modeling Notes REFINEMENT Kenneth I Joy Visualization and Graphics Research Group Department of Computer Science University of California, Davis Overview Bézier curves, B-spline curves

More information

Until now we have worked with flat entities such as lines and flat polygons. Fit well with graphics hardware Mathematically simple

Until now we have worked with flat entities such as lines and flat polygons. Fit well with graphics hardware Mathematically simple Curves and surfaces Escaping Flatland Until now we have worked with flat entities such as lines and flat polygons Fit well with graphics hardware Mathematically simple But the world is not composed of

More information

Subdivision curves and surfaces. Brian Curless CSE 557 Fall 2015

Subdivision curves and surfaces. Brian Curless CSE 557 Fall 2015 Subdivision curves and surfaces Brian Curless CSE 557 Fall 2015 1 Reading Recommended: Stollnitz, DeRose, and Salesin. Wavelets for Computer Graphics: Theory and Applications, 1996, section 6.1-6.3, 10.2,

More information

Normals of subdivision surfaces and their control polyhedra

Normals of subdivision surfaces and their control polyhedra Computer Aided Geometric Design 24 (27 112 116 www.elsevier.com/locate/cagd Normals of subdivision surfaces and their control polyhedra I. Ginkel a,j.peters b,,g.umlauf a a University of Kaiserslautern,

More information

12.3 Subdivision Surfaces. What is subdivision based representation? Subdivision Surfaces

12.3 Subdivision Surfaces. What is subdivision based representation? Subdivision Surfaces 2.3 Subdivision Surfaces What is subdivision based representation? Subdivision Surfaces Multi-resolution (Scalability) One piece representation (arbitrary topology) What is so special? Numerical stability

More information

Smooth Subdivision of Tetrahedral Meshes

Smooth Subdivision of Tetrahedral Meshes Eurographics Symposium on Geometry Processing (2004) R. Scopigno, D. Zorin, (Editors) Smooth Subdivision of Tetrahedral Meshes S. Schaefer J. Hakenberg J. Warren Rice University Abstract We describe a

More information

2001, Denis Zorin. Subdivision Surfaces

2001, Denis Zorin. Subdivision Surfaces 200, Denis Zorin Subdivision Surfaces Example: Loop Scheme What makes a good scheme? recursive application leads to a smooth surface 200, Denis Zorin Example: Loop Scheme Refinement rule 200, Denis Zorin

More information

A subdivision scheme for hexahedral meshes

A subdivision scheme for hexahedral meshes A subdivision scheme for hexahedral meshes Chandrajit Bajaj Department of Computer Sciences, University of Texas Scott Schaefer Department of Computer Science, Rice University Joe Warren Department of

More information

Piecewise Smooth Subdivision Surfaces with Normal Control

Piecewise Smooth Subdivision Surfaces with Normal Control Piecewise Smooth Subdivision Surfaces with Normal Control Henning Biermann New York University Adi Levin Tel Aviv University Denis Zorin New York University Abstract In this paper we introduce improved

More information

REPORT DOCUMENTATION PAGE

REPORT DOCUMENTATION PAGE REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

SURFACE FAIRING FOR SHIP HULL DESIGN

SURFACE FAIRING FOR SHIP HULL DESIGN SURFACE FAIRING FOR SHIP HULL DESIGN Xoán A. Leiceaga Eva Soto GED, Universidad de Vigo, Vigo, España leiceaga@uvigo.es Oscar E. Ruiz Carlos A. Vanegas Laboratorio CAD/CAM/CAE, Universidad EAFIT, Medellín,

More information

Smooth Patching of Refined Triangulations

Smooth Patching of Refined Triangulations Smooth Patching of Refined Triangulations Jörg Peters July, 200 Abstract This paper presents a simple algorithm for associating a smooth, low degree polynomial surface with triangulations whose extraordinary

More information

Robustness of Boolean operations on subdivision-surface models

Robustness of Boolean operations on subdivision-surface models Robustness of Boolean operations on subdivision-surface models Di Jiang 1, Neil Stewart 2 1 Université de Montréal, Dép t. Informatique CP6128, Succ. CentreVille, Montréal, H3C 3J7, Qc, Canada jiangdi@umontreal.ca

More information

An Interpolatory Subdivision for Volumetric Models over Simplicial Complexes

An Interpolatory Subdivision for Volumetric Models over Simplicial Complexes An Interpolatory Subdivision for Volumetric Models over Simplicial Complexes Yu-Sung Chang Kevin T. McDonnell Hong Qin Department of Computer Science State University of New York at Stony Brook {yusung

More information

Normals of subdivision surfaces and their control polyhedra

Normals of subdivision surfaces and their control polyhedra Normals of subdivision surfaces and their control polyhedra I. Ginkel, a, J. Peters b, and G. Umlauf a, a University of Kaiserslautern, Germany b University of Florida, Gainesville, FL, USA Abstract For

More information

Efficient GPU Rendering of Subdivision Surfaces. Tim Foley,

Efficient GPU Rendering of Subdivision Surfaces. Tim Foley, Efficient GPU Rendering of Subdivision Surfaces Tim Foley, 2017-03-02 Collaborators Activision Wade Brainerd Stanford Matthias Nießner NVIDIA Manuel Kraemer Henry Moreton 2 Subdivision surfaces are a powerful

More information

Subdivision Scheme Tuning Around Extraordinary Vertices

Subdivision Scheme Tuning Around Extraordinary Vertices Subdivision Scheme Tuning Around Extraordinary Vertices Loïc Barthe Leif Kobbelt Computer Graphics Group, RWTH Aachen Ahornstrasse 55, 52074 Aachen, Germany Abstract In this paper we extend the standard

More information

4 8 Subdivision. Luiz Velho a and Denis Zorin b

4 8 Subdivision. Luiz Velho a and Denis Zorin b 4 Subdivision Luiz Velho a and Denis Zorin b a Visgraf Laboratory IMPA Instituto de Matemática Pura e Aplicada Estrada Dona Castorina, Rio de Janeiro, RJ, Brazil, 2246-32. lvelho@visgraf.impa.br b Media

More information

Approximate Geodesics on Smooth Surfaces of Arbitrary Topology

Approximate Geodesics on Smooth Surfaces of Arbitrary Topology Approximate Geodesics on Smooth Surfaces of Arbitrary Topology Paper ID: 418 Category: Technical Paper The 6th International Symposium on Visual Computing (ISCV10) Las Vegas, Nevada, November 29 - December

More information

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a coordinate system and then the measuring of the point with

More information

REAL-TIME SMOOTH SURFACE CONSTRUCTION ON THE GRAPHICS PROCESSING UNIT

REAL-TIME SMOOTH SURFACE CONSTRUCTION ON THE GRAPHICS PROCESSING UNIT REAL-TIME SMOOTH SURFACE CONSTRUCTION ON THE GRAPHICS PROCESSING UNIT By TIANYUN NI A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

More information

Joe Warren, Scott Schaefer Rice University

Joe Warren, Scott Schaefer Rice University Joe Warren, Scott Schaefer Rice University Polygons are a ubiquitous modeling primitive in computer graphics. Their popularity is such that special purpose graphics hardware designed to render polygons

More information

09 - Designing Surfaces. CSCI-GA Computer Graphics - Fall 16 - Daniele Panozzo

09 - Designing Surfaces. CSCI-GA Computer Graphics - Fall 16 - Daniele Panozzo 9 - Designing Surfaces Triangular surfaces A surface can be discretized by a collection of points and triangles Each triangle is a subset of a plane Every point on the surface can be expressed as an affine

More information

Shape optimization of smooth surfaces with arbitrary topology

Shape optimization of smooth surfaces with arbitrary topology International conference on Innovative Methods in Product Design June 15 th 17 th, 2011, Venice, Italy Shape optimization of smooth surfaces with arbitrary topology Przemysław Kiciak (a) (a) Institut Matematyki

More information

Smooth Surface Reconstruction using Doo-Sabin Subdivision Surfaces

Smooth Surface Reconstruction using Doo-Sabin Subdivision Surfaces Smooth Surface Reconstruction using Doo-Sabin Subdivision Surfaces Fuhua (Frank) Cheng, Fengtao Fan, Conglin Huang, Jiaxi Wang Department of Computer Science, University of Kentucky, Lexington, KY 40506,

More information

Ternary Butterfly Subdivision

Ternary Butterfly Subdivision Ternary Butterfly Subdivision Ruotian Ling a,b Xiaonan Luo b Zhongxian Chen b,c a Department of Computer Science, The University of Hong Kong b Computer Application Institute, Sun Yat-sen University c

More information

Bézier and B-spline volumes Project of Dissertation

Bézier and B-spline volumes Project of Dissertation Department of Algebra, Geometry and Didactics of Mathematics Faculty of Mathemathics, Physics and Informatics Comenius University, Bratislava Bézier and B-spline volumes Project of Dissertation Martin

More information

On Smooth Bicubic Surfaces from Quad Meshes

On Smooth Bicubic Surfaces from Quad Meshes On Smooth Bicubic Surfaces from Quad Meshes Jianhua Fan and Jörg Peters Dept CISE, University of Florida Abstract. Determining the least m such that one m m bi-cubic macropatch per quadrilateral offers

More information

Hierarchical Grid Conversion

Hierarchical Grid Conversion Hierarchical Grid Conversion Ali Mahdavi-Amiri, Erika Harrison, Faramarz Samavati Abstract Hierarchical grids appear in various applications in computer graphics such as subdivision and multiresolution

More information

A Continuous 3-D Medial Shape Model with Branching

A Continuous 3-D Medial Shape Model with Branching A Continuous 3-D Medial Shape Model with Branching Timothy B. Terriberry Guido Gerig Outline Introduction The Generic 3-D Medial Axis Review of Subdivision Surfaces Boundary Reconstruction Edge Curves

More information

Surface Quality Assessment of Subdivision Surfaces on Programmable Graphics Hardware

Surface Quality Assessment of Subdivision Surfaces on Programmable Graphics Hardware Sur Quality Assessment of Subdivision Surs on Programmable Graphics Hardware Yusuke Yasui Takashi Kanai Keio University SFC Faculty of Environmental Information 53 Endo, Fujisawa, Kanagawa, 5-850, JAPAN.

More information

Generalizing the C 4 Four-directional Box Spline to Surfaces of Arbitrary Topology Luiz Velho Abstract. In this paper we introduce a new scheme that g

Generalizing the C 4 Four-directional Box Spline to Surfaces of Arbitrary Topology Luiz Velho Abstract. In this paper we introduce a new scheme that g Generalizing the C 4 Four-directional Box Spline to Surfaces of Arbitrary Topology Luiz Velho Abstract. In this paper we introduce a new scheme that generalizes the four-directional box spline of class

More information

COMPUTER AIDED GEOMETRIC DESIGN. Thomas W. Sederberg

COMPUTER AIDED GEOMETRIC DESIGN. Thomas W. Sederberg COMPUTER AIDED GEOMETRIC DESIGN Thomas W. Sederberg January 31, 2011 ii T. W. Sederberg iii Preface This semester is the 24 th time I have taught a course at Brigham Young University titled, Computer Aided

More information

G 2 Bezier Crust on Quad Subdivision Surfaces

G 2 Bezier Crust on Quad Subdivision Surfaces Pacific Graphics (2013) B. Levy, X. Tong, and K. Yin (Editors) Short Papers G 2 Bezier Crust on Quad Subdivision Surfaces paper 1348 Figure 1: Two examples of Bezier crust applied on Catmull-Clark subdivision

More information

Pairs of Bi-Cubic Surface Constructions Supporting Polar Connectivity

Pairs of Bi-Cubic Surface Constructions Supporting Polar Connectivity Pairs of Bi-Cubic Surface Constructions Supporting Polar Connectivity Ashish Myles a, Kestutis Karčiauskas b Jörg Peters a a Department of CISE, University of Florida b Department of Mathematics and Informatics,

More information