1 Introduction. 1. Prove the problem lies in the class NP. 2. Find an NP-complete problem that reduces to it.

Size: px
Start display at page:

Download "1 Introduction. 1. Prove the problem lies in the class NP. 2. Find an NP-complete problem that reduces to it."

Transcription

1 1 Introduction There are hundreds of NP-complete problems. For a recent selection see csc.liv.ac.uk/ ped/teachadmin/comp202/annotated_np.html Also, see the book M. R. Garey and D. S. Johnson. Computers and intractability. A Guide to the theory of NP-completeness. WH Freeman and Company, New York, Historically, graph theoretic problems were among the earliest to be proved NP-complete. We ll start by looking at one of the very first such problems: the Vertex Cover problem. All NP-completeness results are proved in the same way 1. Prove the problem lies in the class NP 2. Find an NP-complete problem that reduces to it. Figure 1: Motivation Example: Using vertex cover algorithm to simulate the propagation of worms on computer networks and design optimal strategies for protecting the network against virus attacks. The set {2, 4, 5} is a minimum vertex cover in this computer network. Figure from 1

2 2 The Vertex Cover problem Definition 2.1 (Vertex Cover). Given a graph (V, E) and an integer k does there exist a set C of k vertices such that every edge has one (or both) endpoints in the set C? The set C is called a vertex cover. Theorem 2.2. The vertex cover problem is NP-complete. Proof. The first part of the proof is usually easiest. 2.1 Vertex cover in N P It is fairly obvious that the vertex cover problem is in N P. Simply choose a set of k vertices non-deterministically then check if all edges are covered by those vertices (clearly polynomial). 2.2 Reduce 3-SAT to VC For the second step we must find some suitable NP-complete problem at this stage in our experience there isn t much choice!! This means: find a function f that maps instances of 3-SAT into instances of VC such that Given an arbitrary instance I of 3-SAT f(i) will be an instance of VC, i.e. f(i) will be a graph G together with an integer k, i.e. f(i) = (G, k) f(i) can be computed in polynomial time in I f(i) will be a positive instance if and only if I is a positive instance (i.e. G will have a vertex cover of k vertices if and only if the clauses of I are satisfiable) We now define the function f by a construction that, given I, produces G and k 2

3 Suppose the variables of I are x 1, x 2,..., x n and there are m clauses in the boolean formula: (u 11 u 12 u 13 ) (u 21 u 22 u 23 )... (u m1 u m2 u m3 ) The variables u ij are literals and could be any one of x k. The i, j labels refer to the particular position of the literal in the boolean formula Making G There is one vertex for every x i, one vertex for every x i, and one vertex for every u ij. There is an edge from vertex x i to vertex x i (all values of i). There is an edge between vertex u ij and vertex u ik (all values of i and all values j, k with j k). There is an edge from x i to u jk exactly when x i = u jk, and an edge from x i to u jk exactly when x i = u jk. See Figure 2 for an example of G Making k Define k = n + 2m. All this can be done in time polynomial in the size of I (in fact in time O(mn) which is quadratic in I ) The clauses are satisfiable = there is a vertex cover Suppose we have a satisfying assignment. We find the vertex cover as follows: if x i = T put vertex x i in the vertex cover if x i = F put vertex x i in the vertex cover At this point we have used up n vertices and have covered the n edges from x i to x i (and some others too). 3

4 x 1 x 1 x 2 x 2 x 3 x 3 x 4 x 4 u 12 u 22 u 11 u 13 u 21 u 23 k = n + 2m = = 8 Figure 2: Reduction of (x 1 x 2 x 3 ) ( x 1 x 2 x 4 ) For each triple of vertices u j1, u j2, u j3 we have three edges leading to an x or a x. At least one of these will already be covered; the one corresponding to the true value in the clause. To cover the two remaining edges of the three, and the edges of the triangle u j1, u j2, u j3 we put an appropriate two vertices of the triangle in the vertex cover There is a vertex cover = the clauses are satisfiable Suppose we have a vertex cover. From the form of the graph the cover must have exactly one vertex from each pair {x i, x i }. That s n of the vertices. The other 2m vertices must be used 2 per triangle to cover the triangle edges. We consider the truth assignment Define x i = T if vertex x i is in the cover. 4

5 x 1 x 1 x 2 x 2 x 3 x 3 x 4 x 4 u 12 u 22 u 11 u 13 u 21 u 23 k = n + 2m = = 8 Figure 3: Vertex cover corresponding to x 1 = T, x 2 = F, x 3 = T, x 4 = F Define x i = F if vertex x i is in the cover. Consider the clause corresponding to the vertices u j1, u j2, u j3 and the vertex of this trio not in the vertex cover. That vertex is connected to a vertex x i or x i that must be in the cover which therefore has the value T; so the clause contains a true value. 3 Question Again When faced with a problem, why do we need so much effort to determine whether it is NP-hard (or not)? 5

6 4 Tutorial Problems Question 1 Consider the conjunction of clauses (x 1 x 2 x 3 ) ( x 1 x 2 ) (x 1 x 2 x 3 ) Give the graph constructed in the reduction of 3-SAT to VC. Find a vertex cover of this graph with at most 9 vertices and read off a satisfying assignment. Question 2 Consider the following two problems: UHAM: an instance of this problem is an undirected graph. The decision question is whether G has a Hamiltonian circuit (a sequence of edges that visits all the vertices once only, returning to the initial vertex). DHAM: an instance of this problem is a directed graph. The decision question is whether G has a Hamiltonian circuit (a sequence of directed edges that visits all the vertices once only, returning to the initial vertex). 1. Prove that both these problems are in NP. 2. Find a polynomial time reduction of UHAM to DHAM. 3. Find a polynomial time reduction of DHAM to UHAM. Notes: The first of these is easy no hints, except to remind you that to be in NP is simply to have a polynomial time guess and check algorithm. For the second and third you have to take an instance of one and, in polynomial time, produce an instance of the other with the same answer. The second is easy no further hints at all! 6

7 The third is not too bad: think about replacing a vertex with three vertices joined in a path. Actually, both these problems are N P -complete (there is a polynomial time reduction of 3-SAT to DHAM in the textbook). Here s a similar looking problem: Question 3 EulerPath: Given a graph, find a sequence of edges giving you a path through the graph that visits every edge exactly once, returning to the start. What are your thoughts? In P? In N P? N P -complete? 7

NP Completeness. Andreas Klappenecker [partially based on slides by Jennifer Welch]

NP Completeness. Andreas Klappenecker [partially based on slides by Jennifer Welch] NP Completeness Andreas Klappenecker [partially based on slides by Jennifer Welch] Overview We already know the following examples of NPC problems: SAT 3SAT We are going to show that the following are

More information

Example of a Demonstration that a Problem is NP-Complete by reduction from CNF-SAT

Example of a Demonstration that a Problem is NP-Complete by reduction from CNF-SAT 20170926 CNF-SAT: CNF-SAT is a problem in NP, defined as follows: Let E be a Boolean expression with m clauses and n literals (literals = variables, possibly negated), in which - each clause contains only

More information

Computability Theory

Computability Theory CS:4330 Theory of Computation Spring 2018 Computability Theory Other NP-Complete Problems Haniel Barbosa Readings for this lecture Chapter 7 of [Sipser 1996], 3rd edition. Sections 7.4 and 7.5. The 3SAT

More information

W4231: Analysis of Algorithms

W4231: Analysis of Algorithms W4231: Analysis of Algorithms 11/23/99 NP-completeness of 3SAT, Minimum Vertex Cover, Maximum Independent Set, Boolean Formulae A Boolean formula is an expression that we can build starting from Boolean

More information

arxiv: v2 [cs.cc] 29 Mar 2010

arxiv: v2 [cs.cc] 29 Mar 2010 On a variant of Monotone NAE-3SAT and the Triangle-Free Cut problem. arxiv:1003.3704v2 [cs.cc] 29 Mar 2010 Peiyush Jain, Microsoft Corporation. June 28, 2018 Abstract In this paper we define a restricted

More information

Best known solution time is Ω(V!) Check every permutation of vertices to see if there is a graph edge between adjacent vertices

Best known solution time is Ω(V!) Check every permutation of vertices to see if there is a graph edge between adjacent vertices Hard Problems Euler-Tour Problem Undirected graph G=(V,E) An Euler Tour is a path where every edge appears exactly once. The Euler-Tour Problem: does graph G have an Euler Path? Answerable in O(E) time.

More information

8 NP-complete problem Hard problems: demo

8 NP-complete problem Hard problems: demo Ch8 NPC Millennium Prize Problems http://en.wikipedia.org/wiki/millennium_prize_problems 8 NP-complete problem Hard problems: demo NP-hard (Non-deterministic Polynomial-time hard), in computational complexity

More information

8.1 Polynomial-Time Reductions

8.1 Polynomial-Time Reductions 8.1 Polynomial-Time Reductions Classify Problems According to Computational Requirements Q. Which problems will we be able to solve in practice? A working definition. Those with polynomial-time algorithms.

More information

NP-Completeness. Algorithms

NP-Completeness. Algorithms NP-Completeness Algorithms The NP-Completeness Theory Objective: Identify a class of problems that are hard to solve. Exponential time is hard. Polynomial time is easy. Why: Do not try to find efficient

More information

NP-complete Reductions

NP-complete Reductions NP-complete Reductions 1. Prove that 3SAT P DOUBLE-SAT, i.e., show DOUBLE-SAT is NP-complete by reduction from 3SAT. The 3-SAT problem consists of a conjunction of clauses over n Boolean variables, where

More information

NP and computational intractability. Kleinberg and Tardos, chapter 8

NP and computational intractability. Kleinberg and Tardos, chapter 8 NP and computational intractability Kleinberg and Tardos, chapter 8 1 Major Transition So far we have studied certain algorithmic patterns Greedy, Divide and conquer, Dynamic programming to develop efficient

More information

NP-Complete Reductions 2

NP-Complete Reductions 2 x 1 x 1 x 2 x 2 x 3 x 3 x 4 x 4 12 22 32 CS 447 11 13 21 23 31 33 Algorithms NP-Complete Reductions 2 Prof. Gregory Provan Department of Computer Science University College Cork 1 Lecture Outline NP-Complete

More information

! Greed. O(n log n) interval scheduling. ! Divide-and-conquer. O(n log n) FFT. ! Dynamic programming. O(n 2 ) edit distance.

! Greed. O(n log n) interval scheduling. ! Divide-and-conquer. O(n log n) FFT. ! Dynamic programming. O(n 2 ) edit distance. Algorithm Design Patterns and Anti-Patterns 8. NP and Computational Intractability Algorithm design patterns. Ex.! Greed. O(n log n) interval scheduling.! Divide-and-conquer. O(n log n) FFT.! Dynamic programming.

More information

A New Reduction from 3-SAT to Graph K- Colorability for Frequency Assignment Problem

A New Reduction from 3-SAT to Graph K- Colorability for Frequency Assignment Problem A New Reduction from 3-SAT to Graph K- Colorability for Frequency Assignment Problem Prakash C. Sharma Indian Institute of Technology Survey No. 113/2-B, Opposite to Veterinary College, A.B.Road, Village

More information

NP-Completeness of 3SAT, 1-IN-3SAT and MAX 2SAT

NP-Completeness of 3SAT, 1-IN-3SAT and MAX 2SAT NP-Completeness of 3SAT, 1-IN-3SAT and MAX 2SAT 3SAT The 3SAT problem is the following. INSTANCE : Given a boolean expression E in conjunctive normal form (CNF) that is the conjunction of clauses, each

More information

CSCE750 Analysis of Algorithms Fall 2017 NP-Complete Problems

CSCE750 Analysis of Algorithms Fall 2017 NP-Complete Problems CSCE750 Analysis of Algorithms Fall 2017 NP-Complete Problems This document contains slides from the lecture, formatted to be suitable for printing or individual reading, and with some supplemental explanations

More information

Partha Sarathi Mandal

Partha Sarathi Mandal MA 515: Introduction to Algorithms & MA353 : Design and Analysis of Algorithms [3-0-0-6] Lecture 39 http://www.iitg.ernet.in/psm/indexing_ma353/y09/index.html Partha Sarathi Mandal psm@iitg.ernet.in Dept.

More information

Some Hardness Proofs

Some Hardness Proofs Some Hardness Proofs Magnus Lie Hetland January 2011 This is a very brief overview of some well-known hard (NP Hard and NP complete) problems, and the main ideas behind their hardness proofs. The document

More information

P -vs- NP. NP Problems. P = polynomial time. NP = non-deterministic polynomial time

P -vs- NP. NP Problems. P = polynomial time. NP = non-deterministic polynomial time P -vs- NP NP Problems P = polynomial time There are many problems that can be solved correctly using algorithms that run in O(n c ) time for some constant c. NOTE: We can say that an nlogn algorithm is

More information

Unit 8: Coping with NP-Completeness. Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems. Y.-W.

Unit 8: Coping with NP-Completeness. Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems. Y.-W. : Coping with NP-Completeness Course contents: Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems Reading: Chapter 34 Chapter 35.1, 35.2 Y.-W. Chang 1 Complexity

More information

Lecture 2: NP-Completeness

Lecture 2: NP-Completeness NP and Latin Squares Instructor: Padraic Bartlett Lecture 2: NP-Completeness Week 4 Mathcamp 2014 In our last class, we introduced the complexity classes P and NP. To motivate why we grouped all of NP

More information

A Simplied NP-complete MAXSAT Problem. Abstract. It is shown that the MAX2SAT problem is NP-complete even if every variable

A Simplied NP-complete MAXSAT Problem. Abstract. It is shown that the MAX2SAT problem is NP-complete even if every variable A Simplied NP-complete MAXSAT Problem Venkatesh Raman 1, B. Ravikumar 2 and S. Srinivasa Rao 1 1 The Institute of Mathematical Sciences, C. I. T. Campus, Chennai 600 113. India 2 Department of Computer

More information

Lecture 24: More Reductions (1997) Steven Skiena. skiena

Lecture 24: More Reductions (1997) Steven Skiena.   skiena Lecture 24: More Reductions (1997) Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Prove that subgraph isomorphism

More information

Reductions and Satisfiability

Reductions and Satisfiability Reductions and Satisfiability 1 Polynomial-Time Reductions reformulating problems reformulating a problem in polynomial time independent set and vertex cover reducing vertex cover to set cover 2 The Satisfiability

More information

NP-completeness of 4-incidence colorability of semi-cubic graphs

NP-completeness of 4-incidence colorability of semi-cubic graphs Discrete Mathematics 08 (008) 0 www.elsevier.com/locate/disc Note NP-completeness of -incidence colorability of semi-cubic graphs Xueliang Li, Jianhua Tu Center for Combinatorics and LPMC, Nankai University,

More information

1 Definition of Reduction

1 Definition of Reduction 1 Definition of Reduction Problem A is reducible, or more technically Turing reducible, to problem B, denoted A B if there a main program M to solve problem A that lacks only a procedure to solve problem

More information

CMPSCI611: The SUBSET-SUM Problem Lecture 18

CMPSCI611: The SUBSET-SUM Problem Lecture 18 CMPSCI611: The SUBSET-SUM Problem Lecture 18 We begin today with the problem we didn t get to at the end of last lecture the SUBSET-SUM problem, which we also saw back in Lecture 8. The input to SUBSET-

More information

Chapter 10 Part 1: Reduction

Chapter 10 Part 1: Reduction //06 Polynomial-Time Reduction Suppose we could solve Y in polynomial-time. What else could we solve in polynomial time? don't confuse with reduces from Chapter 0 Part : Reduction Reduction. Problem X

More information

! Greed. O(n log n) interval scheduling. ! Divide-and-conquer. O(n log n) FFT. ! Dynamic programming. O(n 2 ) edit distance.

! Greed. O(n log n) interval scheduling. ! Divide-and-conquer. O(n log n) FFT. ! Dynamic programming. O(n 2 ) edit distance. Algorithm Design Patterns and Anti-Patterns Chapter 8 NP and Computational Intractability Algorithm design patterns. Ex.! Greed. O(n log n) interval scheduling.! Divide-and-conquer. O(n log n) FFT.! Dynamic

More information

The NP-Completeness of Some Edge-Partition Problems

The NP-Completeness of Some Edge-Partition Problems The NP-Completeness of Some Edge-Partition Problems Ian Holyer y SIAM J. COMPUT, Vol. 10, No. 4, November 1981 (pp. 713-717) c1981 Society for Industrial and Applied Mathematics 0097-5397/81/1004-0006

More information

Chapter 8. NP and Computational Intractability. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved.

Chapter 8. NP and Computational Intractability. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. Chapter 8 NP and Computational Intractability Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. 1 Algorithm Design Patterns and Anti-Patterns Algorithm design patterns.

More information

Lecture 20: Satisfiability Steven Skiena. Department of Computer Science State University of New York Stony Brook, NY

Lecture 20: Satisfiability Steven Skiena. Department of Computer Science State University of New York Stony Brook, NY Lecture 20: Satisfiability Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Problem of the Day Suppose we are given

More information

Homework 4 Solutions

Homework 4 Solutions CS3510 Design & Analysis of Algorithms Section A Homework 4 Solutions Uploaded 4:00pm on Dec 6, 2017 Due: Monday Dec 4, 2017 This homework has a total of 3 problems on 4 pages. Solutions should be submitted

More information

(p 300) Theorem 7.27 SAT is in P iff P=NP

(p 300) Theorem 7.27 SAT is in P iff P=NP pp. 292-311. The Class NP-Complete (Sec. 7.4) P = {L L decidable in poly time} NP = {L L verifiable in poly time} Certainly all P is in NP Unknown if NP is bigger than P (p. 299) NP-Complete = subset of

More information

COMP260 Spring 2014 Notes: February 4th

COMP260 Spring 2014 Notes: February 4th COMP260 Spring 2014 Notes: February 4th Andrew Winslow In these notes, all graphs are undirected. We consider matching, covering, and packing in bipartite graphs, general graphs, and hypergraphs. We also

More information

The Complexity of Minimizing Certain Cost Metrics for k-source Spanning Trees

The Complexity of Minimizing Certain Cost Metrics for k-source Spanning Trees The Complexity of Minimizing Certain Cost Metrics for ksource Spanning Trees Harold S Connamacher University of Oregon Andrzej Proskurowski University of Oregon May 9 2001 Abstract We investigate multisource

More information

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/18/14

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/18/14 600.363 Introduction to Algorithms / 600.463 Algorithms I Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/18/14 23.1 Introduction We spent last week proving that for certain problems,

More information

9.1 Cook-Levin Theorem

9.1 Cook-Levin Theorem CS787: Advanced Algorithms Scribe: Shijin Kong and David Malec Lecturer: Shuchi Chawla Topic: NP-Completeness, Approximation Algorithms Date: 10/1/2007 As we ve already seen in the preceding lecture, two

More information

Lecture 1. 2 Motivation: Fast. Reliable. Cheap. Choose two.

Lecture 1. 2 Motivation: Fast. Reliable. Cheap. Choose two. Approximation Algorithms and Hardness of Approximation February 19, 2013 Lecture 1 Lecturer: Ola Svensson Scribes: Alantha Newman 1 Class Information 4 credits Lecturers: Ola Svensson (ola.svensson@epfl.ch)

More information

ALGORITHMS EXAMINATION Department of Computer Science New York University December 17, 2007

ALGORITHMS EXAMINATION Department of Computer Science New York University December 17, 2007 ALGORITHMS EXAMINATION Department of Computer Science New York University December 17, 2007 This examination is a three hour exam. All questions carry the same weight. Answer all of the following six questions.

More information

CS 373: Combinatorial Algorithms, Spring 1999

CS 373: Combinatorial Algorithms, Spring 1999 CS 373: Combinatorial Algorithms, Spring 1999 Final Exam (May 7, 1999) Name: Net ID: Alias: This is a closed-book, closed-notes exam! If you brought anything with you besides writing instruments and your

More information

P and NP CISC4080, Computer Algorithms CIS, Fordham Univ. Instructor: X. Zhang

P and NP CISC4080, Computer Algorithms CIS, Fordham Univ. Instructor: X. Zhang P and NP CISC4080, Computer Algorithms CIS, Fordham Univ. Instructor: X. Zhang Efficient Algorithms So far, we have developed algorithms for finding shortest paths in graphs, minimum spanning trees in

More information

Engineering 9867 Advanced Computing Concepts

Engineering 9867 Advanced Computing Concepts Engineering 9867 Advanced Computing Concepts Assignment #2 Sample solutions Due: Tuesday, April 2 at 9. [ points] Consider the following implementation of the palindrome checking problem (question 4 on

More information

CSC 505, Fall 2000: Week 12

CSC 505, Fall 2000: Week 12 CSC 505, Fall 000: Week Proving the N P-completeness of a decision problem A:. Prove that A is in N P give a simple guess and check algorithm (the certificate being guessed should be something requiring

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18 601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18 22.1 Introduction We spent the last two lectures proving that for certain problems, we can

More information

The Satisfiability Problem [HMU06,Chp.10b] Satisfiability (SAT) Problem Cook s Theorem: An NP-Complete Problem Restricted SAT: CSAT, k-sat, 3SAT

The Satisfiability Problem [HMU06,Chp.10b] Satisfiability (SAT) Problem Cook s Theorem: An NP-Complete Problem Restricted SAT: CSAT, k-sat, 3SAT The Satisfiability Problem [HMU06,Chp.10b] Satisfiability (SAT) Problem Cook s Theorem: An NP-Complete Problem Restricted SAT: CSAT, k-sat, 3SAT 1 Satisfiability (SAT) Problem 2 Boolean Expressions Boolean,

More information

P and NP CISC5835, Algorithms for Big Data CIS, Fordham Univ. Instructor: X. Zhang

P and NP CISC5835, Algorithms for Big Data CIS, Fordham Univ. Instructor: X. Zhang P and NP CISC5835, Algorithms for Big Data CIS, Fordham Univ. Instructor: X. Zhang Efficient Algorithms So far, we have developed algorithms for finding shortest paths in graphs, minimum spanning trees

More information

1. Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time:

1. Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time: 1. Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time: Input: A CNF formula ϕ with n variables x 1, x 2,..., x n. Output: True if there is an

More information

SAT-CNF Is N P-complete

SAT-CNF Is N P-complete SAT-CNF Is N P-complete Rod Howell Kansas State University November 9, 2000 The purpose of this paper is to give a detailed presentation of an N P- completeness proof using the definition of N P given

More information

Approximation Algorithms

Approximation Algorithms 15-251: Great Ideas in Theoretical Computer Science Spring 2019, Lecture 14 March 5, 2019 Approximation Algorithms 1 2 SAT 3SAT Clique Hamiltonian- Cycle given a Boolean formula F, is it satisfiable? same,

More information

Exercises Computational Complexity

Exercises Computational Complexity Exercises Computational Complexity March 22, 2017 Exercises marked with a are more difficult. 1 Chapter 7, P and NP Exercise 1. Suppose some pancakes are stacked on a surface such that no two pancakes

More information

8.1 Polynomial-Time Reductions

8.1 Polynomial-Time Reductions Algorithm Design Patterns and Anti-Patterns Analysis of Algorithms Algorithm design patterns. Ex. Greed. O(n 2 ) Dijkstra s SSSP (dense) Divide-and-conquer. O(n log n) FFT. Dynamic programming. O(n 2 )

More information

Copyright 2000, Kevin Wayne 1

Copyright 2000, Kevin Wayne 1 Guessing Game: NP-Complete? 1. LONGEST-PATH: Given a graph G = (V, E), does there exists a simple path of length at least k edges? YES. SHORTEST-PATH: Given a graph G = (V, E), does there exists a simple

More information

The complement of PATH is in NL

The complement of PATH is in NL 340 The complement of PATH is in NL Let c be the number of nodes in graph G that are reachable from s We assume that c is provided as an input to M Given G, s, t, and c the machine M operates as follows:

More information

Complexity Classes and Polynomial-time Reductions

Complexity Classes and Polynomial-time Reductions COMPSCI 330: Design and Analysis of Algorithms April 19, 2016 Complexity Classes and Polynomial-time Reductions Lecturer: Debmalya Panigrahi Scribe: Tianqi Song 1 Overview In this lecture, we introduce

More information

Eulerian disjoint paths problem in grid graphs is NP-complete

Eulerian disjoint paths problem in grid graphs is NP-complete Discrete Applied Mathematics 143 (2004) 336 341 Notes Eulerian disjoint paths problem in grid graphs is NP-complete Daniel Marx www.elsevier.com/locate/dam Department of Computer Science and Information

More information

Greedy algorithms Or Do the right thing

Greedy algorithms Or Do the right thing Greedy algorithms Or Do the right thing March 1, 2005 1 Greedy Algorithm Basic idea: When solving a problem do locally the right thing. Problem: Usually does not work. VertexCover (Optimization Version)

More information

Vertex Cover Approximations

Vertex Cover Approximations CS124 Lecture 20 Heuristics can be useful in practice, but sometimes we would like to have guarantees. Approximation algorithms give guarantees. It is worth keeping in mind that sometimes approximation

More information

Reductions. Linear Time Reductions. Desiderata. Reduction. Desiderata. Classify problems according to their computational requirements.

Reductions. Linear Time Reductions. Desiderata. Reduction. Desiderata. Classify problems according to their computational requirements. Desiderata Reductions Desiderata. Classify problems according to their computational requirements. Frustrating news. Huge number of fundamental problems have defied classification for decades. Desiderata'.

More information

Steven Skiena. skiena

Steven Skiena.   skiena Lecture 22: Introduction to NP-completeness (1997) Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Among n people,

More information

Solving problems on graph algorithms

Solving problems on graph algorithms Solving problems on graph algorithms Workshop Organized by: ACM Unit, Indian Statistical Institute, Kolkata. Tutorial-3 Date: 06.07.2017 Let G = (V, E) be an undirected graph. For a vertex v V, G {v} is

More information

P and NP (Millenium problem)

P and NP (Millenium problem) CMPS 2200 Fall 2017 P and NP (Millenium problem) Carola Wenk Slides courtesy of Piotr Indyk with additions by Carola Wenk CMPS 2200 Introduction to Algorithms 1 We have seen so far Algorithms for various

More information

NP-Hardness. We start by defining types of problem, and then move on to defining the polynomial-time reductions.

NP-Hardness. We start by defining types of problem, and then move on to defining the polynomial-time reductions. CS 787: Advanced Algorithms NP-Hardness Instructor: Dieter van Melkebeek We review the concept of polynomial-time reductions, define various classes of problems including NP-complete, and show that 3-SAT

More information

Graphs with Two Disjoint Total Dominating Sets

Graphs with Two Disjoint Total Dominating Sets Graphs with Two Disjoint Total Dominating Sets Izak Broere, Rand Afrikaans University Michael Dorfling, Rand Afrikaans University Wayne Goddard, University of Natal Johannes H. Hattingh, Georgia State

More information

The NP-completeness of some edge-partitioning. problems

The NP-completeness of some edge-partitioning. problems The NP-completeness of some edge-partitioning problems by Sebastian M. Cioabă A thesis submitted to the Department of Mathematics and Statistics in conformity with the requirements for the degree of Master

More information

Lecture 21: Other Reductions Steven Skiena

Lecture 21: Other Reductions Steven Skiena Lecture 21: Other Reductions Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.stonybrook.edu/ skiena Problem of the Day Show that the dense

More information

ASSIGNMENT 4 SOLUTIONS

ASSIGNMENT 4 SOLUTIONS MATH 71 ASSIGNMENT SOLUTIONS 1. If F : X X is a function, define f (x) to be (f f)(x), and inductively define f k (x) (f f k 1 )(x) for each integer k. (So f (x) (f f )(x) f(f(f(x))) for instance.) We

More information

4.1 Review - the DPLL procedure

4.1 Review - the DPLL procedure Applied Logic Lecture 4: Efficient SAT solving CS 4860 Spring 2009 Thursday, January 29, 2009 The main purpose of these notes is to help me organize the material that I used to teach today s lecture. They

More information

2. CONNECTIVITY Connectivity

2. CONNECTIVITY Connectivity 2. CONNECTIVITY 70 2. Connectivity 2.1. Connectivity. Definition 2.1.1. (1) A path in a graph G = (V, E) is a sequence of vertices v 0, v 1, v 2,..., v n such that {v i 1, v i } is an edge of G for i =

More information

Module 6 NP-Complete Problems and Heuristics

Module 6 NP-Complete Problems and Heuristics Module 6 NP-Complete Problems and Heuristics Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS 39217 E-mail: natarajan.meghanathan@jsums.edu P, NP-Problems Class

More information

Where Can We Draw The Line?

Where Can We Draw The Line? Where Can We Draw The Line? On the Hardness of Satisfiability Problems Complexity 1 Introduction Objectives: To show variants of SAT and check if they are NP-hard Overview: Known results 2SAT Max2SAT Complexity

More information

The Complexity of Camping

The Complexity of Camping The Complexity of Camping Marzio De Biasi marziodebiasi [at] gmail [dot] com July 2012 Version 0.04: a re-revised sketch of the proof Abstract We prove that the tents puzzle game is NP -complete using

More information

Maximization Versions of Lights Out Games in Grids and Graphs

Maximization Versions of Lights Out Games in Grids and Graphs Maximization Versions of Lights Out Games in Grids and Graphs John Goldwasser and William Klostermeyer Dept of Mathematics Dept of Computer Science West Virginia University Morgantown, WV 26506 E-mail:

More information

V1.0: Seth Gilbert, V1.1: Steven Halim August 30, Abstract. d(e), and we assume that the distance function is non-negative (i.e., d(x, y) 0).

V1.0: Seth Gilbert, V1.1: Steven Halim August 30, Abstract. d(e), and we assume that the distance function is non-negative (i.e., d(x, y) 0). CS4234: Optimisation Algorithms Lecture 4 TRAVELLING-SALESMAN-PROBLEM (4 variants) V1.0: Seth Gilbert, V1.1: Steven Halim August 30, 2016 Abstract The goal of the TRAVELLING-SALESMAN-PROBLEM is to find

More information

NP versus PSPACE. Frank Vega. To cite this version: HAL Id: hal https://hal.archives-ouvertes.fr/hal

NP versus PSPACE. Frank Vega. To cite this version: HAL Id: hal https://hal.archives-ouvertes.fr/hal NP versus PSPACE Frank Vega To cite this version: Frank Vega. NP versus PSPACE. Preprint submitted to Theoretical Computer Science 2015. 2015. HAL Id: hal-01196489 https://hal.archives-ouvertes.fr/hal-01196489

More information

Graph Vertex Colorability & the Hardness. Mengfei Cao COMP-150 Graph Theory Tufts University

Graph Vertex Colorability & the Hardness. Mengfei Cao COMP-150 Graph Theory Tufts University Dec. 15 th, Presentation for Final Project Graph Vertex Colorability & the Hardness Mengfei Cao COMP-150 Graph Theory Tufts University Framework In General: Graph-2-colorability is in N Graph-3-colorability

More information

COMP202. Complexity of Algorithms. Section 1: Answer all questions. Section 2: Answer 2 questions.

COMP202. Complexity of Algorithms. Section 1: Answer all questions. Section 2: Answer 2 questions. COMP202 Complexity of Algorithms Section 1: Answer all questions. Section 2: Answer 2 questions. 2 Section 1 Answer all questions in this section. 1. Define what is meant by the following terms, An n-vertex

More information

Module 6 P, NP, NP-Complete Problems and Approximation Algorithms

Module 6 P, NP, NP-Complete Problems and Approximation Algorithms Module 6 P, NP, NP-Complete Problems and Approximation Algorithms Dr. Natarajan Meghanathan Associate Professor of Computer Science Jackson State University Jackson, MS 39217 E-mail: natarajan.meghanathan@jsums.edu

More information

NP-Complete Problems

NP-Complete Problems 1 / 34 NP-Complete Problems CS 584: Algorithm Design and Analysis Daniel Leblanc 1 1 Senior Adjunct Instructor Portland State University Maseeh College of Engineering and Computer Science Winter 2018 2

More information

of m clauses, each containing the disjunction of boolean variables from a nite set V = fv 1 ; : : : ; vng of size n [8]. Each variable occurrence with

of m clauses, each containing the disjunction of boolean variables from a nite set V = fv 1 ; : : : ; vng of size n [8]. Each variable occurrence with A Hybridised 3-SAT Algorithm Andrew Slater Automated Reasoning Project, Computer Sciences Laboratory, RSISE, Australian National University, 0200, Canberra Andrew.Slater@anu.edu.au April 9, 1999 1 Introduction

More information

Computational problems. Lecture 2: Combinatorial search and optimisation problems. Computational problems. Examples. Example

Computational problems. Lecture 2: Combinatorial search and optimisation problems. Computational problems. Examples. Example Lecture 2: Combinatorial search and optimisation problems Different types of computational problems Examples of computational problems Relationships between problems Computational properties of different

More information

Chapter 8. NP-complete problems

Chapter 8. NP-complete problems Chapter 8. NP-complete problems Search problems E cient algorithms We have developed algorithms for I I I I I finding shortest paths in graphs, minimum spanning trees in graphs, matchings in bipartite

More information

VISUALIZING NP-COMPLETENESS THROUGH CIRCUIT-BASED WIDGETS

VISUALIZING NP-COMPLETENESS THROUGH CIRCUIT-BASED WIDGETS University of Portland Pilot Scholars Engineering Faculty Publications and Presentations Shiley School of Engineering 2016 VISUALIZING NP-COMPLETENESS THROUGH CIRCUIT-BASED WIDGETS Steven R. Vegdahl University

More information

The Vertex Cover Problem. Shangqi Wu Presentation of CS 525 March 11 th, 2016

The Vertex Cover Problem. Shangqi Wu Presentation of CS 525 March 11 th, 2016 The Vertex Cover Problem Shangqi Wu Presentation of CS 525 March 11 th, 2016 Vertex-Cover Problem Definition If G is an undirected graph, a vertex cover of G is a subset of nodes where every edge of G

More information

Lecture 21: Other Reductions Steven Skiena. Department of Computer Science State University of New York Stony Brook, NY

Lecture 21: Other Reductions Steven Skiena. Department of Computer Science State University of New York Stony Brook, NY Lecture 21: Other Reductions Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Problem of the Day Show that the Dense

More information

More NP-Complete Problems [HMU06,Chp.10b] Node Cover Independent Set Knapsack Real Games

More NP-Complete Problems [HMU06,Chp.10b] Node Cover Independent Set Knapsack Real Games More NP-Complete Problems [HMU06,Chp.10b] Node Cover Independent Set Knapsack Real Games 1 Next Steps We can now reduce 3SAT to a large number of problems, either directly or indirectly. Each reduction

More information

On Approximating Minimum Vertex Cover for Graphs with Perfect Matching

On Approximating Minimum Vertex Cover for Graphs with Perfect Matching On Approximating Minimum Vertex Cover for Graphs with Perfect Matching Jianer Chen and Iyad A. Kanj Abstract It has been a challenging open problem whether there is a polynomial time approximation algorithm

More information

Exact Algorithms Lecture 7: FPT Hardness and the ETH

Exact Algorithms Lecture 7: FPT Hardness and the ETH Exact Algorithms Lecture 7: FPT Hardness and the ETH February 12, 2016 Lecturer: Michael Lampis 1 Reminder: FPT algorithms Definition 1. A parameterized problem is a function from (χ, k) {0, 1} N to {0,

More information

Advanced Methods in Algorithms HW 5

Advanced Methods in Algorithms HW 5 Advanced Methods in Algorithms HW 5 Written by Pille Pullonen 1 Vertex-disjoint cycle cover Let G(V, E) be a finite, strongly-connected, directed graph. Let w : E R + be a positive weight function dened

More information

2SAT Andreas Klappenecker

2SAT Andreas Klappenecker 2SAT Andreas Klappenecker The Problem Can we make the following boolean formula true? ( x y) ( y z) (z y)! Terminology A boolean variable is a variable that can be assigned the values true (T) or false

More information

Complexity Results on Graphs with Few Cliques

Complexity Results on Graphs with Few Cliques Discrete Mathematics and Theoretical Computer Science DMTCS vol. 9, 2007, 127 136 Complexity Results on Graphs with Few Cliques Bill Rosgen 1 and Lorna Stewart 2 1 Institute for Quantum Computing and School

More information

31.6 Powers of an element

31.6 Powers of an element 31.6 Powers of an element Just as we often consider the multiples of a given element, modulo, we consider the sequence of powers of, modulo, where :,,,,. modulo Indexing from 0, the 0th value in this sequence

More information

W[1]-hardness. Dániel Marx. Recent Advances in Parameterized Complexity Tel Aviv, Israel, December 3, 2017

W[1]-hardness. Dániel Marx. Recent Advances in Parameterized Complexity Tel Aviv, Israel, December 3, 2017 1 W[1]-hardness Dániel Marx Recent Advances in Parameterized Complexity Tel Aviv, Israel, December 3, 2017 2 Lower bounds So far we have seen positive results: basic algorithmic techniques for fixed-parameter

More information

THE PROBLEM OF WORM PROPAGATION/PREVENTION

THE PROBLEM OF WORM PROPAGATION/PREVENTION THE PROBLEM OF WORM PROPAGATION/PREVENTION I.E. THE MINIMUM VERTEX COVER PROBLEM 1 Prof. Tiziana Calamoneri Network Algorithms A.y. 2017/18 2 THE PROBLEM WORMS (1) A computer worm is a standalone malware

More information

CS 580: Algorithm Design and Analysis

CS 580: Algorithm Design and Analysis CS 580: Algorithm Design and Analysis Jeremiah Blocki Purdue University Spring 2018 Homework 4: Due tomorrow (March 9) at 11:59 PM Recap Linear Programming Very Powerful Technique (Subject of Entire Courses)

More information

3/7/2018. CS 580: Algorithm Design and Analysis. 8.1 Polynomial-Time Reductions. Chapter 8. NP and Computational Intractability

3/7/2018. CS 580: Algorithm Design and Analysis. 8.1 Polynomial-Time Reductions. Chapter 8. NP and Computational Intractability Algorithm Design Patterns and Anti-Patterns CS 580: Algorithm Design and Analysis Jeremiah Blocki Purdue University Spring 2018 Algorithm design patterns. Ex. Greedy. O(n log n) interval scheduling. Divide-and-conquer.

More information

Maximizing edge-ratio is NP-complete

Maximizing edge-ratio is NP-complete Maximizing edge-ratio is NP-complete Steven D Noble, Pierre Hansen and Nenad Mladenović February 7, 01 Abstract Given a graph G and a bipartition of its vertices, the edge-ratio is the minimum for both

More information

Notes for Lecture 24

Notes for Lecture 24 U.C. Berkeley CS170: Intro to CS Theory Handout N24 Professor Luca Trevisan December 4, 2001 Notes for Lecture 24 1 Some NP-complete Numerical Problems 1.1 Subset Sum The Subset Sum problem is defined

More information

Approximability Results for the p-center Problem

Approximability Results for the p-center Problem Approximability Results for the p-center Problem Stefan Buettcher Course Project Algorithm Design and Analysis Prof. Timothy Chan University of Waterloo, Spring 2004 The p-center

More information

W[1]-hardness. Dániel Marx 1. Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary

W[1]-hardness. Dániel Marx 1. Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary W[1]-hardness Dániel Marx 1 1 Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary School on Parameterized Algorithms and Complexity Będlewo, Poland

More information