Solving a Challenging Quadratic 3D Assignment Problem

Size: px
Start display at page:

Download "Solving a Challenging Quadratic 3D Assignment Problem"

Transcription

1 Solving a Challenging Quadratic 3D Assignment Problem Hans Mittelmann Arizona State University Domenico Salvagnin DEI - University of Padova

2 Quadratic 3D Assignment Problem

3 Quadratic 3D Assignment Problem

4 Quadratic 3D Assignment Problem

5 Quadratic 3D Assignment Problem

6 Quadratic 3D Assignment Problem quadratic objective

7 Our Instance 16-PSK digital communication retransmission protocol

8 Our Instance 16-PSK digital communication retransmission protocol

9 Our Instance 16-PSK digital communication retransmission protocol

10 Our Instance 16-PSK digital communication retransmission protocol cost of assigning to strings i and p the symbols j and q in the first transmission and k and r in the second

11 Our Instance 16-PSK digital communication retransmission protocol cost of assigning to strings i and p the symbols j and q in the first transmission and k and r in the second extremely dense objective: >12M coefficients

12 Our Instance 16-PSK digital communication retransmission protocol cost of assigning to strings i and p the symbols j and q in the first transmission and k and r in the second extremely dense objective: >12M coefficients high dynamism 3.6 x 10 12

13 Our Instance 16-PSK digital communication retransmission protocol cost of assigning to strings i and p the symbols j and q in the first transmission and k and r in the second extremely dense objective: >12M coefficients high dynamism 3.6 x symmetric: group of order

14 Parallel mode: deterministic, using up to 16 threads. Root relaxation solution time = sec. ( ticks)! Nodes Cuts/! Node Left Objective IInf Best Integer Best Bound ItCnt Gap * % % Cuts: % Cuts: % Heuristic still looking % Elapsed time = sec. ( ticks, tree = 0.01 MB, solutions = 1) % e % cutoff e % e % e % Elapsed time = sec. ( ticks, tree = MB, solutions = 1) Nodefile size = MB ( MB after compression) e % e % e % e % e % cutoff e %

15 Parallel mode: deterministic, using up to 16 threads. Root relaxation solution time = sec. ( ticks)! Nodes Cuts/! Node Left Objective IInf Best Integer Best Bound ItCnt Gap * % % Cuts: % Cuts: % Heuristic still looking % Elapsed time = sec. ( ticks, tree = 0.01 MB, solutions = 1) % e % cutoff e % e % e % Elapsed time = sec. ( ticks, tree = MB, solutions = 1) Nodefile size = MB ( MB after compression) e % e % e % e % e % cutoff e % Extremely Challenging for MIP solvers

16 1. lightweight MIP model

17 1. lightweight MIP model 2. cutting planes

18 1. lightweight MIP model 2. cutting planes 3. symmetry handling

19 How did we solve it?

20 Lightweight MIP model

21 Lightweight MIP model

22 Lightweight MIP model

23 Lightweight MIP model variables and constraints

24 Lightweight MIP model variables and constraints superweak dual bound

25 Cutting Planes I

26 Cutting Planes I computed by solving a LINEAR 3D assignment problem

27 Cutting Planes I computed by solving a LINEAR 3D assignment problem NP-hard in theory, quite cheap in practice

28 Cutting Planes I computed by solving a LINEAR 3D assignment problem NP-hard in theory, quite cheap in practice can exploit additional constraints (if available) both global and local

29 Cutting Planes I

30 Cutting Planes II

31 Cutting Planes II computed by solving a MIP

32 Cutting Planes II computed by solving a MIP increase consistency between pairs of artificial variables

33 Cutting Planes II computed by solving a MIP increase consistency between pairs of artificial variables not significantly harder than family 1

34 Cutting Planes II computed by solving a MIP increase consistency between pairs of artificial variables not significantly harder than family 1 need to be conservative with separation

35 Cutting Planes II

36 Symmetry Handling binary variables can be partitioned into 6 orbits

37 Symmetry Handling binary variables can be partitioned into 6 orbits

38 Symmetry Handling binary variables can be partitioned into 6 orbits sums within orbits stay the same

39 Symmetry Handling binary variables can be partitioned into 6 orbits sums within orbits stay the same aggregated variables as first level decisions

40 Symmetry Handling

41 Symmetry Handling symmetry decomposition based on orbital shrinking

42 Symmetry Handling symmetry decomposition based on orbital shrinking we enumerate all possible aggregated solutions (with Gecode)

43 Symmetry Handling symmetry decomposition based on orbital shrinking we enumerate all possible aggregated solutions (with Gecode) only 85!

44 Symmetry Handling symmetry decomposition based on orbital shrinking we enumerate all possible aggregated solutions (with Gecode) only 85! for each we solve a MIP subproblem to find the best solution therein

45 Symmetry Handling symmetry decomposition based on orbital shrinking we enumerate all possible aggregated solutions (with Gecode) only 85! for each we solve a MIP subproblem to find the best solution therein isomorphism pruning within sub-mips exploit symmetry twice!!!

46 Aggregated Model 6 orbits 6 y variables

47 Nice Interplay between techniques symmetry decomposition MIP model cutting planes

48 Is it enough?

49 Is it enough? NO!

50 Primal Heuristics

51 Primal Heuristics MIP solvers have lots of trouble in finding good solutions for assignment problems

52 Primal Heuristics MIP solvers have lots of trouble in finding good solutions for assignment problems We implemented an ILS metaheuristic from the literature

53 Primal Heuristics MIP solvers have lots of trouble in finding good solutions for assignment problems We implemented an ILS metaheuristic from the literature We could find the (later proven) optimal solution in a few minutes :-)

54 Primal Heuristics MIP solvers have lots of trouble in finding good solutions for assignment problems We implemented an ILS metaheuristic from the literature We could find the (later proven) optimal solution in a few minutes :-)

55 Branching Order

56 Branching Order Rank variables by decreasing values of Lijk

57 Branching Order Rank variables by decreasing values of Lijk Improves dual bound fast (higher priority variables are the most expensive ones)

58 Branching Order Rank variables by decreasing values of Lijk Improves dual bound fast (higher priority variables are the most expensive ones) Plays well with isomorphism pruning

59 Parameter Tuning

60 Parameter Tuning opportunistic (nondeterministic) parallel mode (much faster)

61 Parameter Tuning opportunistic (nondeterministic) parallel mode (much faster) separate cutting planes only if the number of variables fixed to 1 at the current node is in [2,12] and only for fractional variables

62 Parameter Tuning opportunistic (nondeterministic) parallel mode (much faster) separate cutting planes only if the number of variables fixed to 1 at the current node is in [2,12] and only for fractional variables cuts are added only if at least 10 are significantly violated

63 Parameter Tuning opportunistic (nondeterministic) parallel mode (much faster) separate cutting planes only if the number of variables fixed to 1 at the current node is in [2,12] and only for fractional variables cuts are added only if at least 10 are significantly violated expensive cuts are separated only if one of the two controlling variables is already fixed to 1

64 Parameter Tuning opportunistic (nondeterministic) parallel mode (much faster) separate cutting planes only if the number of variables fixed to 1 at the current node is in [2,12] and only for fractional variables cuts are added only if at least 10 are significantly violated expensive cuts are separated only if one of the two controlling variables is already fixed to 1 used indicator constraints to speed up LPs

65 Scaling

66 Scaling we scaled the objective coefficients by 10 6 and rounded down, in order to improve the numerical properties of the model (reduced dynamism and increased sparsity)

67 Scaling we scaled the objective coefficients by 10 6 and rounded down, in order to improve the numerical properties of the model (reduced dynamism and increased sparsity) resulting LP objective values (multiplied by the same factor) are still valid dual bounds

68 Scaling we scaled the objective coefficients by 10 6 and rounded down, in order to improve the numerical properties of the model (reduced dynamism and increased sparsity) resulting LP objective values (multiplied by the same factor) are still valid dual bounds primal solutions are evaluated with the exact coefficients

69 Computational Results subproblems count time nodes

70 Computational Results subproblems count time nodes easy 45 2,

71 Computational Results subproblems count time nodes easy 45 2, medium 25 53, ,000

72 Computational Results subproblems count time nodes easy 45 2, medium 25 53, ,000 hard ,900 2,240,000

73 Computational Results subproblems count time nodes easy 45 2, medium 25 53, ,000 hard ,900 2,240,000 total ,200 2,477,950

74 Computational Results subproblems count time nodes easy 45 2, medium 25 53, ,000 hard ,900 2,240,000 total ,200 2,477,950 less than one week on a desktop PC!

75 Conclusions

76 Conclusions solved biggest Q3AP instance to date

77 Conclusions solved biggest Q3AP instance to date had fun :-)

78 Conclusions solved biggest Q3AP instance to date had fun :-) developed (extended) techniques that can be used for other Q3APs and (more importantly) QAPs and beyond

79 Selected Literature Pierskalla: The multi-dimensional assignment problem. Operations Research 16, (1968) Hahn, Kim, Stützle, Kanthak, Hightower, Samra, Ding, Guignard: The quadratic three-dimensional assignment problem: Exact and approximate solution methods. EJOR 184, (2008) Fischetti, Monaci, Salvagnin: Three ideas for the quadratic assignment problem. Operations Research 60(4), (2012) Stützle: Iterated local search for the quadratic assignment problem. EJOR 174, (2006) Wu, Mittelmann, Wang, Wang: On computation of performance bounds of optimal index assignment. IEEE Transactions on Communications 59, (2011) Margot: Symmetry in Integer Linear Programming. 50 Years of Integer Programming , (2010)

80 Thanks for your attention!! Questions?

Solving a Challenging Quadratic 3D Assignment Problem

Solving a Challenging Quadratic 3D Assignment Problem Solving a Challenging Quadratic 3D Assignment Problem Hans Mittelmann Arizona State University Domenico Salvagnin DEI - University of Padova Quadratic 3D Assignment Problem Quadratic 3D Assignment Problem

More information

The Heuristic (Dark) Side of MIP Solvers. Asja Derviskadic, EPFL Vit Prochazka, NHH Christoph Schaefer, EPFL

The Heuristic (Dark) Side of MIP Solvers. Asja Derviskadic, EPFL Vit Prochazka, NHH Christoph Schaefer, EPFL The Heuristic (Dark) Side of MIP Solvers Asja Derviskadic, EPFL Vit Prochazka, NHH Christoph Schaefer, EPFL 1 Table of content [Lodi], The Heuristic (Dark) Side of MIP Solvers, Hybrid Metaheuristics, 273-284,

More information

Outline. Column Generation: Cutting Stock A very applied method. Introduction to Column Generation. Given an LP problem

Outline. Column Generation: Cutting Stock A very applied method. Introduction to Column Generation. Given an LP problem Column Generation: Cutting Stock A very applied method thst@man.dtu.dk Outline History The Simplex algorithm (re-visited) Column Generation as an extension of the Simplex algorithm A simple example! DTU-Management

More information

Column Generation: Cutting Stock

Column Generation: Cutting Stock Column Generation: Cutting Stock A very applied method thst@man.dtu.dk DTU-Management Technical University of Denmark 1 Outline History The Simplex algorithm (re-visited) Column Generation as an extension

More information

The MIP-Solving-Framework SCIP

The MIP-Solving-Framework SCIP The MIP-Solving-Framework SCIP Timo Berthold Zuse Institut Berlin DFG Research Center MATHEON Mathematics for key technologies Berlin, 23.05.2007 What Is A MIP? Definition MIP The optimization problem

More information

Motivation for Heuristics

Motivation for Heuristics MIP Heuristics 1 Motivation for Heuristics Why not wait for branching? Produce feasible solutions as quickly as possible Often satisfies user demands Avoid exploring unproductive sub trees Better reduced

More information

Using the ODH-CPLEX Python Interface. Alkis Vazacopoulos Robert Ashford Optimization Direct Inc. April 2018

Using the ODH-CPLEX Python Interface. Alkis Vazacopoulos Robert Ashford Optimization Direct Inc. April 2018 Using the ODH-CPLEX Python Interface Alkis Vazacopoulos Robert Ashford Optimization Direct Inc. April 2018 Summary Look at simple CPLEX Python examples in Python model file-resident model See how to use

More information

Selected Topics in Column Generation

Selected Topics in Column Generation Selected Topics in Column Generation February 1, 2007 Choosing a solver for the Master Solve in the dual space(kelly s method) by applying a cutting plane algorithm In the bundle method(lemarechal), a

More information

The Gurobi Solver V1.0

The Gurobi Solver V1.0 The Gurobi Solver V1.0 Robert E. Bixby Gurobi Optimization & Rice University Ed Rothberg, Zonghao Gu Gurobi Optimization 1 1 Oct 09 Overview Background Rethinking the MIP solver Introduction Tree of Trees

More information

Primal Heuristics in SCIP

Primal Heuristics in SCIP Primal Heuristics in SCIP Timo Berthold Zuse Institute Berlin DFG Research Center MATHEON Mathematics for key technologies Berlin, 10/11/2007 Outline 1 Introduction Basics Integration Into SCIP 2 Available

More information

Exploiting Degeneracy in MIP

Exploiting Degeneracy in MIP Exploiting Degeneracy in MIP Tobias Achterberg 9 January 2018 Aussois Performance Impact in Gurobi 7.5+ 35% 32.0% 30% 25% 20% 15% 14.6% 10% 5.7% 7.9% 6.6% 5% 0% 2.9% 1.2% 0.1% 2.6% 2.6% Time limit: 10000

More information

Improving Dual Bound for Stochastic MILP Models Using Sensitivity Analysis

Improving Dual Bound for Stochastic MILP Models Using Sensitivity Analysis Improving Dual Bound for Stochastic MILP Models Using Sensitivity Analysis Vijay Gupta Ignacio E. Grossmann Department of Chemical Engineering Carnegie Mellon University, Pittsburgh Bora Tarhan ExxonMobil

More information

Gomory Reloaded. Matteo Fischetti, DEI, University of Padova (joint work with Domenico Salvagnin) 1 MIP 2010

Gomory Reloaded. Matteo Fischetti, DEI, University of Padova (joint work with Domenico Salvagnin) 1 MIP 2010 Gomory Reloaded Matteo Fischetti, DEI, University of Padova (joint work with Domenico Salvagnin) 1 Cutting planes (cuts) We consider a general MIPs of the form min { c x : A x = b, x 0, x j integer for

More information

Fundamentals of Integer Programming

Fundamentals of Integer Programming Fundamentals of Integer Programming Di Yuan Department of Information Technology, Uppsala University January 2018 Outline Definition of integer programming Formulating some classical problems with integer

More information

February 19, Integer programming. Outline. Problem formulation. Branch-andbound

February 19, Integer programming. Outline. Problem formulation. Branch-andbound Olga Galinina olga.galinina@tut.fi ELT-53656 Network Analysis and Dimensioning II Department of Electronics and Communications Engineering Tampere University of Technology, Tampere, Finland February 19,

More information

Benders in a nutshell Matteo Fischetti, University of Padova

Benders in a nutshell Matteo Fischetti, University of Padova Benders in a nutshell Matteo Fischetti, University of Padova ODS 2017, Sorrento, September 2017 1 Benders decomposition The original Benders decomposition from the 1960s uses two distinct ingredients for

More information

Welcome to the Webinar. What s New in Gurobi 7.5

Welcome to the Webinar. What s New in Gurobi 7.5 Welcome to the Webinar What s New in Gurobi 7.5 Speaker Introduction Dr. Tobias Achterberg Director of R&D at Gurobi Optimization Formerly a developer at ILOG, where he worked on CPLEX 11.0 to 12.6 Obtained

More information

Column Generation Based Primal Heuristics

Column Generation Based Primal Heuristics Column Generation Based Primal Heuristics C. Joncour, S. Michel, R. Sadykov, D. Sverdlov, F. Vanderbeck University Bordeaux 1 & INRIA team RealOpt Outline 1 Context Generic Primal Heuristics The Branch-and-Price

More information

The Gurobi Optimizer. Bob Bixby

The Gurobi Optimizer. Bob Bixby The Gurobi Optimizer Bob Bixby Outline Gurobi Introduction Company Products Benchmarks Gurobi Technology Rethinking MIP MIP as a bag of tricks 8-Jul-11 2010 Gurobi Optimization 2 Gurobi Optimization Incorporated

More information

Modern Benders (in a nutshell)

Modern Benders (in a nutshell) Modern Benders (in a nutshell) Matteo Fischetti, University of Padova (based on joint work with Ivana Ljubic and Markus Sinnl) Lunteren Conference on the Mathematics of Operations Research, January 17,

More information

Minimum Weight Constrained Forest Problems. Problem Definition

Minimum Weight Constrained Forest Problems. Problem Definition Slide 1 s Xiaoyun Ji, John E. Mitchell Department of Mathematical Sciences Rensselaer Polytechnic Institute Troy, NY, USA jix@rpi.edu, mitchj@rpi.edu 2005 Optimization Days Montreal, Canada May 09, 2005

More information

Cloud Branching MIP workshop, Ohio State University, 23/Jul/2014

Cloud Branching MIP workshop, Ohio State University, 23/Jul/2014 Cloud Branching MIP workshop, Ohio State University, 23/Jul/2014 Timo Berthold Xpress Optimization Team Gerald Gamrath Zuse Institute Berlin Domenico Salvagnin Universita degli Studi di Padova This presentation

More information

3 INTEGER LINEAR PROGRAMMING

3 INTEGER LINEAR PROGRAMMING 3 INTEGER LINEAR PROGRAMMING PROBLEM DEFINITION Integer linear programming problem (ILP) of the decision variables x 1,..,x n : (ILP) subject to minimize c x j j n j= 1 a ij x j x j 0 x j integer n j=

More information

Gurobi Guidelines for Numerical Issues February 2017

Gurobi Guidelines for Numerical Issues February 2017 Gurobi Guidelines for Numerical Issues February 2017 Background Models with numerical issues can lead to undesirable results: slow performance, wrong answers or inconsistent behavior. When solving a model

More information

Heuristics in Commercial MIP Solvers Part I (Heuristics in IBM CPLEX)

Heuristics in Commercial MIP Solvers Part I (Heuristics in IBM CPLEX) Andrea Tramontani CPLEX Optimization, IBM CWI, Amsterdam, June 12, 2018 Heuristics in Commercial MIP Solvers Part I (Heuristics in IBM CPLEX) Agenda CPLEX Branch-and-Bound (B&B) Primal heuristics in CPLEX

More information

On the selection of Benders cuts

On the selection of Benders cuts Mathematical Programming manuscript No. (will be inserted by the editor) On the selection of Benders cuts Matteo Fischetti Domenico Salvagnin Arrigo Zanette Received: date / Revised 23 February 2010 /Accepted:

More information

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture - 35 Quadratic Programming In this lecture, we continue our discussion on

More information

Branch-and-cut implementation of Benders decomposition Matteo Fischetti, University of Padova

Branch-and-cut implementation of Benders decomposition Matteo Fischetti, University of Padova Branch-and-cut implementation of Benders decomposition Matteo Fischetti, University of Padova 8th Cargese-Porquerolles Workshop on Combinatorial Optimization, August 2017 1 Mixed-Integer Programming We

More information

A hybrid MIP/CP approach for multi-activity shift scheduling

A hybrid MIP/CP approach for multi-activity shift scheduling A hybrid MIP/CP approach for multi-activity shift scheduling Domenico Salvagnin 1 and Toby Walsh 2 1 DEI, University of Padova 2 NICTA and UNSW, Sydney Abstract. We propose a hybrid MIP/CP approach for

More information

Tutorial on Integer Programming for Visual Computing

Tutorial on Integer Programming for Visual Computing Tutorial on Integer Programming for Visual Computing Peter Wonka and Chi-han Peng November 2018 1 1 Notation The vector space is denoted as R,R n,r m n,v,w Matricies are denoted by upper case, italic,

More information

Integer Programming ISE 418. Lecture 7. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 7. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 7 Dr. Ted Ralphs ISE 418 Lecture 7 1 Reading for This Lecture Nemhauser and Wolsey Sections II.3.1, II.3.6, II.4.1, II.4.2, II.5.4 Wolsey Chapter 7 CCZ Chapter 1 Constraint

More information

Crash-Starting the Simplex Method

Crash-Starting the Simplex Method Crash-Starting the Simplex Method Ivet Galabova Julian Hall School of Mathematics, University of Edinburgh Optimization Methods and Software December 2017 Ivet Galabova, Julian Hall Crash-Starting Simplex

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms

MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms Ann-Brith Strömberg 2018 04 24 Lecture 9 Linear and integer optimization with applications

More information

A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem

A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem Presented by: Ted Ralphs Joint work with: Leo Kopman Les Trotter Bill Pulleyblank 1 Outline of Talk Introduction Description

More information

BOOLEAN MATRIX FACTORIZATIONS. with applications in data mining Pauli Miettinen

BOOLEAN MATRIX FACTORIZATIONS. with applications in data mining Pauli Miettinen BOOLEAN MATRIX FACTORIZATIONS with applications in data mining Pauli Miettinen MATRIX FACTORIZATIONS BOOLEAN MATRIX FACTORIZATIONS o THE BOOLEAN MATRIX PRODUCT As normal matrix product, but with addition

More information

How to use your favorite MIP Solver: modeling, solving, cannibalizing. Andrea Lodi University of Bologna, Italy

How to use your favorite MIP Solver: modeling, solving, cannibalizing. Andrea Lodi University of Bologna, Italy How to use your favorite MIP Solver: modeling, solving, cannibalizing Andrea Lodi University of Bologna, Italy andrea.lodi@unibo.it January-February, 2012 @ Universität Wien A. Lodi, How to use your favorite

More information

Integer Programming as Projection

Integer Programming as Projection Integer Programming as Projection H. P. Williams London School of Economics John Hooker Carnegie Mellon University INFORMS 2015, Philadelphia USA A Different Perspective on IP Projection of an IP onto

More information

Linear & Integer Programming: A Decade of Computation

Linear & Integer Programming: A Decade of Computation Linear & Integer Programming: A Decade of Computation Robert E. Bixby, Mary Fenelon, Zongao Gu, Irv Lustig, Ed Rothberg, Roland Wunderling 1 Outline Progress in computing machines Linear programming (LP)

More information

Solving lexicographic multiobjective MIPs with Branch-Cut-Price

Solving lexicographic multiobjective MIPs with Branch-Cut-Price Solving lexicographic multiobjective MIPs with Branch-Cut-Price Marta Eso (The Hotchkiss School) Laszlo Ladanyi (IBM T.J. Watson Research Center) David Jensen (IBM T.J. Watson Research Center) McMaster

More information

Exact solutions to mixed-integer linear programming problems

Exact solutions to mixed-integer linear programming problems Exact solutions to mixed-integer linear programming problems Dan Steffy Zuse Institute Berlin and Oakland University Joint work with Bill Cook, Thorsten Koch and Kati Wolter November 18, 2011 Mixed-Integer

More information

lpsymphony - Integer Linear Programming in R

lpsymphony - Integer Linear Programming in R lpsymphony - Integer Linear Programming in R Vladislav Kim October 30, 2017 Contents 1 Introduction 2 2 lpsymphony: Quick Start 2 3 Integer Linear Programming 5 31 Equivalent and Dual Formulations 5 32

More information

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming algorithms Ann-Brith Strömberg 2009 04 15 Methods for ILP: Overview (Ch. 14.1) Enumeration Implicit enumeration: Branch and bound Relaxations Decomposition methods:

More information

Heuristics in MILP. Group 1 D. Assouline, N. Molyneaux, B. Morén. Supervisors: Michel Bierlaire, Andrea Lodi. Zinal 2017 Winter School

Heuristics in MILP. Group 1 D. Assouline, N. Molyneaux, B. Morén. Supervisors: Michel Bierlaire, Andrea Lodi. Zinal 2017 Winter School Heuristics in MILP Group 1 D. Assouline, N. Molyneaux, B. Morén Supervisors: Michel Bierlaire, Andrea Lodi Zinal 2017 Winter School 0 / 23 Primal heuristics Original paper: Fischetti, M. and Lodi, A. (2011).

More information

Using ODHeuristics To Solve Hard Mixed Integer Programming Problems. Alkis Vazacopoulos Robert Ashford Optimization Direct Inc.

Using ODHeuristics To Solve Hard Mixed Integer Programming Problems. Alkis Vazacopoulos Robert Ashford Optimization Direct Inc. Using ODHeuristics To Solve Hard Mixed Integer Programming Problems Alkis Vazacopoulos Robert Ashford Optimization Direct Inc. February 2017 Summary Challenges of Large Scale Optimization Exploiting parallel

More information

What's New in Gurobi 7.0

What's New in Gurobi 7.0 What's New in Gurobi 7.0 What's New? New employees New features in 7.0 Major and minor Performance improvements New Gurobi Instant Cloud 2 The newest members of the Gurobi team Daniel Espinoza Senior Developer

More information

B553 Lecture 12: Global Optimization

B553 Lecture 12: Global Optimization B553 Lecture 12: Global Optimization Kris Hauser February 20, 2012 Most of the techniques we have examined in prior lectures only deal with local optimization, so that we can only guarantee convergence

More information

Solving the Euclidean Steiner Tree Problem in n-space

Solving the Euclidean Steiner Tree Problem in n-space Solving the Euclidean Steiner Tree Problem in n-space Marcia Fampa (UFRJ), Jon Lee (U. Michigan), and Wendel Melo (UFRJ) January 2015 Marcia Fampa, Jon Lee, Wendel Melo Solving the Euclidean Steiner Tree

More information

Using Multiple Machines to Solve Models Faster with Gurobi 6.0

Using Multiple Machines to Solve Models Faster with Gurobi 6.0 Using Multiple Machines to Solve Models Faster with Gurobi 6.0 Distributed Algorithms in Gurobi 6.0 Gurobi 6.0 includes 3 distributed algorithms Distributed concurrent LP (new in 6.0) MIP Distributed MIP

More information

Topics. Introduction. Specific tuning/troubleshooting topics "It crashed" Gurobi parameters The tuning tool. LP tuning. MIP tuning

Topics. Introduction. Specific tuning/troubleshooting topics It crashed Gurobi parameters The tuning tool. LP tuning. MIP tuning Tuning II Topics Introduction Gurobi parameters The tuning tool Specific tuning/troubleshooting topics "It crashed" The importance of being specific LP tuning The importance of scaling MIP tuning Performance

More information

Exact and Heuristic Approaches for Directional Sensor Control

Exact and Heuristic Approaches for Directional Sensor Control Noname manuscript No. (will be inserted by the editor) Exact and Heuristic Approaches for Directional Sensor Control Hans D. Mittelmann Domenico Salvagnin the date of receipt and acceptance should be inserted

More information

Computational Integer Programming. Lecture 12: Branch and Cut. Dr. Ted Ralphs

Computational Integer Programming. Lecture 12: Branch and Cut. Dr. Ted Ralphs Computational Integer Programming Lecture 12: Branch and Cut Dr. Ted Ralphs Computational MILP Lecture 12 1 Reading for This Lecture Wolsey Section 9.6 Nemhauser and Wolsey Section II.6 Martin Computational

More information

DFS* and the Traveling Tournament Problem. David C. Uthus, Patricia J. Riddle, and Hans W. Guesgen

DFS* and the Traveling Tournament Problem. David C. Uthus, Patricia J. Riddle, and Hans W. Guesgen DFS* and the Traveling Tournament Problem David C. Uthus, Patricia J. Riddle, and Hans W. Guesgen Traveling Tournament Problem Sports scheduling combinatorial optimization problem. Objective is to create

More information

Algorithms for Integer Programming

Algorithms for Integer Programming Algorithms for Integer Programming Laura Galli November 9, 2016 Unlike linear programming problems, integer programming problems are very difficult to solve. In fact, no efficient general algorithm is

More information

Assignment 3b: The traveling salesman problem

Assignment 3b: The traveling salesman problem Chalmers University of Technology MVE165 University of Gothenburg MMG631 Mathematical Sciences Linear and integer optimization Optimization with applications Emil Gustavsson Assignment information Ann-Brith

More information

56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998

56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998 56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998 Part A: Answer any four of the five problems. (15 points each) 1. Transportation problem 2. Integer LP Model Formulation

More information

On Mixed-Integer (Linear) Programming and its connection with Data Science

On Mixed-Integer (Linear) Programming and its connection with Data Science On Mixed-Integer (Linear) Programming and its connection with Data Science Andrea Lodi Canada Excellence Research Chair École Polytechnique de Montréal, Québec, Canada andrea.lodi@polymtl.ca January 16-20,

More information

Advanced Use of GAMS Solver Links

Advanced Use of GAMS Solver Links Advanced Use of GAMS Solver Links Michael Bussieck, Steven Dirkse, Stefan Vigerske GAMS Development 8th January 2013, ICS Conference, Santa Fe Standard GAMS solve Solve william minimizing cost using mip;

More information

Lagrangean Methods bounding through penalty adjustment

Lagrangean Methods bounding through penalty adjustment Lagrangean Methods bounding through penalty adjustment thst@man.dtu.dk DTU-Management Technical University of Denmark 1 Outline Brief introduction How to perform Lagrangean relaxation Subgradient techniques

More information

Wireless frequency auctions: Mixed Integer Programs and Dantzig-Wolfe decomposition

Wireless frequency auctions: Mixed Integer Programs and Dantzig-Wolfe decomposition Wireless frequency auctions: Mixed Integer Programs and Dantzig-Wolfe decomposition Laszlo Ladanyi (IBM T.J. Watson Research Center) joint work with Marta Eso (The Hotchkiss School) David Jensen (IBM T.J.

More information

George Reloaded. M. Monaci (University of Padova, Italy) joint work with M. Fischetti. MIP Workshop, July 2010

George Reloaded. M. Monaci (University of Padova, Italy) joint work with M. Fischetti. MIP Workshop, July 2010 George Reloaded M. Monaci (University of Padova, Italy) joint work with M. Fischetti MIP Workshop, July 2010 Why George? Because of Karzan, Nemhauser, Savelsbergh Information-based branching schemes for

More information

Detecting and exploiting permutation structures in MIPs

Detecting and exploiting permutation structures in MIPs Detecting and exploiting permutation structures in MIPs Domenico Salvagnin DEI, University of Padova, salvagni@dei.unipd.it Abstract. Many combinatorial optimization problems can be formulated as the search

More information

Benders Decomposition

Benders Decomposition Benders Decomposition Using projections to solve problems thst@man.dtu.dk DTU-Management Technical University of Denmark 1 Outline Introduction Using projections Benders decomposition Simple plant location

More information

Hybrid ARQ Symbol Mapping in Digital Wireless Communication Systems Based on the Quadratic 3-dimensional Assignment Problem (Q3AP)

Hybrid ARQ Symbol Mapping in Digital Wireless Communication Systems Based on the Quadratic 3-dimensional Assignment Problem (Q3AP) SF GRAT #0400155 SF PROGRAM AME: Operations Research Hybrid ARQ Symbol Mapping in Digital Wireless Communication Systems Based on the Quadratic 3-dimensional Assignment Problem (Q3AP) Lead P.I. Monique

More information

9.4 SOME CHARACTERISTICS OF INTEGER PROGRAMS A SAMPLE PROBLEM

9.4 SOME CHARACTERISTICS OF INTEGER PROGRAMS A SAMPLE PROBLEM 9.4 SOME CHARACTERISTICS OF INTEGER PROGRAMS A SAMPLE PROBLEM Whereas the simplex method is effective for solving linear programs, there is no single technique for solving integer programs. Instead, a

More information

Link Dimensioning and LSP Optimization for MPLS Networks Supporting DiffServ EF and BE Classes

Link Dimensioning and LSP Optimization for MPLS Networks Supporting DiffServ EF and BE Classes Link Dimensioning and LSP Optimization for MPLS Networks Supporting DiffServ EF and BE Classes Kehang Wu Douglas S. Reeves Capacity Planning for QoS DiffServ + MPLS QoS in core networks DiffServ provides

More information

Integer and Combinatorial Optimization

Integer and Combinatorial Optimization Integer and Combinatorial Optimization GEORGE NEMHAUSER School of Industrial and Systems Engineering Georgia Institute of Technology Atlanta, Georgia LAURENCE WOLSEY Center for Operations Research and

More information

Parallel Branch & Bound

Parallel Branch & Bound Parallel Branch & Bound Bernard Gendron Université de Montréal gendron@iro.umontreal.ca Outline Mixed integer programming (MIP) and branch & bound (B&B) Linear programming (LP) based B&B Relaxation and

More information

Investigating Mixed-Integer Hulls using a MIP-Solver

Investigating Mixed-Integer Hulls using a MIP-Solver Investigating Mixed-Integer Hulls using a MIP-Solver Matthias Walter Otto-von-Guericke Universität Magdeburg Joint work with Volker Kaibel (OvGU) Aussois Combinatorial Optimization Workshop 2015 Outline

More information

Graph Coloring via Constraint Programming-based Column Generation

Graph Coloring via Constraint Programming-based Column Generation Graph Coloring via Constraint Programming-based Column Generation Stefano Gualandi Federico Malucelli Dipartimento di Elettronica e Informatica, Politecnico di Milano Viale Ponzio 24/A, 20133, Milan, Italy

More information

Algorithms II MIP Details

Algorithms II MIP Details Algorithms II MIP Details What s Inside Gurobi Optimizer Algorithms for continuous optimization Algorithms for discrete optimization Automatic presolve for both LP and MIP Algorithms to analyze infeasible

More information

Cost Optimal Parallel Algorithm for 0-1 Knapsack Problem

Cost Optimal Parallel Algorithm for 0-1 Knapsack Problem Cost Optimal Parallel Algorithm for 0-1 Knapsack Problem Project Report Sandeep Kumar Ragila Rochester Institute of Technology sr5626@rit.edu Santosh Vodela Rochester Institute of Technology pv8395@rit.edu

More information

Assessing Performance of Parallel MILP Solvers

Assessing Performance of Parallel MILP Solvers Assessing Performance of Parallel MILP Solvers How Are We Doing, Really? Ted Ralphs 1 Stephen J. Maher 2, Yuji Shinano 3 1 COR@L Lab, Lehigh University, Bethlehem, PA USA 2 Lancaster University, Lancaster,

More information

Handling first-order linear constraints with SCIP

Handling first-order linear constraints with SCIP Handling first-order linear constraints with SCIP James Cussens, University of York KU Leuven, 2015-02-16 James Cussens, University of York FO with SCIP KU Leuven, 2015-02-16 1 / 18 MIP Mixed integer programs

More information

Randomized rounding of semidefinite programs and primal-dual method for integer linear programming. Reza Moosavi Dr. Saeedeh Parsaeefard Dec.

Randomized rounding of semidefinite programs and primal-dual method for integer linear programming. Reza Moosavi Dr. Saeedeh Parsaeefard Dec. Randomized rounding of semidefinite programs and primal-dual method for integer linear programming Dr. Saeedeh Parsaeefard 1 2 3 4 Semidefinite Programming () 1 Integer Programming integer programming

More information

SUBSTITUTING GOMORY CUTTING PLANE METHOD TOWARDS BALAS ALGORITHM FOR SOLVING BINARY LINEAR PROGRAMMING

SUBSTITUTING GOMORY CUTTING PLANE METHOD TOWARDS BALAS ALGORITHM FOR SOLVING BINARY LINEAR PROGRAMMING Bulletin of Mathematics Vol. 06, No. 0 (20), pp.. SUBSTITUTING GOMORY CUTTING PLANE METHOD TOWARDS BALAS ALGORITHM FOR SOLVING BINARY LINEAR PROGRAMMING Eddy Roflin, Sisca Octarina, Putra B. J Bangun,

More information

Pure Cutting Plane Methods for ILP: a computational perspective

Pure Cutting Plane Methods for ILP: a computational perspective Pure Cutting Plane Methods for ILP: a computational perspective Matteo Fischetti, DEI, University of Padova Rorschach test for OR disorders: can you see the tree? 1 Outline 1. Pure cutting plane methods

More information

Primal Heuristics for Branch-and-Price Algorithms

Primal Heuristics for Branch-and-Price Algorithms Primal Heuristics for Branch-and-Price Algorithms Marco Lübbecke and Christian Puchert Abstract In this paper, we present several primal heuristics which we implemented in the branch-and-price solver GCG

More information

Received: 27 October 2008 / Accepted: 1 September 2009 / Published online: 17 September 2009 Springer and Mathematical Programming Society 2009

Received: 27 October 2008 / Accepted: 1 September 2009 / Published online: 17 September 2009 Springer and Mathematical Programming Society 2009 Math. Prog. Comp. (2009) 1:201 222 DOI 10.1007/s12532-009-0007-3 FULL LENGTH PAPER Feasibility pump 2.0 Matteo Fischetti Domenico Salvagnin Received: 27 October 2008 / Accepted: 1 September 2009 / Published

More information

Machine Learning for Software Engineering

Machine Learning for Software Engineering Machine Learning for Software Engineering Introduction and Motivation Prof. Dr.-Ing. Norbert Siegmund Intelligent Software Systems 1 2 Organizational Stuff Lectures: Tuesday 11:00 12:30 in room SR015 Cover

More information

Randomized User-Centric Clustering for Cloud Radio Access Network with PHY Caching

Randomized User-Centric Clustering for Cloud Radio Access Network with PHY Caching Randomized User-Centric Clustering for Cloud Radio Access Network with PHY Caching An Liu, Vincent LAU and Wei Han the Hong Kong University of Science and Technology Background 2 Cloud Radio Access Networks

More information

On the Global Solution of Linear Programs with Linear Complementarity Constraints

On the Global Solution of Linear Programs with Linear Complementarity Constraints On the Global Solution of Linear Programs with Linear Complementarity Constraints J. E. Mitchell 1 J. Hu 1 J.-S. Pang 2 K. P. Bennett 1 G. Kunapuli 1 1 Department of Mathematical Sciences RPI, Troy, NY

More information

SUBSTITUTING GOMORY CUTTING PLANE METHOD TOWARDS BALAS ALGORITHM FOR SOLVING BINARY LINEAR PROGRAMMING

SUBSTITUTING GOMORY CUTTING PLANE METHOD TOWARDS BALAS ALGORITHM FOR SOLVING BINARY LINEAR PROGRAMMING ASIAN JOURNAL OF MATHEMATICS AND APPLICATIONS Volume 2014, Article ID ama0156, 11 pages ISSN 2307-7743 http://scienceasia.asia SUBSTITUTING GOMORY CUTTING PLANE METHOD TOWARDS BALAS ALGORITHM FOR SOLVING

More information

Experiments On General Disjunctions

Experiments On General Disjunctions Experiments On General Disjunctions Some Dumb Ideas We Tried That Didn t Work* and Others We Haven t Tried Yet *But that may provide some insight Ted Ralphs, Serdar Yildiz COR@L Lab, Department of Industrial

More information

A LARGE SCALE INTEGER AND COMBINATORIAL OPTIMIZER

A LARGE SCALE INTEGER AND COMBINATORIAL OPTIMIZER A LARGE SCALE INTEGER AND COMBINATORIAL OPTIMIZER By Qun Chen A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Industrial Engineering) at the

More information

Improved Gomory Cuts for Primal Cutting Plane Algorithms

Improved Gomory Cuts for Primal Cutting Plane Algorithms Improved Gomory Cuts for Primal Cutting Plane Algorithms S. Dey J-P. Richard Industrial Engineering Purdue University INFORMS, 2005 Outline 1 Motivation The Basic Idea Set up the Lifting Problem How to

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Given an NP-hard problem, what should be done? Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one of three desired features. Solve problem to optimality.

More information

56:272 Integer Programming & Network Flows Final Exam -- December 16, 1997

56:272 Integer Programming & Network Flows Final Exam -- December 16, 1997 56:272 Integer Programming & Network Flows Final Exam -- December 16, 1997 Answer #1 and any five of the remaining six problems! possible score 1. Multiple Choice 25 2. Traveling Salesman Problem 15 3.

More information

Column Generation and its applications

Column Generation and its applications Column Generation and its applications Murat Firat, dept. IE&IS, TU/e BPI Cluster meeting Outline Some real-life decision problems Standard formulations Basics of Column Generation Master formulations

More information

Solving Difficult MIP Problems using GAMS and Condor

Solving Difficult MIP Problems using GAMS and Condor Solving Difficult MIP Problems using GAMS and Condor Michael R. Bussieck MBussieck@gams.com GAMS Software GmbH http://www.gams.de Michael C. Ferris Ferris@cs.wisc.edu University of Wisconsin-Madison http://www.cs.wisc.edu/~ferris/

More information

Column Generation Method for an Agent Scheduling Problem

Column Generation Method for an Agent Scheduling Problem Column Generation Method for an Agent Scheduling Problem Balázs Dezső Alpár Jüttner Péter Kovács Dept. of Algorithms and Their Applications, and Dept. of Operations Research Eötvös Loránd University, Budapest,

More information

Integer Programming Chapter 9

Integer Programming Chapter 9 1 Integer Programming Chapter 9 University of Chicago Booth School of Business Kipp Martin October 30, 2017 2 Outline Branch and Bound Theory Branch and Bound Linear Programming Node Selection Strategies

More information

A Computational Study of Conflict Graphs and Aggressive Cut Separation in Integer Programming

A Computational Study of Conflict Graphs and Aggressive Cut Separation in Integer Programming A Computational Study of Conflict Graphs and Aggressive Cut Separation in Integer Programming Samuel Souza Brito and Haroldo Gambini Santos 1 Dep. de Computação, Universidade Federal de Ouro Preto - UFOP

More information

15.083J Integer Programming and Combinatorial Optimization Fall Enumerative Methods

15.083J Integer Programming and Combinatorial Optimization Fall Enumerative Methods 5.8J Integer Programming and Combinatorial Optimization Fall 9 A knapsack problem Enumerative Methods Let s focus on maximization integer linear programs with only binary variables For example: a knapsack

More information

An Extension of the Multicut L-Shaped Method. INEN Large-Scale Stochastic Optimization Semester project. Svyatoslav Trukhanov

An Extension of the Multicut L-Shaped Method. INEN Large-Scale Stochastic Optimization Semester project. Svyatoslav Trukhanov An Extension of the Multicut L-Shaped Method INEN 698 - Large-Scale Stochastic Optimization Semester project Svyatoslav Trukhanov December 13, 2005 1 Contents 1 Introduction and Literature Review 3 2 Formal

More information

Integrating Mixed-Integer Optimisation & Satisfiability Modulo Theories

Integrating Mixed-Integer Optimisation & Satisfiability Modulo Theories Integrating Mixed-Integer Optimisation & Satisfiability Modulo Theories Application to Scheduling Miten Mistry and Ruth Misener Wednesday 11 th January, 2017 Mistry & Misener MIP & SMT Wednesday 11 th

More information

An Introduction to ODH CPLEX. Alkis Vazacopoulos Robert Ashford Optimization Direct Inc. April 2018

An Introduction to ODH CPLEX. Alkis Vazacopoulos Robert Ashford Optimization Direct Inc. April 2018 An Introduction to ODH CPLEX Alkis Vazacopoulos Robert Ashford Optimization Direct Inc. April 2018 Summary New features Challenges of Large Scale Optimization The ODHeuristics approach ODHeuristics Engine

More information

Tree Search Stabilization by Random Sampling

Tree Search Stabilization by Random Sampling Noname manuscript No. (will be inserted by the editor) Tree Search Stabilization by Random Sampling Matteo Fischetti Andrea Lodi Michele Monaci Domenico Salvagnin Andrea Tramontani Submitted: September

More information

Search Algorithms. IE 496 Lecture 17

Search Algorithms. IE 496 Lecture 17 Search Algorithms IE 496 Lecture 17 Reading for This Lecture Primary Horowitz and Sahni, Chapter 8 Basic Search Algorithms Search Algorithms Search algorithms are fundamental techniques applied to solve

More information

Mathematical Tools for Engineering and Management

Mathematical Tools for Engineering and Management Mathematical Tools for Engineering and Management Lecture 8 8 Dec 0 Overview Models, Data and Algorithms Linear Optimization Mathematical Background: Polyhedra, Simplex-Algorithm Sensitivity Analysis;

More information

Discrete Optimization with Decision Diagrams

Discrete Optimization with Decision Diagrams Discrete Optimization with Decision Diagrams J. N. Hooker Joint work with David Bergman, André Ciré, Willem van Hoeve Carnegie Mellon University Australian OR Society, May 2014 Goal Find an alternative

More information