Connections between the Lasso and Support Vector Machines

Size: px
Start display at page:

Download "Connections between the Lasso and Support Vector Machines"

Transcription

1 Connections between the Lasso and Support Vector Machines Martin Jaggi Ecole Polytechnique 2013 / 07 / 08 ROKS 13 - International Workshop on Advances in Regularization, Optimization, Kernel Methods and Support Vector Machines: Theory and Applications

2 Outline An Equivalence between the Lasso and Support Vector Machines Reduction from Lasso to SVM Reduction from SVM to Lasso Applications Greedy Algorithms (from optimization and signal processing)

3 SVM R d = large margin linear classifier Training data

4 SVM R d

5 SVM R d mirror blue points at the origin

6 SVM R d

7 Polytope distance n points in R d A 2 R d n w w min w2conv(a) kwk2 min x2 kaxk2

8 SVM variants A 2 R d n whose dual problem is of the form min x2 kaxk2 Hard margin Soft margin (L2-loss) Soft margin (L1-loss) Two class no offset/bias Two class regularized offset/bias One Class (all with or without using kernels) kaxk 2 = x T A T Ax min w2r d, 2R, 2R n 1 2 k wk2 2 + C 2 P i 2 i s.t. y i w T X i i 8i 2 [1..n]

9 Lasso A 2 R d n b 2 R d = -regularized least squares regression `1 min kax kxk 1 applet bk2 Sparse regression Feature selection

10 Lasso A 2 R d n b 2 R d = -regularized least squares regression `1 min kax bk 2 x2l 1 L 1 := {x 2 R n kxk 1 apple 1} = conv({±e i }) Sparse regression Feature selection

11 (Lasso SVM) A 2 R d n b 2 R d Given a Lasso min kax bk 2 x2l 1 min x 0 2 kãx0 k 2 construct an equivalent SVM instance x = I n I n 2 L 1 R n (barycentric coordinates) x 0 2 R 2n min ka( I x 0 2 )x0 bk 2 n I n SVM: Ã := A A b1 T 2 R d 2n

12 (Lasso SVM) Geometric interpretation: min kax bk 2 x2l 1 b { A i } {A i } A conv(s) = conv(as) AL 1 = A conv({±e i }) = conv(a{±e i }) = conv({±a i })

13 (SVM Lasso) A 2 R d n Given an SVM min x2 kaxk2 min construct an equivalent Lasso instance x2l 1 kãx bk 2 more challenging reduction! Lasso: Ã := A + b1 T 2 R d n b / w w weakly separating for A w

14 (SVM Lasso) Geometric interpretation: w {Ãi} w à := A + b1 T 2 R d n b / w w weakly separating for A

15 (SVM Lasso) Geometric interpretation: w {Ãi} b w { Ã i } Ã := A + b1 T 2 R d n b / w w weakly separating for A

16 (SVM Lasso) Properties of the constructed Lasso instance {Ãi} b w w min kãx 2 bk x2l 1 { Ã i } Theorem: For any x 0 2 This x 0 2 x 2 L 1 for the Lasso, there is a vector, of the same or better Lasso objective. attains the same objective in the SVM. Ã := A + b1 T 2 R d n b / w w weakly separating for A

17 Implications: Algorithms apply to both problems sublinear time algorithms Õ(n + d) Implications for Lasso Kernelized version min x2l 1 X i (A i )x i (b) 2 H defined in terms of apple(a i,a j ), apple(a i,b), apple(b, b) apple(y, z) =h (y), (z)i

18 Implications for SVMs Support vectors = non-zeros in the Lasso solution number of SVs

19 Implications for SVMs Support vectors = non-zeros in the Lasso solution number of SVs Screening rules (discard points which can be guaranteed to be non-svs) w

20 Implications for SVMs Support vectors = non-zeros in the Lasso solution number of SVs Screening rules (discard points which can be guaranteed to be non-svs) w

21 Greedy Algorithms Convex optimization methods applied to min kax bk 2 x2l 1 Signal processing sparse recovery methods recover a sparse x from a noisy measurement b of Ax Frank-Wolfe

22 Greedy Algorithms Convex optimization methods applied to min kax bk 2 x2l 1 Signal processing sparse recovery methods recover a sparse x from a noisy measurement b of Ax f(x) x L 1 R n

23 Greedy Algorithms Convex optimization methods applied to min kax bk 2 x2l 1 Signal processing sparse recovery methods recover a sparse x from a noisy measurement b of Ax f(x) x L 1 R n

24 Greedy Algorithms Convex optimization methods applied to min kax bk 2 x2l 1 Signal processing sparse recovery methods recover a sparse x from a noisy measurement b of Ax f(x) x L 1 R n

25 Greedy Algorithms Convex optimization methods applied to min kax bk 2 x2l 1 Signal processing sparse recovery methods recover a sparse x from a noisy measurement b of Ax f(x) x L 1 R n

26 Greedy Algorithms Convex optimization methods applied to min kax bk 2 x2l 1 Signal processing sparse recovery methods recover a sparse x from a noisy measurement b of Ax f(x) i := arg max i rf(x) i ±e i x L 1 R n

27 Greedy Algorithms Convex optimization methods applied to min kax bk 2 x2l 1 Signal processing sparse recovery methods recover a sparse x from a noisy measurement b of Ax Frank-Wolfe selects the same atom per step matching pursuit fully corrective Frank-Wolfe i := arg max i equivalent to rf(x) i OMP

28 Thanks

Introduction to Support Vector Machines

Introduction to Support Vector Machines Introduction to Support Vector Machines CS 536: Machine Learning Littman (Wu, TA) Administration Slides borrowed from Martin Law (from the web). 1 Outline History of support vector machines (SVM) Two classes,

More information

Multiple-View Object Recognition in Band-Limited Distributed Camera Networks

Multiple-View Object Recognition in Band-Limited Distributed Camera Networks in Band-Limited Distributed Camera Networks Allen Y. Yang, Subhransu Maji, Mario Christoudas, Kirak Hong, Posu Yan Trevor Darrell, Jitendra Malik, and Shankar Sastry Fusion, 2009 Classical Object Recognition

More information

Lecture 17 Sparse Convex Optimization

Lecture 17 Sparse Convex Optimization Lecture 17 Sparse Convex Optimization Compressed sensing A short introduction to Compressed Sensing An imaging perspective 10 Mega Pixels Scene Image compression Picture Why do we compress images? Introduction

More information

Optimal Separating Hyperplane and the Support Vector Machine. Volker Tresp Summer 2018

Optimal Separating Hyperplane and the Support Vector Machine. Volker Tresp Summer 2018 Optimal Separating Hyperplane and the Support Vector Machine Volker Tresp Summer 2018 1 (Vapnik s) Optimal Separating Hyperplane Let s consider a linear classifier with y i { 1, 1} If classes are linearly

More information

Support vector machine (II): non-linear SVM. LING 572 Fei Xia

Support vector machine (II): non-linear SVM. LING 572 Fei Xia Support vector machine (II): non-linear SVM LING 572 Fei Xia 1 Linear SVM Maximizing the margin Soft margin Nonlinear SVM Kernel trick A case study Outline Handling multi-class problems 2 Non-linear SVM

More information

Lecture 7: Support Vector Machine

Lecture 7: Support Vector Machine Lecture 7: Support Vector Machine Hien Van Nguyen University of Houston 9/28/2017 Separating hyperplane Red and green dots can be separated by a separating hyperplane Two classes are separable, i.e., each

More information

Structured Optimal Transport

Structured Optimal Transport Structured Optimal Transport David Alvarez-Melis, Tommi Jaakkola, Stefanie Jegelka CSAIL, MIT OTML Workshop @ NIPS, Dec 9th 2017 Motivation: Domain Adaptation c(x i,y j ) c(x k,y`) Labeled Source Domain

More information

LECTURE 5: DUAL PROBLEMS AND KERNELS. * Most of the slides in this lecture are from

LECTURE 5: DUAL PROBLEMS AND KERNELS. * Most of the slides in this lecture are from LECTURE 5: DUAL PROBLEMS AND KERNELS * Most of the slides in this lecture are from http://www.robots.ox.ac.uk/~az/lectures/ml Optimization Loss function Loss functions SVM review PRIMAL-DUAL PROBLEM Max-min

More information

Constrained optimization

Constrained optimization Constrained optimization A general constrained optimization problem has the form where The Lagrangian function is given by Primal and dual optimization problems Primal: Dual: Weak duality: Strong duality:

More information

DM6 Support Vector Machines

DM6 Support Vector Machines DM6 Support Vector Machines Outline Large margin linear classifier Linear separable Nonlinear separable Creating nonlinear classifiers: kernel trick Discussion on SVM Conclusion SVM: LARGE MARGIN LINEAR

More information

Data Mining: Concepts and Techniques. Chapter 9 Classification: Support Vector Machines. Support Vector Machines (SVMs)

Data Mining: Concepts and Techniques. Chapter 9 Classification: Support Vector Machines. Support Vector Machines (SVMs) Data Mining: Concepts and Techniques Chapter 9 Classification: Support Vector Machines 1 Support Vector Machines (SVMs) SVMs are a set of related supervised learning methods used for classification Based

More information

Recent Advances in Frank-Wolfe Optimization. Simon Lacoste-Julien

Recent Advances in Frank-Wolfe Optimization. Simon Lacoste-Julien Recent Advances in Frank-Wolfe Optimization Simon Lacoste-Julien OSL 2017 Les Houches April 13 th, 2017 Outline Frank-Wolfe algorithm review global linear convergence of FW optimization variants condition

More information

Low Rank Representation Theories, Algorithms, Applications. 林宙辰 北京大学 May 3, 2012

Low Rank Representation Theories, Algorithms, Applications. 林宙辰 北京大学 May 3, 2012 Low Rank Representation Theories, Algorithms, Applications 林宙辰 北京大学 May 3, 2012 Outline Low Rank Representation Some Theoretical Analysis Solution by LADM Applications Generalizations Conclusions Sparse

More information

One-class Problems and Outlier Detection. 陶卿 中国科学院自动化研究所

One-class Problems and Outlier Detection. 陶卿 中国科学院自动化研究所 One-class Problems and Outlier Detection 陶卿 Qing.tao@mail.ia.ac.cn 中国科学院自动化研究所 Application-driven Various kinds of detection problems: unexpected conditions in engineering; abnormalities in medical data,

More information

Machine Learning Lecture 9

Machine Learning Lecture 9 Course Outline Machine Learning Lecture 9 Fundamentals ( weeks) Bayes Decision Theory Probability Density Estimation Nonlinear SVMs 30.05.016 Discriminative Approaches (5 weeks) Linear Discriminant Functions

More information

Introduction to Machine Learning Spring 2018 Note Sparsity and LASSO. 1.1 Sparsity for SVMs

Introduction to Machine Learning Spring 2018 Note Sparsity and LASSO. 1.1 Sparsity for SVMs CS 189 Introduction to Machine Learning Spring 2018 Note 21 1 Sparsity and LASSO 1.1 Sparsity for SVMs Recall the oective function of the soft-margin SVM prolem: w,ξ 1 2 w 2 + C Note that if a point x

More information

Combinatorial Selection and Least Absolute Shrinkage via The CLASH Operator

Combinatorial Selection and Least Absolute Shrinkage via The CLASH Operator Combinatorial Selection and Least Absolute Shrinkage via The CLASH Operator Volkan Cevher Laboratory for Information and Inference Systems LIONS / EPFL http://lions.epfl.ch & Idiap Research Institute joint

More information

6 Model selection and kernels

6 Model selection and kernels 6. Bias-Variance Dilemma Esercizio 6. While you fit a Linear Model to your data set. You are thinking about changing the Linear Model to a Quadratic one (i.e., a Linear Model with quadratic features φ(x)

More information

Alternating Direction Method of Multipliers

Alternating Direction Method of Multipliers Alternating Direction Method of Multipliers CS 584: Big Data Analytics Material adapted from Stephen Boyd (https://web.stanford.edu/~boyd/papers/pdf/admm_slides.pdf) & Ryan Tibshirani (http://stat.cmu.edu/~ryantibs/convexopt/lectures/21-dual-meth.pdf)

More information

The Alternating Direction Method of Multipliers

The Alternating Direction Method of Multipliers The Alternating Direction Method of Multipliers With Adaptive Step Size Selection Peter Sutor, Jr. Project Advisor: Professor Tom Goldstein October 8, 2015 1 / 30 Introduction Presentation Outline 1 Convex

More information

Sparsity Based Regularization

Sparsity Based Regularization 9.520: Statistical Learning Theory and Applications March 8th, 200 Sparsity Based Regularization Lecturer: Lorenzo Rosasco Scribe: Ioannis Gkioulekas Introduction In previous lectures, we saw how regularization

More information

Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization. Author: Martin Jaggi Presenter: Zhongxing Peng

Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization. Author: Martin Jaggi Presenter: Zhongxing Peng Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization Author: Martin Jaggi Presenter: Zhongxing Peng Outline 1. Theoretical Results 2. Applications Outline 1. Theoretical Results 2. Applications

More information

Machine Learning Lecture 9

Machine Learning Lecture 9 Course Outline Machine Learning Lecture 9 Fundamentals ( weeks) Bayes Decision Theory Probability Density Estimation Nonlinear SVMs 19.05.013 Discriminative Approaches (5 weeks) Linear Discriminant Functions

More information

Support Vector Machines

Support Vector Machines Support Vector Machines RBF-networks Support Vector Machines Good Decision Boundary Optimization Problem Soft margin Hyperplane Non-linear Decision Boundary Kernel-Trick Approximation Accurancy Overtraining

More information

Variable Selection 6.783, Biomedical Decision Support

Variable Selection 6.783, Biomedical Decision Support 6.783, Biomedical Decision Support (lrosasco@mit.edu) Department of Brain and Cognitive Science- MIT November 2, 2009 About this class Why selecting variables Approaches to variable selection Sparsity-based

More information

Metric Learning. (and incidentally some distributed optimization) Aurélien Bellet

Metric Learning. (and incidentally some distributed optimization) Aurélien Bellet Metric Learning (and incidentally some distributed optimization) Aurélien Bellet Joint work with A. Habrard and M. Sebban (LaHC St-Etienne), A. Bagheri Garakani, K. Liu, F. Sha and Y. Shi (USC), Y. Liang

More information

scikit-learn (Machine Learning in Python)

scikit-learn (Machine Learning in Python) scikit-learn (Machine Learning in Python) (PB13007115) 2016-07-12 (PB13007115) scikit-learn (Machine Learning in Python) 2016-07-12 1 / 29 Outline 1 Introduction 2 scikit-learn examples 3 Captcha recognize

More information

Support Vector Machines (a brief introduction) Adrian Bevan.

Support Vector Machines (a brief introduction) Adrian Bevan. Support Vector Machines (a brief introduction) Adrian Bevan email: a.j.bevan@qmul.ac.uk Outline! Overview:! Introduce the problem and review the various aspects that underpin the SVM concept.! Hard margin

More information

COMS 4771 Support Vector Machines. Nakul Verma

COMS 4771 Support Vector Machines. Nakul Verma COMS 4771 Support Vector Machines Nakul Verma Last time Decision boundaries for classification Linear decision boundary (linear classification) The Perceptron algorithm Mistake bound for the perceptron

More information

Parallel and Distributed Sparse Optimization Algorithms

Parallel and Distributed Sparse Optimization Algorithms Parallel and Distributed Sparse Optimization Algorithms Part I Ruoyu Li 1 1 Department of Computer Science and Engineering University of Texas at Arlington March 19, 2015 Ruoyu Li (UTA) Parallel and Distributed

More information

- - Tues 14 March Tyler Neylon

- - Tues 14 March Tyler Neylon - - + + + Linear Sparsity in Machine Learning + Tues 14 March 2006 Tyler Neylon 00001000110000000000100000000000100 Outline Introduction Intuition for sparse linear classifiers Previous Work Sparsity in

More information

ELEG Compressive Sensing and Sparse Signal Representations

ELEG Compressive Sensing and Sparse Signal Representations ELEG 867 - Compressive Sensing and Sparse Signal Representations Gonzalo R. Arce Depart. of Electrical and Computer Engineering University of Delaware Fall 211 Compressive Sensing G. Arce Fall, 211 1 /

More information

A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization and continuation [Wen,Yin,Goldfarb,Zhang 2009]

A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization and continuation [Wen,Yin,Goldfarb,Zhang 2009] A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization and continuation [Wen,Yin,Goldfarb,Zhang 2009] Yongjia Song University of Wisconsin-Madison April 22, 2010 Yongjia Song

More information

Support Vector Machines.

Support Vector Machines. Support Vector Machines srihari@buffalo.edu SVM Discussion Overview 1. Overview of SVMs 2. Margin Geometry 3. SVM Optimization 4. Overlapping Distributions 5. Relationship to Logistic Regression 6. Dealing

More information

Parallel Methods for Convex Optimization. A. Devarakonda, J. Demmel, K. Fountoulakis, M. Mahoney

Parallel Methods for Convex Optimization. A. Devarakonda, J. Demmel, K. Fountoulakis, M. Mahoney Parallel Methods for Convex Optimization A. Devarakonda, J. Demmel, K. Fountoulakis, M. Mahoney Problems minimize g(x)+f(x; A, b) Sparse regression g(x) =kxk 1 f(x) =kax bk 2 2 mx Sparse SVM g(x) =kxk

More information

The Alternating Direction Method of Multipliers

The Alternating Direction Method of Multipliers The Alternating Direction Method of Multipliers Customizable software solver package Peter Sutor, Jr. Project Advisor: Professor Tom Goldstein April 27, 2016 1 / 28 Background The Dual Problem Consider

More information

SVMs for Structured Output. Andrea Vedaldi

SVMs for Structured Output. Andrea Vedaldi SVMs for Structured Output Andrea Vedaldi SVM struct Tsochantaridis Hofmann Joachims Altun 04 Extending SVMs 3 Extending SVMs SVM = parametric function arbitrary input binary output 3 Extending SVMs SVM

More information

Lecture 9: Support Vector Machines

Lecture 9: Support Vector Machines Lecture 9: Support Vector Machines William Webber (william@williamwebber.com) COMP90042, 2014, Semester 1, Lecture 8 What we ll learn in this lecture Support Vector Machines (SVMs) a highly robust and

More information

Support Vector Machines

Support Vector Machines Support Vector Machines RBF-networks Support Vector Machines Good Decision Boundary Optimization Problem Soft margin Hyperplane Non-linear Decision Boundary Kernel-Trick Approximation Accurancy Overtraining

More information

Support Vector Machines. James McInerney Adapted from slides by Nakul Verma

Support Vector Machines. James McInerney Adapted from slides by Nakul Verma Support Vector Machines James McInerney Adapted from slides by Nakul Verma Last time Decision boundaries for classification Linear decision boundary (linear classification) The Perceptron algorithm Mistake

More information

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 1: Introduction to Optimization. Instructor: Shaddin Dughmi

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 1: Introduction to Optimization. Instructor: Shaddin Dughmi CS599: Convex and Combinatorial Optimization Fall 013 Lecture 1: Introduction to Optimization Instructor: Shaddin Dughmi Outline 1 Course Overview Administrivia 3 Linear Programming Outline 1 Course Overview

More information

COMP331/557. Chapter 2: The Geometry of Linear Programming. (Bertsimas & Tsitsiklis, Chapter 2)

COMP331/557. Chapter 2: The Geometry of Linear Programming. (Bertsimas & Tsitsiklis, Chapter 2) COMP331/557 Chapter 2: The Geometry of Linear Programming (Bertsimas & Tsitsiklis, Chapter 2) 49 Polyhedra and Polytopes Definition 2.1. Let A 2 R m n and b 2 R m. a set {x 2 R n A x b} is called polyhedron

More information

Linear programming and duality theory

Linear programming and duality theory Linear programming and duality theory Complements of Operations Research Giovanni Righini Linear Programming (LP) A linear program is defined by linear constraints, a linear objective function. Its variables

More information

Machine Learning under a Modern Optimization Lens

Machine Learning under a Modern Optimization Lens Machine Learning under a Modern Optimization Lens Dimitris Bertsimas Operations Research Center Massachusetts Institute of Technology January 2018 Bertsimas (MIT) ML and Modern Optimization January 2018

More information

Machine Learning. Support Vector Machines. Fabio Vandin November 20, 2017

Machine Learning. Support Vector Machines. Fabio Vandin November 20, 2017 Machine Learning Support Vector Machines Fabio Vandin November 20, 2017 1 Classification and Margin Consider a classification problem with two classes: instance set X = R d label set Y = { 1, 1}. Training

More information

Introduction to ANSYS DesignXplorer

Introduction to ANSYS DesignXplorer Lecture 4 14. 5 Release Introduction to ANSYS DesignXplorer 1 2013 ANSYS, Inc. September 27, 2013 s are functions of different nature where the output parameters are described in terms of the input parameters

More information

Bilevel Sparse Coding

Bilevel Sparse Coding Adobe Research 345 Park Ave, San Jose, CA Mar 15, 2013 Outline 1 2 The learning model The learning algorithm 3 4 Sparse Modeling Many types of sensory data, e.g., images and audio, are in high-dimensional

More information

Data preprocessing Functional Programming and Intelligent Algorithms

Data preprocessing Functional Programming and Intelligent Algorithms Data preprocessing Functional Programming and Intelligent Algorithms Que Tran Høgskolen i Ålesund 20th March 2017 1 Why data preprocessing? Real-world data tend to be dirty incomplete: lacking attribute

More information

Support vector machines

Support vector machines Support vector machines When the data is linearly separable, which of the many possible solutions should we prefer? SVM criterion: maximize the margin, or distance between the hyperplane and the closest

More information

arxiv: v1 [cs.cg] 14 Oct 2014

arxiv: v1 [cs.cg] 14 Oct 2014 Randomized Triangle Algorithms for Convex Hull Membership Bahman Kalantari Department of Computer Science, Rutgers University, NJ kalantari@cs.rutgers.edu arxiv:1410.3564v1 [cs.cg] 14 Oct 2014 Abstract

More information

CMU-Q Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization. Teacher: Gianni A. Di Caro

CMU-Q Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization. Teacher: Gianni A. Di Caro CMU-Q 15-381 Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization Teacher: Gianni A. Di Caro GLOBAL FUNCTION OPTIMIZATION Find the global maximum of the function f x (and

More information

Kernel l1-minimization: Application to Kernel Sparse Representation based Classification

Kernel l1-minimization: Application to Kernel Sparse Representation based Classification Kernel l-minimization: Application to Kernel Sparse Representation based Classification Anupriya Gogna and Angshul Majumdar Indraprastha Institute of Information echnology, Delhi, India anupriyag@iiitd.ac.in

More information

Non-Parametric Bayesian Dictionary Learning for Sparse Image Representations

Non-Parametric Bayesian Dictionary Learning for Sparse Image Representations Non-Parametric Bayesian Dictionary Learning for Sparse Image Representations Mingyuan Zhou, Haojun Chen, John Paisley, Lu Ren, 1 Guillermo Sapiro and Lawrence Carin Department of Electrical and Computer

More information

Lecture 21 May 21, 2018

Lecture 21 May 21, 2018 Stats 300C: Theory of Statistics Spring 208 Lecture 2 May 2, 208 Prof. Emmanuel Candes Scrie: Sergio Camelo, Govinda Kamath, edited y Elena Tuzhilina Agenda. The Lasso 2. The Lasso dual 3. SURE for Lasso

More information

Convex Optimization: from Real-Time Embedded to Large-Scale Distributed

Convex Optimization: from Real-Time Embedded to Large-Scale Distributed Convex Optimization: from Real-Time Embedded to Large-Scale Distributed Stephen Boyd Neal Parikh, Eric Chu, Yang Wang, Jacob Mattingley Electrical Engineering Department, Stanford University Springer Lectures,

More information

I How does the formulation (5) serve the purpose of the composite parameterization

I How does the formulation (5) serve the purpose of the composite parameterization Supplemental Material to Identifying Alzheimer s Disease-Related Brain Regions from Multi-Modality Neuroimaging Data using Sparse Composite Linear Discrimination Analysis I How does the formulation (5)

More information

A General Greedy Approximation Algorithm with Applications

A General Greedy Approximation Algorithm with Applications A General Greedy Approximation Algorithm with Applications Tong Zhang IBM T.J. Watson Research Center Yorktown Heights, NY 10598 tzhang@watson.ibm.com Abstract Greedy approximation algorithms have been

More information

Sparsity and image processing

Sparsity and image processing Sparsity and image processing Aurélie Boisbunon INRIA-SAM, AYIN March 6, Why sparsity? Main advantages Dimensionality reduction Fast computation Better interpretability Image processing pattern recognition

More information

Assignment 5. Machine Learning, Summer term 2014, Ulrike von Luxburg To be discussed in exercise groups on May 19-21

Assignment 5. Machine Learning, Summer term 2014, Ulrike von Luxburg To be discussed in exercise groups on May 19-21 Assignment 5 Machine Learning, Summer term 204, Ulrike von Luxburg To be discussed in exercise groups on May 9-2 Exercise (Primal hard margin SVM problem, +3 points) Given training data (X i, Y i ) i=,...,n

More information

Large Scale Manifold Transduction

Large Scale Manifold Transduction Large Scale Manifold Transduction Michael Karlen, Jason Weston, Ayse Erkan & Ronan Collobert NEC Labs America, Princeton, USA Ećole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland New York University,

More information

Support Vector. Machines. Algorithms, and Extensions. Optimization Based Theory, Naiyang Deng YingjieTian. Chunhua Zhang.

Support Vector. Machines. Algorithms, and Extensions. Optimization Based Theory, Naiyang Deng YingjieTian. Chunhua Zhang. Support Vector Machines Optimization Based Theory, Algorithms, and Extensions Naiyang Deng YingjieTian Chunhua Zhang CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint

More information

Penalty Alternating Direction Methods for Mixed- Integer Optimization: A New View on Feasibility Pumps

Penalty Alternating Direction Methods for Mixed- Integer Optimization: A New View on Feasibility Pumps Penalty Alternating Direction Methods for Mixed- Integer Optimization: A New View on Feasibility Pumps Björn Geißler, Antonio Morsi, Lars Schewe, Martin Schmidt FAU Erlangen-Nürnberg, Discrete Optimization

More information

Some Advanced Topics in Linear Programming

Some Advanced Topics in Linear Programming Some Advanced Topics in Linear Programming Matthew J. Saltzman July 2, 995 Connections with Algebra and Geometry In this section, we will explore how some of the ideas in linear programming, duality theory,

More information

Leave-One-Out Support Vector Machines

Leave-One-Out Support Vector Machines Leave-One-Out Support Vector Machines Jason Weston Department of Computer Science Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 OEX, UK. Abstract We present a new learning algorithm

More information

CSE 417T: Introduction to Machine Learning. Lecture 22: The Kernel Trick. Henry Chai 11/15/18

CSE 417T: Introduction to Machine Learning. Lecture 22: The Kernel Trick. Henry Chai 11/15/18 CSE 417T: Introduction to Machine Learning Lecture 22: The Kernel Trick Henry Chai 11/15/18 Linearly Inseparable Data What can we do if the data is not linearly separable? Accept some non-zero in-sample

More information

Linear methods for supervised learning

Linear methods for supervised learning Linear methods for supervised learning LDA Logistic regression Naïve Bayes PLA Maximum margin hyperplanes Soft-margin hyperplanes Least squares resgression Ridge regression Nonlinear feature maps Sometimes

More information

Understanding multivariate pattern analysis for neuroimaging applications

Understanding multivariate pattern analysis for neuroimaging applications Understanding multivariate pattern analysis for neuroimaging applications Dimitri Van De Ville Medical Image Processing Lab, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne Department

More information

Topics in Machine Learning

Topics in Machine Learning Topics in Machine Learning Gilad Lerman School of Mathematics University of Minnesota Text/slides stolen from G. James, D. Witten, T. Hastie, R. Tibshirani and A. Ng Machine Learning - Motivation Arthur

More information

Convex and Distributed Optimization. Thomas Ropars

Convex and Distributed Optimization. Thomas Ropars >>> Presentation of this master2 course Convex and Distributed Optimization Franck Iutzeler Jérôme Malick Thomas Ropars Dmitry Grishchenko from LJK, the applied maths and computer science laboratory and

More information

Lecture 10: SVM Lecture Overview Support Vector Machines The binary classification problem

Lecture 10: SVM Lecture Overview Support Vector Machines The binary classification problem Computational Learning Theory Fall Semester, 2012/13 Lecture 10: SVM Lecturer: Yishay Mansour Scribe: Gitit Kehat, Yogev Vaknin and Ezra Levin 1 10.1 Lecture Overview In this lecture we present in detail

More information

CS675: Convex and Combinatorial Optimization Spring 2018 Consequences of the Ellipsoid Algorithm. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Spring 2018 Consequences of the Ellipsoid Algorithm. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Spring 2018 Consequences of the Ellipsoid Algorithm Instructor: Shaddin Dughmi Outline 1 Recapping the Ellipsoid Method 2 Complexity of Convex Optimization

More information

Large-Scale Lasso and Elastic-Net Regularized Generalized Linear Models

Large-Scale Lasso and Elastic-Net Regularized Generalized Linear Models Large-Scale Lasso and Elastic-Net Regularized Generalized Linear Models DB Tsai Steven Hillion Outline Introduction Linear / Nonlinear Classification Feature Engineering - Polynomial Expansion Big-data

More information

Linear and Integer Programming :Algorithms in the Real World. Related Optimization Problems. How important is optimization?

Linear and Integer Programming :Algorithms in the Real World. Related Optimization Problems. How important is optimization? Linear and Integer Programming 15-853:Algorithms in the Real World Linear and Integer Programming I Introduction Geometric Interpretation Simplex Method Linear or Integer programming maximize z = c T x

More information

Thorsten Joachims Then: Universität Dortmund, Germany Now: Cornell University, USA

Thorsten Joachims Then: Universität Dortmund, Germany Now: Cornell University, USA Retrospective ICML99 Transductive Inference for Text Classification using Support Vector Machines Thorsten Joachims Then: Universität Dortmund, Germany Now: Cornell University, USA Outline The paper in

More information

EE 8591 Homework 4 (10 pts) Fall 2018 SOLUTIONS Topic: SVM classification and regression GRADING: Problems 1,2,4 3pts each, Problem 3 1 point.

EE 8591 Homework 4 (10 pts) Fall 2018 SOLUTIONS Topic: SVM classification and regression GRADING: Problems 1,2,4 3pts each, Problem 3 1 point. 1 EE 8591 Homework 4 (10 pts) Fall 2018 SOLUTIONS Topic: SVM classification and regression GRADING: Problems 1,2,4 3pts each, Problem 3 1 point. Problem 1 (problem 7.6 from textbook) C=10e- 4 C=10e- 3

More information

Finite Math Linear Programming 1 May / 7

Finite Math Linear Programming 1 May / 7 Linear Programming Finite Math 1 May 2017 Finite Math Linear Programming 1 May 2017 1 / 7 General Description of Linear Programming Finite Math Linear Programming 1 May 2017 2 / 7 General Description of

More information

Risk bounds for some classification and regression models that interpolate

Risk bounds for some classification and regression models that interpolate Risk bounds for some classification and regression models that interpolate Daniel Hsu Columbia University Joint work with: Misha Belkin (The Ohio State University) Partha Mitra (Cold Spring Harbor Laboratory)

More information

No more questions will be added

No more questions will be added CSC 2545, Spring 2017 Kernel Methods and Support Vector Machines Assignment 2 Due at the start of class, at 2:10pm, Thurs March 23. No late assignments will be accepted. The material you hand in should

More information

Learning via Optimization

Learning via Optimization Lecture 7 1 Outline 1. Optimization Convexity 2. Linear regression in depth Locally weighted linear regression 3. Brief dips Logistic Regression [Stochastic] gradient ascent/descent Support Vector Machines

More information

KBSVM: KMeans-based SVM for Business Intelligence

KBSVM: KMeans-based SVM for Business Intelligence Association for Information Systems AIS Electronic Library (AISeL) AMCIS 2004 Proceedings Americas Conference on Information Systems (AMCIS) December 2004 KBSVM: KMeans-based SVM for Business Intelligence

More information

A Geometric Analysis of Subspace Clustering with Outliers

A Geometric Analysis of Subspace Clustering with Outliers A Geometric Analysis of Subspace Clustering with Outliers Mahdi Soltanolkotabi and Emmanuel Candés Stanford University Fundamental Tool in Data Mining : PCA Fundamental Tool in Data Mining : PCA Subspace

More information

Behavioral Data Mining. Lecture 10 Kernel methods and SVMs

Behavioral Data Mining. Lecture 10 Kernel methods and SVMs Behavioral Data Mining Lecture 10 Kernel methods and SVMs Outline SVMs as large-margin linear classifiers Kernel methods SVM algorithms SVMs as large-margin classifiers margin The separating plane maximizes

More information

Composite Self-concordant Minimization

Composite Self-concordant Minimization Composite Self-concordant Minimization Volkan Cevher Laboratory for Information and Inference Systems-LIONS Ecole Polytechnique Federale de Lausanne (EPFL) volkan.cevher@epfl.ch Paris 6 Dec 11, 2013 joint

More information

Gradient Boosted Feature Selection. Zhixiang (Eddie) Xu, Gao Huang, Kilian Q. Weinberger, Alice X. Zheng

Gradient Boosted Feature Selection. Zhixiang (Eddie) Xu, Gao Huang, Kilian Q. Weinberger, Alice X. Zheng Gradient Boosted Feature Selection Zhixiang (Eddie) Xu, Gao Huang, Kilian Q. Weinberger, Alice X. Zheng 1 Goals of feature selection Reliably extract relevant features Identify non-linear feature dependency

More information

Machine Learning: Think Big and Parallel

Machine Learning: Think Big and Parallel Day 1 Inderjit S. Dhillon Dept of Computer Science UT Austin CS395T: Topics in Multicore Programming Oct 1, 2013 Outline Scikit-learn: Machine Learning in Python Supervised Learning day1 Regression: Least

More information

Training Data Selection for Support Vector Machines

Training Data Selection for Support Vector Machines Training Data Selection for Support Vector Machines Jigang Wang, Predrag Neskovic, and Leon N Cooper Institute for Brain and Neural Systems, Physics Department, Brown University, Providence RI 02912, USA

More information

Convex Optimization MLSS 2015

Convex Optimization MLSS 2015 Convex Optimization MLSS 2015 Constantine Caramanis The University of Texas at Austin The Optimization Problem minimize : f (x) subject to : x X. The Optimization Problem minimize : f (x) subject to :

More information

Data Mining Practical Machine Learning Tools and Techniques. Slides for Chapter 6 of Data Mining by I. H. Witten and E. Frank

Data Mining Practical Machine Learning Tools and Techniques. Slides for Chapter 6 of Data Mining by I. H. Witten and E. Frank Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 6 of Data Mining by I. H. Witten and E. Frank Implementation: Real machine learning schemes Decision trees Classification

More information

Image Restoration and Background Separation Using Sparse Representation Framework

Image Restoration and Background Separation Using Sparse Representation Framework Image Restoration and Background Separation Using Sparse Representation Framework Liu, Shikun Abstract In this paper, we introduce patch-based PCA denoising and k-svd dictionary learning method for the

More information

Stat 602X Exam 2 Spring 2011

Stat 602X Exam 2 Spring 2011 Stat 60X Exam Spring 0 I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed . Below is a small p classification training set (for classes) displayed in

More information

Kernel Methods & Support Vector Machines

Kernel Methods & Support Vector Machines & Support Vector Machines & Support Vector Machines Arvind Visvanathan CSCE 970 Pattern Recognition 1 & Support Vector Machines Question? Draw a single line to separate two classes? 2 & Support Vector

More information

Generative and discriminative classification techniques

Generative and discriminative classification techniques Generative and discriminative classification techniques Machine Learning and Category Representation 013-014 Jakob Verbeek, December 13+0, 013 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.13.14

More information

Lecture 5: Linear Classification

Lecture 5: Linear Classification Lecture 5: Linear Classification CS 194-10, Fall 2011 Laurent El Ghaoui EECS Department UC Berkeley September 8, 2011 Outline Outline Data We are given a training data set: Feature vectors: data points

More information

Perceptron Learning Algorithm

Perceptron Learning Algorithm Perceptron Learning Algorithm An iterative learning algorithm that can find linear threshold function to partition linearly separable set of points. Assume zero threshold value. 1) w(0) = arbitrary, j=1,

More information

Practice EXAM: SPRING 2012 CS 6375 INSTRUCTOR: VIBHAV GOGATE

Practice EXAM: SPRING 2012 CS 6375 INSTRUCTOR: VIBHAV GOGATE Practice EXAM: SPRING 0 CS 6375 INSTRUCTOR: VIBHAV GOGATE The exam is closed book. You are allowed four pages of double sided cheat sheets. Answer the questions in the spaces provided on the question sheets.

More information

Linear Models. Lecture Outline: Numeric Prediction: Linear Regression. Linear Classification. The Perceptron. Support Vector Machines

Linear Models. Lecture Outline: Numeric Prediction: Linear Regression. Linear Classification. The Perceptron. Support Vector Machines Linear Models Lecture Outline: Numeric Prediction: Linear Regression Linear Classification The Perceptron Support Vector Machines Reading: Chapter 4.6 Witten and Frank, 2nd ed. Chapter 4 of Mitchell Solving

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Maximum Margin Methods Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574

More information

Kernel SVM. Course: Machine Learning MAHDI YAZDIAN-DEHKORDI FALL 2017

Kernel SVM. Course: Machine Learning MAHDI YAZDIAN-DEHKORDI FALL 2017 Kernel SVM Course: MAHDI YAZDIAN-DEHKORDI FALL 2017 1 Outlines SVM Lagrangian Primal & Dual Problem Non-linear SVM & Kernel SVM SVM Advantages Toolboxes 2 SVM Lagrangian Primal/DualProblem 3 SVM LagrangianPrimalProblem

More information

RECOVERY OF PARTIALLY OBSERVED DATA APPEARING IN CLUSTERS. Sunrita Poddar, Mathews Jacob

RECOVERY OF PARTIALLY OBSERVED DATA APPEARING IN CLUSTERS. Sunrita Poddar, Mathews Jacob RECOVERY OF PARTIALLY OBSERVED DATA APPEARING IN CLUSTERS Sunrita Poddar, Mathews Jacob Department of Electrical and Computer Engineering The University of Iowa, IA, USA ABSTRACT We propose a matrix completion

More information

Machine Learning (CSE 446): Unsupervised Learning

Machine Learning (CSE 446): Unsupervised Learning Machine Learning (CSE 446): Unsupervised Learning Sham M Kakade c 2018 University of Washington cse446-staff@cs.washington.edu 1 / 19 Announcements HW2 posted. Due Feb 1. It is long. Start this week! Today:

More information