Some questions of consensus building using co-association

Size: px
Start display at page:

Download "Some questions of consensus building using co-association"

Transcription

1 Some questions of consensus building using co-association VITALIY TAYANOV Polish-Japanese High School of Computer Technics Aleja Legionow, 4190, Bytom POLAND Abstract: In this paper the co-association matrix has been applied to divide all set of objects into some functional groups. The consistence of each group depends on how difficult is to classify a certain object. This has been done to solve two main problems in pattern recognition and machine learning: to reduce the recognition error and the overtraining value. Key Words: Consensus, Co-association matrix, Hamming distance, Dissimilarity 1 Introduction In general case classifier building as well as all recognition algorithm aims to achieve their insensitivity to the irregularity of the set or sample. If one uses learning for building such a kind of algorithms, the irregularity of the sample leads to the error while testing even if there was not an error during the learning period. As an example Support Vector Machines (SVM) could be mentioned. According to this algorithm we can construct a linear hyperplane in some feature space that gives us the possibility to separate classes in this space with error that equals to zero. But this is only for the learning set and for other set obtained from the same source but under a bit other conditions the algorithm will be characterized by some value of error. In this case the hyperplane is determined constantly and can not take into account the probabilistic character of the new objects that belong to some class set. So the value of overtraining shows us the quality of the learning process. That is why it is so important to have a good estimate of this value. Vapnik-Chervonenkis (VC) theory tells that to achieve a small enough value of difference between the probability of errors while learning and testing there should be tens or hundreds of thousands of objects what is often impossible to have. Such a difference is actually called overtraining. These estimates are very overrated and are built for the worst cases in classification problem that are almost unlikely. That is why during last ten years this theory was developed in the domain of determination of factors causing overrating of these estimates []. Thanks to these research it was improved in a lot of times the classical VC estimates. On the other hand it is very interesting to make a research on how to build the algorithms where influence of the sample irregularity is minimal. This could be done by devision of the general set onto functional groups depending on the data complexity and the results of classifier work. The mathematical mechanism to realize this division is based on the co-association matrices and belongs to consensus approach for the classification and clustering. Co-association matrices with respect to the classification algorithms The idea of proposed approach consists in grouping (combining) results of the classification that are identical for the group (ensemble) of classifiers or decision algorithms. Proposed approach concerns the hierarchical classifiers or clustering algorithms construction. Here one considers the classification on N classes. Let I is the number of objects in the set and P is the number of classification results. Every classification p (p = 1,..., P ) associates every object k of the sample with one and only one class. Elementary co-association matrix A k contains the information according to which algorithms u and v has a consensus with respect to some class for object k: { A k 1 for u v u,v = 0 otherwise, (1) where denotes consensus between algorithms ISBN:

2 u and v. Because u v is the same that v u, A k u,v is symmetric binary matrix. If n is the number of algorithms which are used for consensus building then the size of the matrix A is n n. The number of possible different composition of algorithms that could be created is equal P = n(n 1). Let there exists the limitation in the algorithm space by finite limited number of composition P that could be made from these algorithms (p = 1,..., P ). From this set of consensus algorithms one needs to take two of them that should be maximally dissimilar. Formally dissimilarity of a pair of algorithms could be defined as Hamming distance between results of classification for each object k that are presented in form of binary sequences with zeros and ones. The number of zeros and ones in such a sequence is equal to the number of objects I. This means that if algorithm votes that object belongs to the class c (c = 1,..., C) then one puts 1 in the sequence on the position that corresponds to object k, otherwise one puts 0. So the only task left to do is to find the pair of algorithms that have the maximal Hamming distance. Determination of appropriate indices could be done by the following way { } i, j = arg min u,v A k u,v () After determination of this pair of algorithms on the basis of some learning set one estimates the frequency of belonging of some object to the group of objects that have no consensus. Because the pair of the most dissimilar algorithms is estimated on the basis of some learning set the solution will be approximate. In general for the task of classification onto arbitrary number of classes these consensus algorithms divide our set onto three functional sets i.e.: a group of objects on which consensus of two algorithms is reached and it is correct, a group of objects on which consensus is not reached and the group of objects on which consensus is reached and it is incorrect. The amount of objects in the third group can not be reduced at all. So the value of minimal probability of classification error in this case is conditioned by the third group of objects and can not be less than probability that object from the set I belongs to this group. The most interesting from the research point of view is the second group of objects on which there is no consensus of the most dissimilar algorithms. Reclassification of objects from this set gives the possibility to obtain some amount of objects that belongs to the first and the third group. The more objects will drop into the first group the better is the specialized algorithm that makes the reclassification. If one denotes the probability that object belongs to one of k three groups as P 1, P and P 3 then the probability of reclassification in this case by fifty-fifty principle gives the general error of classification equal P e = P P. (3) Given probability has the sense of the upper bound for the classification error, so the probability of correct classification will be in the interval [P 3 ; P P ]. This could be explained by the fact that the probability of error more than 0.5 is not considered because the worst acceptable algorithm of classification by fifty-fifty principle has the error probability that approaches to 0.5. If two algorithms have been characterised by the approximately equal probability P 3 then the better algorithm will be the one that has lower value of probability P under the constraint P > P 3. This is determined by the risks of correct classification obtaining while reclassifying the objects from the second class. Thus one could have the fast approximate estimation of the reliability of algorithms. 3 Some properties of obtained groups It is also important to carry out the research of peculiarities of test objects. The objects of the first and the third groups are not so interesting as objects from the second one. For objects from the first and the third groups as well as for the second one it could be made a research in the direction of definition of structure of these groups. This could be done using Gauss Mixture Models (GMM), where the number of mixtures is some characteristics of the data complexity in this or that group of objects. But these two groups could not be reclassified. For the research purposes it is interesting to consider the second set of objects. It is interesting first of all by the fact that some objects are separated from others and are in separate group and reclassification of these objects gives the possibility to reduce the general classification error. The principle task of the research of peculiarities of objects from the second group is object analysis from this group to build specialised classifiers that could correctly classify as much as possible of objects from this set. First of all let us make a research of the symmetry on objects of the second group. Symmetry test is done relatively to the algorithm that is exactly in the middle between two the most dissimilar algorithms. This means that the Hamming distance from this algorithm to two others is the same. If we have three algorithms ISBN:

3 X, Y and Z then d h (X, Y ) = d h (Y, Z); d h (X, Z) = D h (Y, Z) = D h (X, Y ). All of the estimates of Hamming distance have been done on the basis of learning set. The third algorithm t on the basis of matrix A k u,v could be found by the following way. Let us introduce the notation of the Hamming distance matrix as D H u,v = d h (u, v). Using the matrix A k u,v and making the normalization of the Hamming distance one obtains: k d h (u, v) = 1 Ak u,v, k = 1,..., I. (4) I First we have to find the element in the Hamming distance matrix Du,v H that has a value close as much as ). Then we have to find some ( D H u,v possible to max algorithm t having a property that d h (u, t) = d h (t, v) = max ( D H u,v ( Du,v H ). (5) Then one should search for the minimal element in the column j (see eq. 1) of the new distance matrix Du,v H max. The number of row ) where this element is determines the index of the searched algorithm t. 4 Experimental results Figures 1 6 show graphic dependencies of consensus results for problems taken from UCI repository. This repository was created at the University of California. The data structure of the test tasks from this repository is as follows. Each task is written as a text file where columns are attributes of the object and rows consist of a number of different attributes for every object. Thus the number of rows corresponds to the number of objects and the number of columns correspond to the number of attributes for each object. A separate column consists of labels of classes, which mark each of the objects. A lot of data within this repository has been related to biology and medicine. In table 1 one gives the probabilities of errors obtained on the test data for different classifiers or classifier compositions (committees of algorithms). All these algorithms were verified on two tasks that are difficult enough from the classification point of view. For the proposed algorithm it has been given the minimal and maximal errors that can be obtained on given tested data. Figure 1: Task pima from UCI repository: nonparametrical function of the correct consensus that consists of two algorithms Table 1: Error of classification for different algorithms. method /task bupa pima Monotone (SVM) Monotone (Parzen) AdaBoost (SVM) AdaBoost (Parzen) SVM Parzen RVM Proposed algorithm (min/max, Q = 00) 0.040/ /0.03 In table 1 the value of minimal error is equal to consensus error for the proposed algorithm. The value of maximal error has been calculated as sum of minimal error and the half of the related amount of objects, on which there is no consensus (fifty-fifty principle). As seen from the table the value of maximal error is much less than the least value of error of all given algorithms for two tasks from UCI repository. In comparison with some algorithms given in the table the value of minimal error is approximately 10 times less for the proposed algorithm then the error of some other algorithms from the table. The proposed algorithms are characterized by much more stability of the classification error in comparison with other algorithms. It can be seen from corresponding error comparison for two tasks from the UCI repository. In tables -3 the estimates of probability of belonging of every object from the task of repository UCI to every of three functional groups of objects have been given. In this case the objects, on which ISBN:

4 Figure : Task pima from UCI repository: nonparametrical function of the incorrect consensus that consists of two algorithms Figure 4: Task bupa from UCI repository: nonparametrical function of the correct consensus that consists of two algorithms Table : Task pima from UCI repository. Q=00 Q=30 µ σ µ σ P c P e P c Figure 3: Task pima from UCI repository: nonparametrical function of no consensus between two algorithms consensus of the most dissimilar algorithms exists (P c ), belong to the class of so called easy objects. Then objects, on which both of algorithms that are in consensus make errors (P e ), belong to the class of objects that cause uncorrected error and this error can not be reduced at all. The last class of objects consists of objects, on which there is no consensus of the most dissimilar algorithms (P c ). This group of objects also belongs to the class of border objects. In the tables one gives variances of corresponding probabilities too. Minimal size of the blocks, on which one builds estimates using algorithms of cross-validation changes from 30 to 00. Also every distribution of objects in all groups could be described as mixture of Gaussians i.e GMM. For this it is useful to use Expectation-Maximization (EM) algorithm for determination of moments of Gaussians. This means that object have no homogeneous structure but form a compact structures i.e clusters that could be overlapped. Objects from the second group that are the most interesting for us also form clusters. Such kind of a structure of objects from the second group of objects allows to build algorithms that could classify the part of objects of clusters that forms the mixture of Gaussians. For this it is necessary that algorithm could sort out objects in some boundary that is around of some averaged object that is formed by objects mostly from one class. So one should develop some specialized algorithm that could pick out objects from every of compact clusters and then reclassify them correctly for the majority of objects for every cluster. Then the total error of classification will be approach to the minimal while improving the algorithms. If compact clusters (every of mixtures) consist of objects of different classes then it is impossible to use static models. In this case one should use dynamic models (e.g. some Graphical models such as Bayesian networks, Markov Models (MM) or Hidden Markov Models (HMM)) and detecting will be made on the basis of object behavior or regularity of object behavior in some state space. ISBN:

5 Figure 5: Task bupa from UCI repository: nonparametrical function of the incorrect consensus that consists of two algorithms Figure 6: Task bupa from UCI repository: nonparametrical function of no consensus between two algorithms Table 3: Task bupa from UCI repository. Q=00 Q=30 µ σ µ σ P c P e P c Figure 7: Task pima from UCI repository: nonparametrical function of consensus symmetry problem So the research of object peculiarities from the second group is interesting because it gives the possibility to understand the rules according to which the specialized algorithms should be built. These algorithms are developed only for reclassifying of objects from the second group. As we can see from Fig. 7 and 8 there is no symmetry in algorithms that is was verified on two tasks. Both mean and variance are different. This means that Hamming distance in general case is not linear that is conditioned by the data. Such a nonlinearity makes the task and algorithms very data-dependent. On the other hand it is difficult to predict the results of classification. All this approve the usefulness of consensus approach that uses the most dissimilar algorithms satisfying only statistical changes of the classification results. Using such an approach makes the selection of algorithms easy non-ambiguity and non-empiric task. 5 Conclusion In this paper the probability of belonging of every object to each of three groups of objects: a group of easy objects, on which it is reached the correct consensus of two algorithms, a group of objects, on which two the most dissimilar algorithms have an incorrect consensus and a group of objects, on which one does not achieve consensus. The analysis shows that there are probability distributions of data that can be presented as a multicomponent models including GMM. All this makes it possible to analyze the proposed algorithms by means of mathematical statistics and probability theory. From the figures and tables one can see that the probability estimations using methods of cross-validation with averaged blocks of 30 and ISBN:

6 Figure 8: Task bupa from UCI repository: nonparametrical function of consensus symmetry problem On the other hand proposed algorithm gives the possibility to evaluate and analyse other algorithms. For example it could be applied for analysis of the SVM and RVM (Relevant Vector Machines). For example, for SVM if we consider it as a symmetric problem in consensus then the third algorithm t will correspond to a separation hyperplane and other two hyperplanes that represent the support vectors correspond to the initial dissimilar algorithms. Because we use training in SVM and RVM the position of a hyperplane is only approximate. Then changing the direction of a hyperplane (due to overtraining) will lead to results that are very dependent on the direction changed (that is caused by the other learning set) because of the symmetry problem. This makes the SVM unstable to the learning set that is approved in a lot of research. 00 elements minimum [3] differ a little among themselves, which makes it possible to conclude that this method of consensus building where consensus consists in the most dissimilar algorithms are quite regular and does not have such sensitivity to the samples as other algorithms that use training. As seen from the corresponding tables, the minimal classification error is almost less by order of magnitude than error for the best existing algorithms. The maximal error is less from 1.5 to times in comparison with other algorithms. Also, the corresponding errors are much more stable both relatively to the task, on which one tests the algorithm and the series of given algorithms where the error value has significantly large variance. Moreover, since the minimal value of error is quite small and stable, it guaranties the stability of receipt of correct classification results on objects, on which consensus is reached by the most dissimilar algorithms. Relatively to other algorithms such a confidence can not be achieved. Indeed, the error value at 30 40% (as compared to 4%) gives no confidence in the results of classification. Estimates of probabilities on the basis of average values and the corresponding maximum probability distributions (for a maximum likelihood estimation (MLE)) are not much different, which gives an additional guarantee for the corresponding probability estimates. Significance of obtained consensus estimates of probabilities of correct consensus, incorrect consensus and probability that consensus will not be achieved provides a classification complexity estimate. Problems and algorithms for the complexity estimation of classification task is discussed in [4]. Mathematical analysis of committees of algorithms building has been considered in details in [5]. References: [1] V. Vapnik, The nature of statistical learning theory, nd ed. Springer Verlag, New York 000. [] K. Vorontsov, On the influence of similarity of classifiers on the probability of overfitting, in Proc. of the Ninth International Conference on Pattern Recognition and Image Analysis: New Information Technologies (PRIA-9), Nizhni Novgorod, Russian Federation, vol., 008, pp [3] S. Gurov, The reliability estimation of classification algorithm, Publishing department of the Computational mathematics and cybernetics faculty of Moscow State University, Moscow 003 (in Russian). [4] M. Basu, T. Ho, Data complexity in pattern recognition, Springer, London 006. [5] J. Zhuravlev, About the algebraic approach to recognition or classification tasks solution, Problems of cybernetics, vol. 33, 1978, pp. 5 68, (in Russian). ISBN:

Clustering Lecture 5: Mixture Model

Clustering Lecture 5: Mixture Model Clustering Lecture 5: Mixture Model Jing Gao SUNY Buffalo 1 Outline Basics Motivation, definition, evaluation Methods Partitional Hierarchical Density-based Mixture model Spectral methods Advanced topics

More information

K-Means and Gaussian Mixture Models

K-Means and Gaussian Mixture Models K-Means and Gaussian Mixture Models David Rosenberg New York University June 15, 2015 David Rosenberg (New York University) DS-GA 1003 June 15, 2015 1 / 43 K-Means Clustering Example: Old Faithful Geyser

More information

Naïve Bayes for text classification

Naïve Bayes for text classification Road Map Basic concepts Decision tree induction Evaluation of classifiers Rule induction Classification using association rules Naïve Bayesian classification Naïve Bayes for text classification Support

More information

Machine Learning. Unsupervised Learning. Manfred Huber

Machine Learning. Unsupervised Learning. Manfred Huber Machine Learning Unsupervised Learning Manfred Huber 2015 1 Unsupervised Learning In supervised learning the training data provides desired target output for learning In unsupervised learning the training

More information

Robot Learning. There are generally three types of robot learning: Learning from data. Learning by demonstration. Reinforcement learning

Robot Learning. There are generally three types of robot learning: Learning from data. Learning by demonstration. Reinforcement learning Robot Learning 1 General Pipeline 1. Data acquisition (e.g., from 3D sensors) 2. Feature extraction and representation construction 3. Robot learning: e.g., classification (recognition) or clustering (knowledge

More information

Sketchable Histograms of Oriented Gradients for Object Detection

Sketchable Histograms of Oriented Gradients for Object Detection Sketchable Histograms of Oriented Gradients for Object Detection No Author Given No Institute Given Abstract. In this paper we investigate a new representation approach for visual object recognition. The

More information

Support Vector Machines

Support Vector Machines Support Vector Machines . Importance of SVM SVM is a discriminative method that brings together:. computational learning theory. previously known methods in linear discriminant functions 3. optimization

More information

Content-based image and video analysis. Machine learning

Content-based image and video analysis. Machine learning Content-based image and video analysis Machine learning for multimedia retrieval 04.05.2009 What is machine learning? Some problems are very hard to solve by writing a computer program by hand Almost all

More information

Optimization Methods for Machine Learning (OMML)

Optimization Methods for Machine Learning (OMML) Optimization Methods for Machine Learning (OMML) 2nd lecture Prof. L. Palagi References: 1. Bishop Pattern Recognition and Machine Learning, Springer, 2006 (Chap 1) 2. V. Cherlassky, F. Mulier - Learning

More information

Note Set 4: Finite Mixture Models and the EM Algorithm

Note Set 4: Finite Mixture Models and the EM Algorithm Note Set 4: Finite Mixture Models and the EM Algorithm Padhraic Smyth, Department of Computer Science University of California, Irvine Finite Mixture Models A finite mixture model with K components, for

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Clustering and EM Barnabás Póczos & Aarti Singh Contents Clustering K-means Mixture of Gaussians Expectation Maximization Variational Methods 2 Clustering 3 K-

More information

Introduction to Pattern Recognition Part II. Selim Aksoy Bilkent University Department of Computer Engineering

Introduction to Pattern Recognition Part II. Selim Aksoy Bilkent University Department of Computer Engineering Introduction to Pattern Recognition Part II Selim Aksoy Bilkent University Department of Computer Engineering saksoy@cs.bilkent.edu.tr RETINA Pattern Recognition Tutorial, Summer 2005 Overview Statistical

More information

CS 229 Midterm Review

CS 229 Midterm Review CS 229 Midterm Review Course Staff Fall 2018 11/2/2018 Outline Today: SVMs Kernels Tree Ensembles EM Algorithm / Mixture Models [ Focus on building intuition, less so on solving specific problems. Ask

More information

Table of Contents. Recognition of Facial Gestures... 1 Attila Fazekas

Table of Contents. Recognition of Facial Gestures... 1 Attila Fazekas Table of Contents Recognition of Facial Gestures...................................... 1 Attila Fazekas II Recognition of Facial Gestures Attila Fazekas University of Debrecen, Institute of Informatics

More information

Data Mining Practical Machine Learning Tools and Techniques. Slides for Chapter 6 of Data Mining by I. H. Witten and E. Frank

Data Mining Practical Machine Learning Tools and Techniques. Slides for Chapter 6 of Data Mining by I. H. Witten and E. Frank Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 6 of Data Mining by I. H. Witten and E. Frank Implementation: Real machine learning schemes Decision trees Classification

More information

Invariant Recognition of Hand-Drawn Pictograms Using HMMs with a Rotating Feature Extraction

Invariant Recognition of Hand-Drawn Pictograms Using HMMs with a Rotating Feature Extraction Invariant Recognition of Hand-Drawn Pictograms Using HMMs with a Rotating Feature Extraction Stefan Müller, Gerhard Rigoll, Andreas Kosmala and Denis Mazurenok Department of Computer Science, Faculty of

More information

Leave-One-Out Support Vector Machines

Leave-One-Out Support Vector Machines Leave-One-Out Support Vector Machines Jason Weston Department of Computer Science Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 OEX, UK. Abstract We present a new learning algorithm

More information

Support Vector Machines

Support Vector Machines Support Vector Machines SVM Discussion Overview. Importance of SVMs. Overview of Mathematical Techniques Employed 3. Margin Geometry 4. SVM Training Methodology 5. Overlapping Distributions 6. Dealing

More information

A fuzzy k-modes algorithm for clustering categorical data. Citation IEEE Transactions on Fuzzy Systems, 1999, v. 7 n. 4, p.

A fuzzy k-modes algorithm for clustering categorical data. Citation IEEE Transactions on Fuzzy Systems, 1999, v. 7 n. 4, p. Title A fuzzy k-modes algorithm for clustering categorical data Author(s) Huang, Z; Ng, MKP Citation IEEE Transactions on Fuzzy Systems, 1999, v. 7 n. 4, p. 446-452 Issued Date 1999 URL http://hdl.handle.net/10722/42992

More information

Enhancing Forecasting Performance of Naïve-Bayes Classifiers with Discretization Techniques

Enhancing Forecasting Performance of Naïve-Bayes Classifiers with Discretization Techniques 24 Enhancing Forecasting Performance of Naïve-Bayes Classifiers with Discretization Techniques Enhancing Forecasting Performance of Naïve-Bayes Classifiers with Discretization Techniques Ruxandra PETRE

More information

Support Vector Machines.

Support Vector Machines. Support Vector Machines srihari@buffalo.edu SVM Discussion Overview. Importance of SVMs. Overview of Mathematical Techniques Employed 3. Margin Geometry 4. SVM Training Methodology 5. Overlapping Distributions

More information

Application of Principal Components Analysis and Gaussian Mixture Models to Printer Identification

Application of Principal Components Analysis and Gaussian Mixture Models to Printer Identification Application of Principal Components Analysis and Gaussian Mixture Models to Printer Identification Gazi. Ali, Pei-Ju Chiang Aravind K. Mikkilineni, George T. Chiu Edward J. Delp, and Jan P. Allebach School

More information

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1 Preface to the Second Edition Preface to the First Edition vii xi 1 Introduction 1 2 Overview of Supervised Learning 9 2.1 Introduction... 9 2.2 Variable Types and Terminology... 9 2.3 Two Simple Approaches

More information

Kernel Combination Versus Classifier Combination

Kernel Combination Versus Classifier Combination Kernel Combination Versus Classifier Combination Wan-Jui Lee 1, Sergey Verzakov 2, and Robert P.W. Duin 2 1 EE Department, National Sun Yat-Sen University, Kaohsiung, Taiwan wrlee@water.ee.nsysu.edu.tw

More information

Random projection for non-gaussian mixture models

Random projection for non-gaussian mixture models Random projection for non-gaussian mixture models Győző Gidófalvi Department of Computer Science and Engineering University of California, San Diego La Jolla, CA 92037 gyozo@cs.ucsd.edu Abstract Recently,

More information

Enhancing K-means Clustering Algorithm with Improved Initial Center

Enhancing K-means Clustering Algorithm with Improved Initial Center Enhancing K-means Clustering Algorithm with Improved Initial Center Madhu Yedla #1, Srinivasa Rao Pathakota #2, T M Srinivasa #3 # Department of Computer Science and Engineering, National Institute of

More information

J. Weston, A. Gammerman, M. Stitson, V. Vapnik, V. Vovk, C. Watkins. Technical Report. February 5, 1998

J. Weston, A. Gammerman, M. Stitson, V. Vapnik, V. Vovk, C. Watkins. Technical Report. February 5, 1998 Density Estimation using Support Vector Machines J. Weston, A. Gammerman, M. Stitson, V. Vapnik, V. Vovk, C. Watkins. Technical Report CSD-TR-97-3 February 5, 998!()+, -./ 3456 Department of Computer Science

More information

Clustering and The Expectation-Maximization Algorithm

Clustering and The Expectation-Maximization Algorithm Clustering and The Expectation-Maximization Algorithm Unsupervised Learning Marek Petrik 3/7 Some of the figures in this presentation are taken from An Introduction to Statistical Learning, with applications

More information

CSEP 573: Artificial Intelligence

CSEP 573: Artificial Intelligence CSEP 573: Artificial Intelligence Machine Learning: Perceptron Ali Farhadi Many slides over the course adapted from Luke Zettlemoyer and Dan Klein. 1 Generative vs. Discriminative Generative classifiers:

More information

An Introduction to Pattern Recognition

An Introduction to Pattern Recognition An Introduction to Pattern Recognition Speaker : Wei lun Chao Advisor : Prof. Jian-jiun Ding DISP Lab Graduate Institute of Communication Engineering 1 Abstract Not a new research field Wide range included

More information

CS 340 Lec. 4: K-Nearest Neighbors

CS 340 Lec. 4: K-Nearest Neighbors CS 340 Lec. 4: K-Nearest Neighbors AD January 2011 AD () CS 340 Lec. 4: K-Nearest Neighbors January 2011 1 / 23 K-Nearest Neighbors Introduction Choice of Metric Overfitting and Underfitting Selection

More information

Introduction to Mobile Robotics

Introduction to Mobile Robotics Introduction to Mobile Robotics Clustering Wolfram Burgard Cyrill Stachniss Giorgio Grisetti Maren Bennewitz Christian Plagemann Clustering (1) Common technique for statistical data analysis (machine learning,

More information

NICOLAS BOURBAKI ELEMENTS OF MATHEMATICS. General Topology. Chapters 1-4. Springer-Verlag Berlin Heidelberg New York London Paris Tokyo

NICOLAS BOURBAKI ELEMENTS OF MATHEMATICS. General Topology. Chapters 1-4. Springer-Verlag Berlin Heidelberg New York London Paris Tokyo NICOLAS BOURBAKI ELEMENTS OF MATHEMATICS General Topology Chapters 1-4 Springer-Verlag Berlin Heidelberg New York London Paris Tokyo ADVICE TO THE READER v CONTENTS OF THE ELEMENTS OF MATHEMATICS SERIES

More information

THE COMPUTER MODELLING OF GLUING FLAT IMAGES ALGORITHMS. Alekseí Yu. Chekunov. 1. Introduction

THE COMPUTER MODELLING OF GLUING FLAT IMAGES ALGORITHMS. Alekseí Yu. Chekunov. 1. Introduction MATEMATIČKI VESNIK MATEMATIQKI VESNIK 69, 1 (2017), 12 22 March 2017 research paper originalni nauqni rad THE COMPUTER MODELLING OF GLUING FLAT IMAGES ALGORITHMS Alekseí Yu. Chekunov Abstract. In this

More information

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition Pattern Recognition Kjell Elenius Speech, Music and Hearing KTH March 29, 2007 Speech recognition 2007 1 Ch 4. Pattern Recognition 1(3) Bayes Decision Theory Minimum-Error-Rate Decision Rules Discriminant

More information

PV211: Introduction to Information Retrieval

PV211: Introduction to Information Retrieval PV211: Introduction to Information Retrieval http://www.fi.muni.cz/~sojka/pv211 IIR 15-1: Support Vector Machines Handout version Petr Sojka, Hinrich Schütze et al. Faculty of Informatics, Masaryk University,

More information

Unsupervised Learning: Clustering

Unsupervised Learning: Clustering Unsupervised Learning: Clustering Vibhav Gogate The University of Texas at Dallas Slides adapted from Carlos Guestrin, Dan Klein & Luke Zettlemoyer Machine Learning Supervised Learning Unsupervised Learning

More information

THE COMPUTER MODELLING OF GLUING FLAT IMAGES ALGORITHMS. Alekseí Yu. Chekunov. 1. Introduction

THE COMPUTER MODELLING OF GLUING FLAT IMAGES ALGORITHMS. Alekseí Yu. Chekunov. 1. Introduction MATEMATIQKI VESNIK Corrected proof Available online 01.10.2016 originalni nauqni rad research paper THE COMPUTER MODELLING OF GLUING FLAT IMAGES ALGORITHMS Alekseí Yu. Chekunov Abstract. In this paper

More information

Introduction to Support Vector Machines

Introduction to Support Vector Machines Introduction to Support Vector Machines CS 536: Machine Learning Littman (Wu, TA) Administration Slides borrowed from Martin Law (from the web). 1 Outline History of support vector machines (SVM) Two classes,

More information

Computational Statistics The basics of maximum likelihood estimation, Bayesian estimation, object recognitions

Computational Statistics The basics of maximum likelihood estimation, Bayesian estimation, object recognitions Computational Statistics The basics of maximum likelihood estimation, Bayesian estimation, object recognitions Thomas Giraud Simon Chabot October 12, 2013 Contents 1 Discriminant analysis 3 1.1 Main idea................................

More information

Unsupervised Learning. Clustering and the EM Algorithm. Unsupervised Learning is Model Learning

Unsupervised Learning. Clustering and the EM Algorithm. Unsupervised Learning is Model Learning Unsupervised Learning Clustering and the EM Algorithm Susanna Ricco Supervised Learning Given data in the form < x, y >, y is the target to learn. Good news: Easy to tell if our algorithm is giving the

More information

HMM-Based Handwritten Amharic Word Recognition with Feature Concatenation

HMM-Based Handwritten Amharic Word Recognition with Feature Concatenation 009 10th International Conference on Document Analysis and Recognition HMM-Based Handwritten Amharic Word Recognition with Feature Concatenation Yaregal Assabie and Josef Bigun School of Information Science,

More information

COMS 4771 Clustering. Nakul Verma

COMS 4771 Clustering. Nakul Verma COMS 4771 Clustering Nakul Verma Supervised Learning Data: Supervised learning Assumption: there is a (relatively simple) function such that for most i Learning task: given n examples from the data, find

More information

Local Linear Approximation for Kernel Methods: The Railway Kernel

Local Linear Approximation for Kernel Methods: The Railway Kernel Local Linear Approximation for Kernel Methods: The Railway Kernel Alberto Muñoz 1,JavierGonzález 1, and Isaac Martín de Diego 1 University Carlos III de Madrid, c/ Madrid 16, 890 Getafe, Spain {alberto.munoz,

More information

Cluster quality assessment by the modified Renyi-ClipX algorithm

Cluster quality assessment by the modified Renyi-ClipX algorithm Issue 3, Volume 4, 2010 51 Cluster quality assessment by the modified Renyi-ClipX algorithm Dalia Baziuk, Aleksas Narščius Abstract This paper presents the modified Renyi-CLIPx clustering algorithm and

More information

Generating the Reduced Set by Systematic Sampling

Generating the Reduced Set by Systematic Sampling Generating the Reduced Set by Systematic Sampling Chien-Chung Chang and Yuh-Jye Lee Email: {D9115009, yuh-jye}@mail.ntust.edu.tw Department of Computer Science and Information Engineering National Taiwan

More information

Face Hallucination Based on Eigentransformation Learning

Face Hallucination Based on Eigentransformation Learning Advanced Science and Technology etters, pp.32-37 http://dx.doi.org/10.14257/astl.2016. Face allucination Based on Eigentransformation earning Guohua Zou School of software, East China University of Technology,

More information

Homework #4 Programming Assignment Due: 11:59 pm, November 4, 2018

Homework #4 Programming Assignment Due: 11:59 pm, November 4, 2018 CSCI 567, Fall 18 Haipeng Luo Homework #4 Programming Assignment Due: 11:59 pm, ovember 4, 2018 General instructions Your repository will have now a directory P4/. Please do not change the name of this

More information

Modeling of ambient O 3 : a comparative study

Modeling of ambient O 3 : a comparative study Modeling of ambient O 3 : a comparative study Biljana Mileva-Boshkoska Abstract Air pollution is one of the biggest environmental concerns. Besides passive monitoring, the recent trend is shifting towards

More information

Link Prediction for Social Network

Link Prediction for Social Network Link Prediction for Social Network Ning Lin Computer Science and Engineering University of California, San Diego Email: nil016@eng.ucsd.edu Abstract Friendship recommendation has become an important issue

More information

Machine Learning Lecture 3

Machine Learning Lecture 3 Many slides adapted from B. Schiele Machine Learning Lecture 3 Probability Density Estimation II 26.04.2016 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Course

More information

CS 2750 Machine Learning. Lecture 19. Clustering. CS 2750 Machine Learning. Clustering. Groups together similar instances in the data sample

CS 2750 Machine Learning. Lecture 19. Clustering. CS 2750 Machine Learning. Clustering. Groups together similar instances in the data sample Lecture 9 Clustering Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square Clustering Groups together similar instances in the data sample Basic clustering problem: distribute data into k different groups

More information

Clustering: Classic Methods and Modern Views

Clustering: Classic Methods and Modern Views Clustering: Classic Methods and Modern Views Marina Meilă University of Washington mmp@stat.washington.edu June 22, 2015 Lorentz Center Workshop on Clusters, Games and Axioms Outline Paradigms for clustering

More information

A noninformative Bayesian approach to small area estimation

A noninformative Bayesian approach to small area estimation A noninformative Bayesian approach to small area estimation Glen Meeden School of Statistics University of Minnesota Minneapolis, MN 55455 glen@stat.umn.edu September 2001 Revised May 2002 Research supported

More information

Machine Learning Lecture 3

Machine Learning Lecture 3 Course Outline Machine Learning Lecture 3 Fundamentals (2 weeks) Bayes Decision Theory Probability Density Estimation Probability Density Estimation II 26.04.206 Discriminative Approaches (5 weeks) Linear

More information

Stable and Multiscale Topological Signatures

Stable and Multiscale Topological Signatures Stable and Multiscale Topological Signatures Mathieu Carrière, Steve Oudot, Maks Ovsjanikov Inria Saclay Geometrica April 21, 2015 1 / 31 Shape = point cloud in R d (d = 3) 2 / 31 Signature = mathematical

More information

Unsupervised Learning : Clustering

Unsupervised Learning : Clustering Unsupervised Learning : Clustering Things to be Addressed Traditional Learning Models. Cluster Analysis K-means Clustering Algorithm Drawbacks of traditional clustering algorithms. Clustering as a complex

More information

10-701/15-781, Fall 2006, Final

10-701/15-781, Fall 2006, Final -7/-78, Fall 6, Final Dec, :pm-8:pm There are 9 questions in this exam ( pages including this cover sheet). If you need more room to work out your answer to a question, use the back of the page and clearly

More information

Temporal Pooling Method for Rapid HTM Learning Applied to Geometric Object Recognition

Temporal Pooling Method for Rapid HTM Learning Applied to Geometric Object Recognition Temporal Pooling Method for Rapid HTM Learning Applied to Geometric Object Recognition 1,2 S. Štolc, 1,2 I. Bajla, 3 K. Valentín, 3 R. Škoviera 1 Institute of Measurement Science, Department of Theoretical

More information

Text classification II CE-324: Modern Information Retrieval Sharif University of Technology

Text classification II CE-324: Modern Information Retrieval Sharif University of Technology Text classification II CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2015 Some slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford)

More information

Expectation Maximization. Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University

Expectation Maximization. Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University Expectation Maximization Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University April 10 th, 2006 1 Announcements Reminder: Project milestone due Wednesday beginning of class 2 Coordinate

More information

An Efficient Model Selection for Gaussian Mixture Model in a Bayesian Framework

An Efficient Model Selection for Gaussian Mixture Model in a Bayesian Framework IEEE SIGNAL PROCESSING LETTERS, VOL. XX, NO. XX, XXX 23 An Efficient Model Selection for Gaussian Mixture Model in a Bayesian Framework Ji Won Yoon arxiv:37.99v [cs.lg] 3 Jul 23 Abstract In order to cluster

More information

Cluster Analysis. Mu-Chun Su. Department of Computer Science and Information Engineering National Central University 2003/3/11 1

Cluster Analysis. Mu-Chun Su. Department of Computer Science and Information Engineering National Central University 2003/3/11 1 Cluster Analysis Mu-Chun Su Department of Computer Science and Information Engineering National Central University 2003/3/11 1 Introduction Cluster analysis is the formal study of algorithms and methods

More information

Bioinformatics - Lecture 07

Bioinformatics - Lecture 07 Bioinformatics - Lecture 07 Bioinformatics Clusters and networks Martin Saturka http://www.bioplexity.org/lectures/ EBI version 0.4 Creative Commons Attribution-Share Alike 2.5 License Learning on profiles

More information

Lecture 2 September 3

Lecture 2 September 3 EE 381V: Large Scale Optimization Fall 2012 Lecture 2 September 3 Lecturer: Caramanis & Sanghavi Scribe: Hongbo Si, Qiaoyang Ye 2.1 Overview of the last Lecture The focus of the last lecture was to give

More information

VC 17/18 TP14 Pattern Recognition

VC 17/18 TP14 Pattern Recognition VC 17/18 TP14 Pattern Recognition Mestrado em Ciência de Computadores Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos Miguel Tavares Coimbra Outline Introduction to Pattern Recognition

More information

Recap: Gaussian (or Normal) Distribution. Recap: Minimizing the Expected Loss. Topics of This Lecture. Recap: Maximum Likelihood Approach

Recap: Gaussian (or Normal) Distribution. Recap: Minimizing the Expected Loss. Topics of This Lecture. Recap: Maximum Likelihood Approach Truth Course Outline Machine Learning Lecture 3 Fundamentals (2 weeks) Bayes Decision Theory Probability Density Estimation Probability Density Estimation II 2.04.205 Discriminative Approaches (5 weeks)

More information

Unsupervised: no target value to predict

Unsupervised: no target value to predict Clustering Unsupervised: no target value to predict Differences between models/algorithms: Exclusive vs. overlapping Deterministic vs. probabilistic Hierarchical vs. flat Incremental vs. batch learning

More information

Introduction to machine learning, pattern recognition and statistical data modelling Coryn Bailer-Jones

Introduction to machine learning, pattern recognition and statistical data modelling Coryn Bailer-Jones Introduction to machine learning, pattern recognition and statistical data modelling Coryn Bailer-Jones What is machine learning? Data interpretation describing relationship between predictors and responses

More information

Machine Learning. B. Unsupervised Learning B.1 Cluster Analysis. Lars Schmidt-Thieme

Machine Learning. B. Unsupervised Learning B.1 Cluster Analysis. Lars Schmidt-Thieme Machine Learning B. Unsupervised Learning B.1 Cluster Analysis Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim, Germany

More information

The alpha-procedure - a nonparametric invariant method for automatic classification of multi-dimensional objects

The alpha-procedure - a nonparametric invariant method for automatic classification of multi-dimensional objects The alpha-procedure - a nonparametric invariant method for automatic classification of multi-dimensional objects Tatjana Lange Pavlo Mozharovskyi Hochschule Merseburg, 06217 Merseburg, Germany Universität

More information

Expectation Maximization (EM) and Gaussian Mixture Models

Expectation Maximization (EM) and Gaussian Mixture Models Expectation Maximization (EM) and Gaussian Mixture Models Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer 1 2 3 4 5 6 7 8 Unsupervised Learning Motivation

More information

CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS

CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS CHAPTER 4 CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS 4.1 Introduction Optical character recognition is one of

More information

Ensemble methods in machine learning. Example. Neural networks. Neural networks

Ensemble methods in machine learning. Example. Neural networks. Neural networks Ensemble methods in machine learning Bootstrap aggregating (bagging) train an ensemble of models based on randomly resampled versions of the training set, then take a majority vote Example What if you

More information

Using Decision Boundary to Analyze Classifiers

Using Decision Boundary to Analyze Classifiers Using Decision Boundary to Analyze Classifiers Zhiyong Yan Congfu Xu College of Computer Science, Zhejiang University, Hangzhou, China yanzhiyong@zju.edu.cn Abstract In this paper we propose to use decision

More information

ORT EP R RCH A ESE R P A IDI! " #$$% &' (# $!"

ORT EP R RCH A ESE R P A IDI!  #$$% &' (# $! R E S E A R C H R E P O R T IDIAP A Parallel Mixture of SVMs for Very Large Scale Problems Ronan Collobert a b Yoshua Bengio b IDIAP RR 01-12 April 26, 2002 Samy Bengio a published in Neural Computation,

More information

Adaptive Learning of an Accurate Skin-Color Model

Adaptive Learning of an Accurate Skin-Color Model Adaptive Learning of an Accurate Skin-Color Model Q. Zhu K.T. Cheng C. T. Wu Y. L. Wu Electrical & Computer Engineering University of California, Santa Barbara Presented by: H.T Wang Outline Generic Skin

More information

Support vector machines

Support vector machines Support vector machines Cavan Reilly October 24, 2018 Table of contents K-nearest neighbor classification Support vector machines K-nearest neighbor classification Suppose we have a collection of measurements

More information

Constrained Clustering with Interactive Similarity Learning

Constrained Clustering with Interactive Similarity Learning SCIS & ISIS 2010, Dec. 8-12, 2010, Okayama Convention Center, Okayama, Japan Constrained Clustering with Interactive Similarity Learning Masayuki Okabe Toyohashi University of Technology Tenpaku 1-1, Toyohashi,

More information

Flexible-Hybrid Sequential Floating Search in Statistical Feature Selection

Flexible-Hybrid Sequential Floating Search in Statistical Feature Selection Flexible-Hybrid Sequential Floating Search in Statistical Feature Selection Petr Somol 1,2, Jana Novovičová 1,2, and Pavel Pudil 2,1 1 Dept. of Pattern Recognition, Institute of Information Theory and

More information

A Visualization Tool to Improve the Performance of a Classifier Based on Hidden Markov Models

A Visualization Tool to Improve the Performance of a Classifier Based on Hidden Markov Models A Visualization Tool to Improve the Performance of a Classifier Based on Hidden Markov Models Gleidson Pegoretti da Silva, Masaki Nakagawa Department of Computer and Information Sciences Tokyo University

More information

A Graph Theoretic Approach to Image Database Retrieval

A Graph Theoretic Approach to Image Database Retrieval A Graph Theoretic Approach to Image Database Retrieval Selim Aksoy and Robert M. Haralick Intelligent Systems Laboratory Department of Electrical Engineering University of Washington, Seattle, WA 98195-2500

More information

Machine Learning. B. Unsupervised Learning B.1 Cluster Analysis. Lars Schmidt-Thieme, Nicolas Schilling

Machine Learning. B. Unsupervised Learning B.1 Cluster Analysis. Lars Schmidt-Thieme, Nicolas Schilling Machine Learning B. Unsupervised Learning B.1 Cluster Analysis Lars Schmidt-Thieme, Nicolas Schilling Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim,

More information

Semi-supervised learning and active learning

Semi-supervised learning and active learning Semi-supervised learning and active learning Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Combining classifiers Ensemble learning: a machine learning paradigm where multiple learners

More information

Supervised vs unsupervised clustering

Supervised vs unsupervised clustering Classification Supervised vs unsupervised clustering Cluster analysis: Classes are not known a- priori. Classification: Classes are defined a-priori Sometimes called supervised clustering Extract useful

More information

NIST. Support Vector Machines. Applied to Face Recognition U56 QC 100 NO A OS S. P. Jonathon Phillips. Gaithersburg, MD 20899

NIST. Support Vector Machines. Applied to Face Recognition U56 QC 100 NO A OS S. P. Jonathon Phillips. Gaithersburg, MD 20899 ^ A 1 1 1 OS 5 1. 4 0 S Support Vector Machines Applied to Face Recognition P. Jonathon Phillips U.S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards and Technology Information

More information

Practice EXAM: SPRING 2012 CS 6375 INSTRUCTOR: VIBHAV GOGATE

Practice EXAM: SPRING 2012 CS 6375 INSTRUCTOR: VIBHAV GOGATE Practice EXAM: SPRING 0 CS 6375 INSTRUCTOR: VIBHAV GOGATE The exam is closed book. You are allowed four pages of double sided cheat sheets. Answer the questions in the spaces provided on the question sheets.

More information

Rank Measures for Ordering

Rank Measures for Ordering Rank Measures for Ordering Jin Huang and Charles X. Ling Department of Computer Science The University of Western Ontario London, Ontario, Canada N6A 5B7 email: fjhuang33, clingg@csd.uwo.ca Abstract. Many

More information

Calculation of extended gcd by normalization

Calculation of extended gcd by normalization SCIREA Journal of Mathematics http://www.scirea.org/journal/mathematics August 2, 2018 Volume 3, Issue 3, June 2018 Calculation of extended gcd by normalization WOLF Marc, WOLF François, LE COZ Corentin

More information

CLASSIFICATION is one of the most important applications of neural systems. Approximation

CLASSIFICATION is one of the most important applications of neural systems. Approximation Neural minimal distance methods Włodzisław Duch Department of Computer Methods, Nicholas Copernicus University, Grudzia dzka 5, 87-100 Toruń, Poland. E-mail: duch@phys.uni.torun.pl Abstract Minimal distance

More information

Announcements. CS 188: Artificial Intelligence Spring Generative vs. Discriminative. Classification: Feature Vectors. Project 4: due Friday.

Announcements. CS 188: Artificial Intelligence Spring Generative vs. Discriminative. Classification: Feature Vectors. Project 4: due Friday. CS 188: Artificial Intelligence Spring 2011 Lecture 21: Perceptrons 4/13/2010 Announcements Project 4: due Friday. Final Contest: up and running! Project 5 out! Pieter Abbeel UC Berkeley Many slides adapted

More information

Contents. Preface to the Second Edition

Contents. Preface to the Second Edition Preface to the Second Edition v 1 Introduction 1 1.1 What Is Data Mining?....................... 4 1.2 Motivating Challenges....................... 5 1.3 The Origins of Data Mining....................

More information

Feature Extractors. CS 188: Artificial Intelligence Fall Some (Vague) Biology. The Binary Perceptron. Binary Decision Rule.

Feature Extractors. CS 188: Artificial Intelligence Fall Some (Vague) Biology. The Binary Perceptron. Binary Decision Rule. CS 188: Artificial Intelligence Fall 2008 Lecture 24: Perceptrons II 11/24/2008 Dan Klein UC Berkeley Feature Extractors A feature extractor maps inputs to feature vectors Dear Sir. First, I must solicit

More information

Texture Classification by Combining Local Binary Pattern Features and a Self-Organizing Map

Texture Classification by Combining Local Binary Pattern Features and a Self-Organizing Map Texture Classification by Combining Local Binary Pattern Features and a Self-Organizing Map Markus Turtinen, Topi Mäenpää, and Matti Pietikäinen Machine Vision Group, P.O.Box 4500, FIN-90014 University

More information

Multivariate Data Analysis and Machine Learning in High Energy Physics (V)

Multivariate Data Analysis and Machine Learning in High Energy Physics (V) Multivariate Data Analysis and Machine Learning in High Energy Physics (V) Helge Voss (MPI K, Heidelberg) Graduierten-Kolleg, Freiburg, 11.5-15.5, 2009 Outline last lecture Rule Fitting Support Vector

More information

Inference and Representation

Inference and Representation Inference and Representation Rachel Hodos New York University Lecture 5, October 6, 2015 Rachel Hodos Lecture 5: Inference and Representation Today: Learning with hidden variables Outline: Unsupervised

More information

I How does the formulation (5) serve the purpose of the composite parameterization

I How does the formulation (5) serve the purpose of the composite parameterization Supplemental Material to Identifying Alzheimer s Disease-Related Brain Regions from Multi-Modality Neuroimaging Data using Sparse Composite Linear Discrimination Analysis I How does the formulation (5)

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 12 Combining

More information

Integration of Public Information at the Regional Level Challenges and Opportunities *

Integration of Public Information at the Regional Level Challenges and Opportunities * Integration of Public Information at the Regional Level Challenges and Opportunities * Leon Bobrowski, Mariusz Buzun, and Karol Przybszewski Faculty of Computer Science, Bialystok Technical University,

More information

Support Vector Machines.

Support Vector Machines. Support Vector Machines srihari@buffalo.edu SVM Discussion Overview 1. Overview of SVMs 2. Margin Geometry 3. SVM Optimization 4. Overlapping Distributions 5. Relationship to Logistic Regression 6. Dealing

More information