Bond-slip Reinforcements and Pile Foundations

Size: px
Start display at page:

Download "Bond-slip Reinforcements and Pile Foundations"

Transcription

1 Bond-slip Reinforcements and Pile Foundations Gerd-Jan Schreppers, January 2015 Abstract: This paper explains the concept and application of bond-slip reinforcements and pile foundations in DIANA. Basic assumptions and definitions will be discussed, as well as the pre-processing for bars in combination with different element types, specific loads, properties and material models. Introduction In the embedded reinforcement concept in DIANA the reinforcement particles share the displacement degrees of freedom with the continuum elements in which they are located. As a consequence no relative displacement between reinforcement and continuum element is allowed. For applications such as pull-out of anchors, post-tensioning of cables in concrete and even pile foundations, the frictional slip between bar and concrete or pile and soil is essential. Therefore, the concept of slipping reinforcements has been developed in DIANA as an alternative to the embedded reinforcement concept. In this paper the concept of slipping reinforcements is defined, which combines the efficient use of defining line reinforcements independent from the continuum elements connectivity, with slip between the line reinforcement and the continuum element. There are two main applications for slipping reinforcements: Bond-slip of a steel reinforcement bar in concrete continuum Concrete pile in soil For reading this paper it is recommended to read the white paper about Embedded reinfor-cements first. Basic Assumptions and Definitions Slip reinforcements are only available for lines in the following continuum elements: 2D plane stress elements 3D curved shell elements 3D solid elements The location of the slip reinforcements is defined similar to embedded reinforcements: independent from mesh of the continuum elements in which the reinforcement lines are located. In the preprocessing DIANA calculates the intersection of the reinforcement line and the individual continuum elements. Every reinforcement line is subdivided into particles which exactly match with one continuum element. Contrary to embedded reinforcements, slip reinforcements particles have their own displacement degrees of freedom and therefore can move relative to the element in which the particle is located. Internally in the DIANA program the slip reinforcement particles are converted to beam or truss elements which are connected by special interface elements to the continuum element in which the particle is located. Slip reinforcements are identified by the keyword in the element data of the reinforcement in MeshEdit. The keyword comes with the specification for the conditions where the particle shall be defined as a truss element and with the specification for the conditions where the particle shall be defined as a beam element. When the truss option is chosen a uniaxial stress condition is assumed in the line and no shear and bending is considered, similar to the embedded reinforcement concept. For steel bars with larger diameter, or bars passing heavily cracked concrete zones and shear loaded, or piles in soil, the beam element option, which includes shear and bending, is available. For slip reinforcements there is the option to define nonlinear point interfaces are the end points of the slip reinforcement. These nonlinear point interfaces define the interaction between the reinforcement end and the continuum element in which the end point is located. These point interfaces are indicated as tip interface elements and are defined by the keyword TIPLOC in the material properties for the reinforcement in table MATERI. The TIPLOC keyword comes with the options BEGIN for a tip interface only at the beginning of the reinforcement line, with the keyword END for a tip interface only at the end of the reinforcement line, or with the keyword BOTH for tip interfaces at the begin and end of the reinforcement line. When DIANA pre-processes the slip reinforcement particles, the program logs in the output file that the reinforcement is replaced by elements as follows: REINFORCEMENT 3 REPLACED BY NEW ELEMENTS to

2 Embedded Reinforcements Page 2 Slip reinforcement are defined by the following information: Location in the model keyword in the element data specification Material properties for both line and interface Optionally, the definition of tip interfaces at the end points of the slip reinforcement. In that case also the material properties for the tip interfaces must be defined. Geometrical data of beam or truss (crosssection and perimeter) Results of slip reinforcements are presented as reinforcement results. That means that both results of the beam or truss element and the line interface element are presented as results of the same reinforcement particle. Therefore, results in slip reinforcement particles can only be presented in the nodes of a particle and not in integration points.. Slip reinforcement use the default integration schemes for the beam and truss elements; no integration schemes can be defined by the user for slip reinforcements. Line-solid Interface Elements A line-solid interface element connects the beam or truss element to the continuum element in which the line element is located. The line-solid element is only used internally and is automatically generated. There are line-solid interface elements available for all solid elements with linear or quadratic interpolation schemes. Also the line side can have a linear (2 nodes) or quadratic (3 nodes) interpolation scheme. Linear solid elements can be combined only with linear lines, whereas quadratic solid elements can be combined only with quadratic lines. Line-solid interface elements can only be used in DIANA internally and cannot be explicitly defined by the user in DIANA input. line-solid element combinations in DIANA: Solid element TE12L L13BE L6TRU TP18L L13BE L6TRU HX24L L13BE L6TRU CTE30 CL18B CL9TR CTP45 CL18B CL9TR CHX60 CL18B CL9TR In the next figure the interface element that connects a 3-node beam of type CL18B to a solid element of type CHX60 is shown as example. Combination line-solid interface element that connects 3-node beam element to 20-node hexahedron element This interface element has three integration points, which are defined with a Newton-Cotes integration scheme on the line between the relative nodes 1, 2 and 3. For each of these integration points the displacement from the line nodes (nodes 1-3) is calculated by interpolation and the displacement from the solid nodes (nodes 4-23) is calculated. The relative displacement in the interface element is defined as the difference between these two displacements. For the interface element a material law is defined in terms of relative displacement in the direction of the line and the bond-stress-traction in the same direction. The bond-stress-traction is multiplied by the perimeter of the line element and integrated over the length of the line. From this distributed force along the line particle the equivalent forces in all nodes of the interface are calculated, which are used in the equilibrium check of the model. In the directions normal to the line high penalty stiffness is assumed. This stiffness is defined by the user as a material parameter. Similar to line-solid interface elements, line-plane interface elements are available for 2D plane stress elements and line-shell interface elements are available for 3D curved shell elements. line-plane element combinations in DIANA: Plane element T6MEM L13BE L6TRU Q8MEM L13BE L6TRU CT12M CL18B CL9TR CQ16M CL18B CL9TR line-shell element combinations in DIANA:

3 Embedded Reinforcements Page 3 Shell element T15SH L13BE L6TRU Q20SH L13BE L6TRU CT30S CL18B CL9TR CQ40S CL18B CL9TR T18SH L13BE L6TRU Q24SH L13BE L6TRU CT36S CL18B CL9TR CQ48S CL18B CL9TR CT30L CL18B CL9TR CQ40L CL18B CL9TR CT36L CL18B CL9TR CQ48L CL18B CL9TR Point-solid Interface Elements A point-solid interface element connects a point to a continuum element in which the point is located. The point-solid element is only used internally and is automatically generated. There are point-solid interface elements available for all solid elements with linear or quadratic interpolation schemes. Point-solid interface elements can only be used in DIANA internally and cannot be explicitly defined by the user in DIANA input. For the following solid elements point-solid Solid element type TE12L TP18L HX24L CTE30 CTP45 CHX60 In the next figure the connectivity of the interface element that connects a TE12L element to a point is shown as example of the point-solid interface element. Combination solid-point interface element that connects 1 point to 4-node tetrahedron element This element has one integration point which is located in the point in the body of the solid, in this figure indicated with 1. For this point, the relative displacement from this point to the displacement interpolated from the solid nodes (nodes 2-5) is calculated. For the interface element a material law is defined in terms of relative displacement in a user-defined direction and the force in the same direction. From this force the equivalent forces in all nodes of the interface are calculated, which are used in the equilibrium check of the model. In the directions normal to this direction high penalty stiffness is assumed. This stiffness is defined by the user as a material parameter. Similar to point-solid interface elements, pointinterface elements are available for 2D plane stress elements and for 3D curved shell elements. For the following plane membrane elements, pointplane Plane element type T6MEM Q8MEM CT12M CQ16M For the following curved shell elements, point-shell Shell element type T15SH Q20SH CT30S CQ40S T18SH Q24SH CT36S

4 Embedded Reinforcements Page 4 CQ48S CT30L CQ40L CT36L CQ48L Bar reinforcement in solid element Pre-processing Bar in plane stress elements Slip reinforcements can be defined in the earlier mentioned plane stress elements. Plane stress elements are automatically checked for intersection with a bar reinforcement specified with sections. A plane stress element embeds a particle of a bar section if it intersects one or two element edges, but none of them more than once. Bar reinforcement in plane stress element Bar reinforcement in curved shell elements Slip reinforcements can intersect all earlier mentioned curved shell elements. Curved shell elements are automatically checked for intersection with a bar reinforcement specified with sections. There are two conditions for a bar section to be identified in a curved shell element: (1) It must intersect one or two element edges, but none of them more than once; (2) The computed location points must be inside the thickness domain of the element. Bar reinforcement in curved shell element Bar reinforcement in solid elements Slip reinforcements can intersect all earlier mentioned solid elements. To include bar reinforcement in solid elements, DIANA needs for each solid element the location points of the particle that is embedded in that element. Load Nodal forces and prescribed displacements can be defined in the end nodes of slip reinforcements in the standard way. Connection to Other Elements When the end points of slip reinforcements are defined with nodes, the slip reinforcement can be connected to other elements by sharing these nodes. When end-points of slip reinforcement are defined with coordinates, their node-id can be defined with the element-data items BEGINN and ENDNOD in MeshEdit. When sharing nodes with elements is not possible, it can be considered to define for part of the slip reinforcement a very stiff bond, as if it is embedded in the respective elements. This is a very popular way for connecting slip reinforcements, representing foundation piles to a raft foundation which is modelled with shell or solid elements. Material Models for Bond-slip Reinforcements The material parameters of the bond-slip reinforcements define both the material for the beam or truss elements as for the interface elements. All available material models for the regular beam and truss elements can be applied. Linear elastic Von Mises elasto-plastic model with and without hardening For the interface elements the following models may be applied. Friction stress slip diagram Cubic bond-slip function by Dörr Power-law bond-slip by Noakowski Bond-slip function of Shima et al. For anchor or tip elements the following material models may be used.

5 Embedded Reinforcements Page 5 Force-relative displacement diagram Ultimate anchor force For more theoretical background about these models see the DIANA User s manual. The geometry properties of the truss or beam elements must be defined. For the interface elements the outer diameter d or the perimeter of the reinforcement should be specified. For rectangular (RECTAN), box (BOX), circular (CIRCLE), or pipe (PIPE) beam crosssections, DIANA calculates the diameter and perimeter internally. Therefore, specification of the diameter or perimeter is not required for these predefined cross-sections. DIANA uses the diameter or perimeter to convert the shaft stresses to cross-section forces per unit length. For reinforcements in shell or solid elements, there is no unique interface plane and DIANA needs a direction vector to set up the element axes. With respect to the geometric properties of the pile elements the same constraints can be made as for bond-slip reinforcements. Material Models for Pile Foundations The material parameters of the pile foundations define both the material for the beam elements as for the interface elements. All available material models for the beam elements can be applied. Below some typical material models for pile foundations are listed. Piles are usually modelled as linear elastic. For the pile shaft to soil interface elements the following models may be applied. can be defined as constant stiffness model or as stiffness varying linearly with depth. Friction stress slip diagram Ultimate shear shear-force per length can be defined as a constant ultimate shear force along the pile or as a maximum shear force that increases linearly with depth of the pile. Coulomb friction model with normal stress being the averaged horizontal stress in the soil at the location of the respective depth of pile. For pile tip interfaces the following material models may be used. Force-relative displacement diagram Ultimate pile tip force For more theoretical background about these models see the DIANA User s manual.

Embedded Reinforcements

Embedded Reinforcements Embedded Reinforcements Gerd-Jan Schreppers, January 2015 Abstract: This paper explains the concept and application of embedded reinforcements in DIANA. Basic assumptions and definitions, the pre-processing

More information

Buckling Analysis of a Thin Plate

Buckling Analysis of a Thin Plate Buckling Analysis of a Thin Plate Outline 1 Description 2 Modeling approach 3 Finite Element Model 3.1 Units 3.2 Geometry definition 3.3 Properties 3.4 Boundary conditions 3.5 Loads 3.6 Meshing 4 Structural

More information

Configuration Optimization of Anchoring Devices of Frame-Supported Membrane Structures for Maximum Clamping Force

Configuration Optimization of Anchoring Devices of Frame-Supported Membrane Structures for Maximum Clamping Force 6 th China Japan Korea Joint Symposium on Optimization of Structural and Mechanical Systems June 22-25, 200, Kyoto, Japan Configuration Optimization of Anchoring Devices of Frame-Supported Membrane Structures

More information

Revised Sheet Metal Simulation, J.E. Akin, Rice University

Revised Sheet Metal Simulation, J.E. Akin, Rice University Revised Sheet Metal Simulation, J.E. Akin, Rice University A SolidWorks simulation tutorial is just intended to illustrate where to find various icons that you would need in a real engineering analysis.

More information

Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering. Introduction

Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering. Introduction Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering Introduction A SolidWorks simulation tutorial is just intended to illustrate where to

More information

Reinforced concrete beam under static load: simulation of an experimental test

Reinforced concrete beam under static load: simulation of an experimental test Reinforced concrete beam under static load: simulation of an experimental test analys: nonlin physic. constr: suppor. elemen: bar cl12i cl3cm compos cq16m interf pstres reinfo struct. load: deform weight.

More information

Some Aspects for the Simulation of a Non-Linear Problem with Plasticity and Contact

Some Aspects for the Simulation of a Non-Linear Problem with Plasticity and Contact Some Aspects for the Simulation of a Non-Linear Problem with Plasticity and Contact Eduardo Luís Gaertner Marcos Giovani Dropa de Bortoli EMBRACO S.A. Abstract A linear elastic model is often not appropriate

More information

Module 1: Introduction to Finite Element Analysis. Lecture 4: Steps in Finite Element Analysis

Module 1: Introduction to Finite Element Analysis. Lecture 4: Steps in Finite Element Analysis 25 Module 1: Introduction to Finite Element Analysis Lecture 4: Steps in Finite Element Analysis 1.4.1 Loading Conditions There are multiple loading conditions which may be applied to a system. The load

More information

Example 24 Spring-back

Example 24 Spring-back Example 24 Spring-back Summary The spring-back simulation of sheet metal bent into a hat-shape is studied. The problem is one of the famous tests from the Numisheet 93. As spring-back is generally a quasi-static

More information

Guidelines for proper use of Plate elements

Guidelines for proper use of Plate elements Guidelines for proper use of Plate elements In structural analysis using finite element method, the analysis model is created by dividing the entire structure into finite elements. This procedure is known

More information

Deep Beam With Web Opening

Deep Beam With Web Opening Deep Beam With Web Opening Name: Path: Keywords: DeepBeamWithWebOpening/deepbeam /Examples//DeepBeamWithWebOpening/deepbeam analys: linear static. constr: suppor. elemen: cq16m ct12m pstres. load: force

More information

FB-MULTIPIER vs ADINA VALIDATION MODELING

FB-MULTIPIER vs ADINA VALIDATION MODELING FB-MULTIPIER vs ADINA VALIDATION MODELING 1. INTRODUCTION 1.1 Purpose of FB-MultiPier Validation testing Performing validation of structural analysis software delineates the capabilities and limitations

More information

FOUNDATION IN OVERCONSOLIDATED CLAY

FOUNDATION IN OVERCONSOLIDATED CLAY 1 FOUNDATION IN OVERCONSOLIDATED CLAY In this chapter a first application of PLAXIS 3D is considered, namely the settlement of a foundation in clay. This is the first step in becoming familiar with the

More information

Exercise 1. 3-Point Bending Using the GUI and the Bottom-up-Method

Exercise 1. 3-Point Bending Using the GUI and the Bottom-up-Method Exercise 1 3-Point Bending Using the GUI and the Bottom-up-Method Contents Learn how to... 1 Given... 2 Questions... 2 Taking advantage of symmetries... 2 A. Preprocessor (Setting up the Model)... 3 A.1

More information

Chapter 3 Analysis of Original Steel Post

Chapter 3 Analysis of Original Steel Post Chapter 3. Analysis of original steel post 35 Chapter 3 Analysis of Original Steel Post This type of post is a real functioning structure. It is in service throughout the rail network of Spain as part

More information

OPENSEES Soil-Pile Interaction Study under Lateral Spread Loading

OPENSEES Soil-Pile Interaction Study under Lateral Spread Loading OPENSEES Soil-Pile Interaction Study under Lateral Spread Loading Po-Lam - EarthMechanics Pedro Arduino UW Peter Mackenzie-Helnwein UW Overview Introduction Background & Common Practice 3D Analysis of

More information

Engineering Effects of Boundary Conditions (Fixtures and Temperatures) J.E. Akin, Rice University, Mechanical Engineering

Engineering Effects of Boundary Conditions (Fixtures and Temperatures) J.E. Akin, Rice University, Mechanical Engineering Engineering Effects of Boundary Conditions (Fixtures and Temperatures) J.E. Akin, Rice University, Mechanical Engineering Here SolidWorks stress simulation tutorials will be re-visited to show how they

More information

Solid and shell elements

Solid and shell elements Solid and shell elements Theodore Sussman, Ph.D. ADINA R&D, Inc, 2016 1 Overview 2D and 3D solid elements Types of elements Effects of element distortions Incompatible modes elements u/p elements for incompressible

More information

ATENA Program Documentation Part 4-2. Tutorial for Program ATENA 3D. Written by: Jan Červenka, Zdenka Procházková, Tereza Sajdlová

ATENA Program Documentation Part 4-2. Tutorial for Program ATENA 3D. Written by: Jan Červenka, Zdenka Procházková, Tereza Sajdlová Červenka Consulting s.ro. Na Hrebenkach 55 150 00 Prague Czech Republic Phone: +420 220 610 018 E-mail: cervenka@cervenka.cz Web: http://www.cervenka.cz ATENA Program Documentation Part 4-2 Tutorial for

More information

Elastic Analysis of a Deep Beam with Web Opening

Elastic Analysis of a Deep Beam with Web Opening Elastic Analysis of a Deep Beam with Web Opening Outline 1 Description 2 Finite Element Model 2.1 Units 2.2 Geometry definition 2.3 Properties 2.4 Boundary conditions 2.4.1 Constraints 2.4.2 Vertical load

More information

A pipe bend is subjected to a concentrated force as shown: y All dimensions in inches. Material is stainless steel.

A pipe bend is subjected to a concentrated force as shown: y All dimensions in inches. Material is stainless steel. Problem description A pipe bend is subjected to a concentrated force as shown: y 15 12 P 9 Displacement gauge Cross-section: 0.432 18 x 6.625 All dimensions in inches. Material is stainless steel. E =

More information

SETTLEMENT OF A CIRCULAR FOOTING ON SAND

SETTLEMENT OF A CIRCULAR FOOTING ON SAND 1 SETTLEMENT OF A CIRCULAR FOOTING ON SAND In this chapter a first application is considered, namely the settlement of a circular foundation footing on sand. This is the first step in becoming familiar

More information

CHAPTER 4 INCREASING SPUR GEAR TOOTH STRENGTH BY PROFILE MODIFICATION

CHAPTER 4 INCREASING SPUR GEAR TOOTH STRENGTH BY PROFILE MODIFICATION 68 CHAPTER 4 INCREASING SPUR GEAR TOOTH STRENGTH BY PROFILE MODIFICATION 4.1 INTRODUCTION There is a demand for the gears with higher load carrying capacity and increased fatigue life. Researchers in the

More information

Finite Element Model for Axial Stiffness of Metal-Plate-Connected Tension Splice Wood Truss Joint

Finite Element Model for Axial Stiffness of Metal-Plate-Connected Tension Splice Wood Truss Joint Finite Element Model for Axial Stiffness of Metal-Plate-Connected Tension Splice Wood Truss Joint Jose M. Cabrero Assistant Professor University of Navarra, Department of Structural Analysis and Design,

More information

Lateral Loading of Suction Pile in 3D

Lateral Loading of Suction Pile in 3D Lateral Loading of Suction Pile in 3D Buoy Chain Sea Bed Suction Pile Integrated Solver Optimized for the next generation 64-bit platform Finite Element Solutions for Geotechnical Engineering 00 Overview

More information

Element Order: Element order refers to the interpolation of an element s nodal results to the interior of the element. This determines how results can

Element Order: Element order refers to the interpolation of an element s nodal results to the interior of the element. This determines how results can TIPS www.ansys.belcan.com 鲁班人 (http://www.lubanren.com/weblog/) Picking an Element Type For Structural Analysis: by Paul Dufour Picking an element type from the large library of elements in ANSYS can be

More information

MIDAS/FEA. Advanced Nonlinear and Detailed Analysis Program. MIDAS Information Technology Co., Ltd.

MIDAS/FEA. Advanced Nonlinear and Detailed Analysis Program. MIDAS Information Technology Co., Ltd. MIDAS/FEA Advanced Nonlinear and Detailed Analysis Program Analysis Capabilities Static Analysis Construction Stage Analysis Moving Load Analysis Modal Analysis Linear Buckling Analysis Transient / Frequency

More information

Customized Pre/post-processor for DIANA. FX for DIANA

Customized Pre/post-processor for DIANA. FX for DIANA Customized Pre/post-processor for DIANA FX for DIANA About FX4D for DIANA FX4D is a general purpose pre/post-processor for CAE simulation. FX4D has been specialized for civil/architectural applications.

More information

Multi-Step Analysis of a Cantilever Beam

Multi-Step Analysis of a Cantilever Beam LESSON 4 Multi-Step Analysis of a Cantilever Beam LEGEND 75000. 50000. 25000. 0. -25000. -50000. -75000. 0. 3.50 7.00 10.5 14.0 17.5 21.0 Objectives: Demonstrate multi-step analysis set up in MSC/Advanced_FEA.

More information

Performance of railway track system under harmonic loading by finite element method

Performance of railway track system under harmonic loading by finite element method Performance of railway track system under harmonic by finite element method Ammar Shuber 1, Mohammed Hamood 1, * and Walaa Jawad 1 1 Building and Construction Engineering Department, University of Technology,

More information

Appendix B: Creating and Analyzing a Simple Model in Abaqus/CAE

Appendix B: Creating and Analyzing a Simple Model in Abaqus/CAE Getting Started with Abaqus: Interactive Edition Appendix B: Creating and Analyzing a Simple Model in Abaqus/CAE The following section is a basic tutorial for the experienced Abaqus user. It leads you

More information

PLAXIS 3D. Tutorial Manual

PLAXIS 3D. Tutorial Manual PLAXIS 3D Tutorial Manual 2010 Build 2681 TABLE OF CONTENTS TABLE OF CONTENTS 1 Introduction 5 2 Lesson 1: Foundation in overconsolidated clay 7 2.1 Geometry 7 2.2 Case A: Rigid foundation 8 2.3 Case B:

More information

GTS NX INTERFACES AUTOCAD MIDAS GEN FOR TUNNEL SOIL PILE INTERACTION ANALYSIS

GTS NX INTERFACES AUTOCAD MIDAS GEN FOR TUNNEL SOIL PILE INTERACTION ANALYSIS INTERFACES AUTOCAD MIDAS GEN FOR TUNNEL SOIL PILE INTERACTION ANALYSIS Angel F. Martinez Civil Engineer MIDASOFT Integrated Solver Optimized for the next generation 64-bit platform Finite Element Solutions

More information

Modeling Foundations in RS

Modeling Foundations in RS Modeling Foundations in RS 3 Piled Raft Modeling in RS 3 Deep foundation piles are commonly used to increase foundation stability and to increase the bearing capacity of structural systems. The design

More information

Capacity Analysis of Suction Anchors in Clay by Plaxis 3D Foundation

Capacity Analysis of Suction Anchors in Clay by Plaxis 3D Foundation Lars Andresen, PhD, NGI, Oslo, Norway Lewis Edgers, PhD, PE, Tufts University, Medford, MA USA Hans Petter Jostad, PhD, NGI, Oslo, Norway Introduction This article describes the use of Plaxis 3D Foundation

More information

CHAPTER 4. Numerical Models. descriptions of the boundary conditions, element types, validation, and the force

CHAPTER 4. Numerical Models. descriptions of the boundary conditions, element types, validation, and the force CHAPTER 4 Numerical Models This chapter presents the development of numerical models for sandwich beams/plates subjected to four-point bending and the hydromat test system. Detailed descriptions of the

More information

Advanced Professional Training

Advanced Professional Training Advanced Professional Training Non Linea rand Stability All information in this document is subject to modification without prior notice. No part of this manual may be reproduced, stored in a database

More information

Creating and Analyzing a Simple Model in Abaqus/CAE

Creating and Analyzing a Simple Model in Abaqus/CAE Appendix B: Creating and Analyzing a Simple Model in Abaqus/CAE The following section is a basic tutorial for the experienced Abaqus user. It leads you through the Abaqus/CAE modeling process by visiting

More information

ATENA Program Documentation Part 2-2

ATENA Program Documentation Part 2-2 Červenka Consulting s.r.o. Na Hrebenkach 55 150 00 Prague Czech Republic Phone: +420 220 610 018 E-mail: cervenka@cervenka.cz Web: http://www.cervenka.cz ATENA Program Documentation Part 2-2 User s Manual

More information

Linear Elastic Fracture Mechanics (LEFM) Analysis of Flaws within Residual Stress Fields

Linear Elastic Fracture Mechanics (LEFM) Analysis of Flaws within Residual Stress Fields Linear Elastic Fracture Mechanics (LEFM) Analysis of Flaws within Residual Stress Fields David Woyak 1, Brian Baillargeon, Ramesh Marrey, and Randy Grishaber 2 1 Dassault Systemés SIMULIA Corporation &

More information

Quarter Symmetry Tank Stress (Draft 4 Oct 24 06)

Quarter Symmetry Tank Stress (Draft 4 Oct 24 06) Quarter Symmetry Tank Stress (Draft 4 Oct 24 06) Introduction You need to carry out the stress analysis of an outdoor water tank. Since it has quarter symmetry you start by building only one-fourth of

More information

Settlement of a circular silo foundation

Settlement of a circular silo foundation Engineering manual No. 22 Updated: 02/2018 Settlement of a circular silo foundation Program: FEM File: Demo_manual_22.gmk The objective of this manual is to describe the solution to a circular silo foundation

More information

Introduction to Abaqus. About this Course

Introduction to Abaqus. About this Course Introduction to Abaqus R 6.12 About this Course Course objectives Upon completion of this course you will be able to: Use Abaqus/CAE to create complete finite element models. Use Abaqus/CAE to submit and

More information

Non-Linear Analysis of Base Plates in Automated Storage Systems

Non-Linear Analysis of Base Plates in Automated Storage Systems Non-Linear Analysis of Base Plates in Automated Storage Systems Ph.D. Juan José del Coz Díaz, Fco. Suarez Domínguez, Paulino J.Garcia Nieto University of Oviedo. Construction and Applied Mathematics Area.

More information

Modelling Flat Spring Performance Using FEA

Modelling Flat Spring Performance Using FEA Modelling Flat Spring Performance Using FEA Blessing O Fatola, Patrick Keogh and Ben Hicks Department of Mechanical Engineering, University of Corresponding author bf223@bath.ac.uk Abstract. This paper

More information

DRY EXCAVATION USING A TIE BACK WALL

DRY EXCAVATION USING A TIE BACK WALL 3 This example involves the dry construction of an excavation. The excavation is supported by concrete diaphragm walls. The walls are tied back by prestressed ground anchors. Silt Sand 10 m 2 m 20 m 10

More information

Steel connections design According to EC3. User s Manual

Steel connections design According to EC3. User s Manual Steel connections design According to EC3 User s Manual Version 1.0 April 2017 Contents 1 COPYRIGHT... 5 2 DISCLAIMER... 6 3 PRAXIS GENERAL DESCRIPTION... 7 4 BASE PLATE CONNECTION... 10 4.1 Column...

More information

PLAXIS 3D. Tutorial Manual

PLAXIS 3D. Tutorial Manual PLAXIS 3D Tutorial Manual 2017 Build 9039 TABLE OF CONTENTS TABLE OF CONTENTS 1 Foundation in overconsolidated clay 7 1.1 Case A: Rigid foundation 8 1.2 Case B: Raft foundation 20 1.3 Case C: Pile-Raft

More information

MODELLING OF PILES. Modelling of Piles in USFOS

MODELLING OF PILES. Modelling of Piles in USFOS 1 MODELLING OF PILES In USFOS 2 CONTENTS: 1 INTRODUCTION... 3 2 TYPICAL MODEL... 3 3 PILE-SOIL MODELLING.... 4 3.1 BASIC CONCEPT... 4 3.2 COORDINATE SYSTEM... 5 3.3 DEFINING MESH DENSITY... 6 4 EXAMPLES....

More information

5. Shell Reinforcement According To Eurocode 2

5. Shell Reinforcement According To Eurocode 2 5. Shell Reinforcement According To Eurocode Applicable CivilFEM Product: All CivilFEM Products Level of Difficulty: Moderate Interactive Time Required: 5 minutes Discipline: Concrete Shell Reinforcement

More information

Finite Element Method. Chapter 7. Practical considerations in FEM modeling

Finite Element Method. Chapter 7. Practical considerations in FEM modeling Finite Element Method Chapter 7 Practical considerations in FEM modeling Finite Element Modeling General Consideration The following are some of the difficult tasks (or decisions) that face the engineer

More information

RSPile. Tutorial 3 Grouped Pile Analysis. Pile Analysis Software. Grouped Pile Analysis

RSPile. Tutorial 3 Grouped Pile Analysis. Pile Analysis Software. Grouped Pile Analysis RSPile Pile Analysis Software Tutorial 3 Grouped Pile Analysis Grouped Pile Analysis Introduction This tutorial will demonstrate how to model grouped piles under a cap. The finished product of this tutorial

More information

Advanced Webinar. Date: December 8, 2011 Topic: General Use of midas GTS (Part I) Presenter: Abid Ali, Geotechnical Engineer

Advanced Webinar. Date: December 8, 2011 Topic: General Use of midas GTS (Part I) Presenter: Abid Ali, Geotechnical Engineer midas GTS Advanced Webinar Date: December 8, 2011 Topic: General Use of midas GTS (Part I) Presenter: Abid Ali, Geotechnical Engineer Bridging Your Innovations to Realities Contents: 1. Introduction 2.

More information

X-FEM based modelling of complex mixed mode fatigue crack propagation

X-FEM based modelling of complex mixed mode fatigue crack propagation X-FEM based modelling of complex mixed mode fatigue crack propagation Hans Minnebo 1, Simon André 2, Marc Duflot 1, Thomas Pardoen 2, Eric Wyart 1 1 Cenaero, Rue des Frères Wright 29, 6041 Gosselies, Belgium

More information

EFFECT OF DREDGING AND TIE-ROD ANCHOR ON THE BEHAVIOR OF BERTHING STRUCTURE

EFFECT OF DREDGING AND TIE-ROD ANCHOR ON THE BEHAVIOR OF BERTHING STRUCTURE EFFECT OF DREDGING AND TIE-ROD ANCHOR ON THE BEHAVIOR OF BERTHING STRUCTURE PREMALATHA, P.V. PhD Research Scholar, Department of Civil Engineering, National University of Technology, Tiruchirappalli, Tamil

More information

CE Advanced Structural Analysis. Lab 4 SAP2000 Plane Elasticity

CE Advanced Structural Analysis. Lab 4 SAP2000 Plane Elasticity Department of Civil & Geological Engineering COLLEGE OF ENGINEERING CE 463.3 Advanced Structural Analysis Lab 4 SAP2000 Plane Elasticity February 27 th, 2013 T.A: Ouafi Saha Professor: M. Boulfiza 1. Rectangular

More information

Settlement Analysis of Piled Raft Foundation System (PRFS) in Soft Clay

Settlement Analysis of Piled Raft Foundation System (PRFS) in Soft Clay IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 14, Issue 2 Ver. VIII (Mar. - Apr. 2017), PP 62-68 www.iosrjournals.org Settlement Analysis of Piled

More information

Module 1.5: Moment Loading of a 2D Cantilever Beam

Module 1.5: Moment Loading of a 2D Cantilever Beam Module 1.5: Moment Loading of a D Cantilever Beam Table of Contents Page Number Problem Description Theory Geometry 4 Preprocessor 7 Element Type 7 Real Constants and Material Properties 8 Meshing 9 Loads

More information

Non-Linear Analysis of Bolted Flush End-Plate Steel Beam-to-Column Connection Nur Ashikin Latip, Redzuan Abdulla

Non-Linear Analysis of Bolted Flush End-Plate Steel Beam-to-Column Connection Nur Ashikin Latip, Redzuan Abdulla Non-Linear Analysis of Bolted Flush End-Plate Steel Beam-to-Column Connection Nur Ashikin Latip, Redzuan Abdulla 1 Faculty of Civil Engineering, Universiti Teknologi Malaysia, Malaysia redzuan@utm.my Keywords:

More information

Analysis and Evaluation of Single Piles in Laterally Spreading Soil

Analysis and Evaluation of Single Piles in Laterally Spreading Soil Analysis and Evaluation of Single Piles in Laterally Spreading Soil Christopher McGann A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering

More information

Optimization of Arch Supported Tensile Roofs

Optimization of Arch Supported Tensile Roofs Paper 241 Optimization of Arch Supported Tensile Roofs Civil-Comp Press, 2012 Proceedings of the Eleventh International Conference on Computational Structures Technology, B.H.V. Topping, (Editor), Civil-Comp

More information

GEO-SLOPE International Ltd, Calgary, Alberta, Canada Sheet Pile Wall

GEO-SLOPE International Ltd, Calgary, Alberta, Canada  Sheet Pile Wall 1 Introduction Sheet Pile Wall Deep excavation on a level group usually results in a very low factor of safety, unless it is properly reinforced. The purpose of this example is to illustrate how the stability

More information

BEARING CAPACITY OF STRIP FOOTING

BEARING CAPACITY OF STRIP FOOTING BEARING CAPACITY OF STRIP FOOTING BEARING CAPACITY OF STRIP FOOTING This document describes an example that has been used to verify the bearing capacity of strip footing in PLAXIS. F 1 m ½ B c ref ν =

More information

Report Generation. Name: Path: Keywords:

Report Generation. Name: Path: Keywords: Report Generation Name: Path: Keywords: ReportGeneration/repgen /Examples//ReportGeneration/repgen analys: eigen geomet nonlin physic. constr: suppor. elemen: beam class2 curved interf l13be q20sh q24if

More information

Generative Part Structural Analysis Fundamentals

Generative Part Structural Analysis Fundamentals CATIA V5 Training Foils Generative Part Structural Analysis Fundamentals Version 5 Release 19 September 2008 EDU_CAT_EN_GPF_FI_V5R19 About this course Objectives of the course Upon completion of this course

More information

Scientific Manual FEM-Design 17.0

Scientific Manual FEM-Design 17.0 Scientific Manual FEM-Design 17. 1.4.6 Calculations considering diaphragms All of the available calculation in FEM-Design can be performed with diaphragms or without diaphragms if the diaphragms were defined

More information

Bridge Design using the STAAD.Pro/Beava AASHTO Code

Bridge Design using the STAAD.Pro/Beava AASHTO Code Bridge Design using the STAAD.Pro/Beava AASHTO Code By IEG Group, Bentley Systems Bentley Systems Inc. March 12, 2008 TABLE OF CONTENTS 1.0 Introduction.1 2.0 Creating the Bridge Geometry/Structural Analysis

More information

Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, Politecnico di Milano, February 3, 2017, Lesson 1

Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, Politecnico di Milano, February 3, 2017, Lesson 1 Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, attilio.frangi@polimi.it Politecnico di Milano, February 3, 2017, Lesson 1 1 Politecnico di Milano, February 3, 2017, Lesson 1 2 Outline

More information

EXAMPLE 1. Static Analysis of Cantilever Column (Fixed-Base Column)

EXAMPLE 1. Static Analysis of Cantilever Column (Fixed-Base Column) EXAMPLE 1 Static Analysis of Cantilever Column (Fixed-Base Column) Calculate the top displacement, axial force, shear force and bending moment diagrams for the fixed base column described in the figure

More information

NonLinear Materials AH-ALBERTA Web:

NonLinear Materials AH-ALBERTA Web: NonLinear Materials Introduction This tutorial was completed using ANSYS 7.0 The purpose of the tutorial is to describe how to include material nonlinearities in an ANSYS model. For instance, the case

More information

Linear Analysis of an Arch Dam

Linear Analysis of an Arch Dam Linear Analysis of an Arch Dam Outline 1 Description 2 Finite Element Model 2.1 Coincidence Tolerance 2.2 Units 2.3 Import CAD File 2.4 Properties 2.5 Boundary Conditions 2.6 Loads 2.7 Meshing 3 Linear

More information

Finite Element Analysis Using Creo Simulate 4.0

Finite Element Analysis Using Creo Simulate 4.0 Introduction to Finite Element Analysis Using Creo Simulate 4.0 Randy H. Shih SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com Powered by TCPDF (www.tcpdf.org) Visit the following

More information

ME Optimization of a Frame

ME Optimization of a Frame ME 475 - Optimization of a Frame Analysis Problem Statement: The following problem will be analyzed using Abaqus. 4 7 7 5,000 N 5,000 N 0,000 N 6 6 4 3 5 5 4 4 3 3 Figure. Full frame geometry and loading

More information

Start AxisVM by double-clicking the AxisVM icon in the AxisVM folder, found on the Desktop, or in the Start, Programs Menu.

Start AxisVM by double-clicking the AxisVM icon in the AxisVM folder, found on the Desktop, or in the Start, Programs Menu. 1. BEAM MODEL Start New Start AxisVM by double-clicking the AxisVM icon in the AxisVM folder, found on the Desktop, or in the Start, Programs Menu. Create a new model with the New Icon. In the dialogue

More information

Introduction to FEM Modeling

Introduction to FEM Modeling Total Analysis Solution for Multi-disciplinary Optimum Design Apoorv Sharma midas NFX CAE Consultant 1 1. Introduction 2. Element Types 3. Sample Exercise: 1D Modeling 4. Meshing Tools 5. Loads and Boundary

More information

Computational methods - modelling and simulation

Computational methods - modelling and simulation Computational methods - modelling and simulation J. Pamin With thanks to: Authors of presented simulations C.A. Felippa (Univ. of Colorado at Boulder) www.colorado.edu/engineering/cas/courses.d/ifem.d

More information

Exercise 2: Mesh Resolution, Element Shapes, Basis Functions & Convergence Analyses

Exercise 2: Mesh Resolution, Element Shapes, Basis Functions & Convergence Analyses Exercise 2: Mesh Resolution, Element Shapes, Basis Functions & Convergence Analyses Goals In this exercise, we will explore the strengths and weaknesses of different element types (tetrahedrons vs. hexahedrons,

More information

Analysis of Pile Behaviour due to Damped Vibration by Finite Element Method (FEM)

Analysis of Pile Behaviour due to Damped Vibration by Finite Element Method (FEM) ISSN 2395-1621 Analysis of Pile Behaviour due to Damped Vibration by Finite Element Method (FEM) #1 L.M.Sardesai, #2 G.A.Kadam 1 sardesaileena@rediffmail.com.com 2 ganeshkadam07@gmail.com #1 Mechanical

More information

Linear Static Analysis of a Cantilever Beam

Linear Static Analysis of a Cantilever Beam Linear Static Analysis of a Cantilever Beam Outline 1 Theory 2 Finite Element Model 2.1 Units 2.2 Geometry Definition 2.3 Properties 2.4 Boundary Conditions 2.5 Loads 2.6 Meshing 3 Linear Static Analysis

More information

The part to be analyzed is the bracket from the tutorial of Chapter 3.

The part to be analyzed is the bracket from the tutorial of Chapter 3. Introduction to Solid Modeling Using SolidWorks 2007 COSMOSWorks Tutorial Page 1 In this tutorial, we will use the COSMOSWorks finite element analysis (FEA) program to analyze the response of a component

More information

Exercise 1. 3-Point Bending Using the Static Structural Module of. Ansys Workbench 14.0

Exercise 1. 3-Point Bending Using the Static Structural Module of. Ansys Workbench 14.0 Exercise 1 3-Point Bending Using the Static Structural Module of Contents Ansys Workbench 14.0 Learn how to...1 Given...2 Questions...2 Taking advantage of symmetries...2 A. Getting started...3 A.1 Choose

More information

NonLinear Analysis of a Cantilever Beam

NonLinear Analysis of a Cantilever Beam NonLinear Analysis of a Cantilever Beam Introduction This tutorial was created using ANSYS 7.0 The purpose of this tutorial is to outline the steps required to do a simple nonlinear analysis of the beam

More information

DUCTILE TEARING ANALYSIS OF A CUSTOM PIPE TO FLANGE NOZZLE USING 3D CRACK MESHES

DUCTILE TEARING ANALYSIS OF A CUSTOM PIPE TO FLANGE NOZZLE USING 3D CRACK MESHES DUCTILE TEARING ANALYSIS OF A CUSTOM PIPE TO FLANGE Greg Thorwald, Ph.D. Principal Consulting Engineer, Quest Integrity Group, USA Michael Rock Engineering Project Manager, Mighty River Power Limited,

More information

DIANA FINITE ELEMENT ANALYSIS

DIANA FINITE ELEMENT ANALYSIS DIANA FINITE ELEMENT ANALYSIS DIANA FEA a TNO Company DIANA F I N I T E E L E M E N T A N A LY S I S DIANA (DIsplacement ANAlyzer) is a multi-purpose finite element program, with a special strength in

More information

CHAPTER-10 DYNAMIC SIMULATION USING LS-DYNA

CHAPTER-10 DYNAMIC SIMULATION USING LS-DYNA DYNAMIC SIMULATION USING LS-DYNA CHAPTER-10 10.1 Introduction In the past few decades, the Finite Element Method (FEM) has been developed into a key indispensable technology in the modeling and simulation

More information

INTERNSHIP REPORT Analysis of a generic lifting table Ruben Teunis s Mechanical Engineering Applied Mechanics, CTW

INTERNSHIP REPORT Analysis of a generic lifting table Ruben Teunis s Mechanical Engineering Applied Mechanics, CTW INTERNSHIP REPORT Analysis of a generic lifting table Ruben Teunis s1112392 Mechanical Engineering Applied Mechanics, CTW 25-08-2014 5-12-2014 Enschede, The Netherlands Supervisor: T. Tinga Hengelo, The

More information

Pile Test Finite Element Analyses

Pile Test Finite Element Analyses Pile Test Finite Element Analyses Stéphane Commend*, Philippe Menétrey** * GeoMod ingénieurs conseils SA, Lausanne, Switzerland ** INGPHI SA ingénieurs en ouvrage d art, Lausanne, Switzerland Keywords:

More information

Spur Gears Static Stress Analysis with Linear Material Models

Spur Gears Static Stress Analysis with Linear Material Models Exercise A Spur Gears Static Stress Analysis with Linear Material Models Beam and Brick Elements Objective: Geometry: Determine the stress distribution in the spur gears when a moment of 93.75 in-lb is

More information

TALREN v5. The latest design tool for checking the stability of geotechnical structures with or without reinforcements

TALREN v5. The latest design tool for checking the stability of geotechnical structures with or without reinforcements FICHE TALREN 5 GB:FICHE TALREN 5 GB 31/07/13 16:06 Page1 TALREN v5 STABILITY OF SLOPES AND ANCHORED WALLS The latest design tool for checking the stability of geotechnical structures with or without reinforcements

More information

ASSIGNMENT 1 INTRODUCTION TO CAD

ASSIGNMENT 1 INTRODUCTION TO CAD Computer Aided Design(2161903) ASSIGNMENT 1 INTRODUCTION TO CAD Theory 1. Discuss the reasons for implementing a CAD system. 2. Define computer aided design. Compare computer aided design and conventional

More information

SAMCEF for ROTORS. Chapter 3.2: Rotor modeling. This document is the property of SAMTECH S.A. MEF A, Page 1

SAMCEF for ROTORS. Chapter 3.2: Rotor modeling. This document is the property of SAMTECH S.A. MEF A, Page 1 SAMCEF for ROTORS Chapter 3.2: Rotor modeling This document is the property of SAMTECH S.A. MEF 101-03-2-A, Page 1 Table of contents Introduction Introduction 1D Model 2D Model 3D Model 1D Models: Beam-Spring-

More information

Step by Step. Tutorial for AxisVM X4. Edited by: Inter-CAD Kft.

Step by Step. Tutorial for AxisVM X4. Edited by: Inter-CAD Kft. Step by Step Tutorial for AxisVM X4 Edited by: Inter-CAD Kft. 2018 Inter-CAD Kft. All rights reserved All brand and product names are trademarks or registered trademarks. Intentionally blank page Step

More information

Abaqus CAE Tutorial 6: Contact Problem

Abaqus CAE Tutorial 6: Contact Problem ENGI 7706/7934: Finite Element Analysis Abaqus CAE Tutorial 6: Contact Problem Problem Description In this problem, a segment of an electrical contact switch (steel) is modeled by displacing the upper

More information

Simplified Design Procedure for Piles Affected by Lateral Spreading based on 3D Nonlinear FEA Using OpenSees. University of Washington

Simplified Design Procedure for Piles Affected by Lateral Spreading based on 3D Nonlinear FEA Using OpenSees. University of Washington Simplified Design Procedure for Piles Affected by Lateral Spreading based on 3D Nonlinear FEA Using OpenSees Christopher R. McGann, Ph.D. Student Pedro Arduino Peter Mackenzie-Helnwein University of Washington

More information

Sequential Excavation for Mining in 2D and 3D

Sequential Excavation for Mining in 2D and 3D Sequential Excavation for Mining in 2D and 3D MIDASoft Inc. Angel Francisco Martinez Civil Engineer Email : a.martinez@midasuser.com Integrated Solver Optimized for the next generation 64-bit platform

More information

17. SEISMIC ANALYSIS MODELING TO SATISFY BUILDING CODES

17. SEISMIC ANALYSIS MODELING TO SATISFY BUILDING CODES 17. SEISMIC ANALYSIS MODELING TO SATISFY BUILDING CODES The Current Building Codes Use the Terminology: Principal Direction without a Unique Definition 17.1 INTRODUCTION { XE "Building Codes" }Currently

More information

SIMULATION OF CARBON-ROVING-STRUCTURES EXTREME LIGHT AND STRONG BY FILAMENT WOUND REINFORCEMENT

SIMULATION OF CARBON-ROVING-STRUCTURES EXTREME LIGHT AND STRONG BY FILAMENT WOUND REINFORCEMENT SIMULATION OF CARBON-ROVING-STRUCTURES EXTREME LIGHT AND STRONG BY FILAMENT WOUND REINFORCEMENT 1 Dirk Dreißig *, 2 Peter Faßbänder, 1 Ulrich Hindenlang 1 Lasso Ingenieurgesellschaft mbh, Germany, 2 FS

More information

Support for Multi physics in Chrono

Support for Multi physics in Chrono Support for Multi physics in Chrono The Story Ahead Overview of multi physics strategy in Chrono Summary of handling rigid/flexible body dynamics using Lagrangian approach Summary of handling fluid, and

More information

Tube stamping simulation for the crossmember of rear suspension system

Tube stamping simulation for the crossmember of rear suspension system Tube stamping simulation for the crossmember of rear suspension system G. Borgna A. Santini P. Monchiero Magneti Marelli Suspension Systems Abstract: A recent innovation project at Magneti Marelli Suspension

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 36

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 36 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Lecture - 36 In last class, we have derived element equations for two d elasticity problems

More information