Building assembly detailing using constraint-based modeling

Size: px
Start display at page:

Download "Building assembly detailing using constraint-based modeling"

Transcription

1 Automation in Construction 12 (2003) Building assembly detailing using constraint-based modeling K. Nassar a, *, W. Thabet b, Y. Beliveau c a Department of Civil Engineering and Construction, Bradley University, 126 Jobst Hall, 1501 W. Bradley Avenue, Peoria, IL 61625, USA b 123 D Burruss Hall, Blacksburg, VA , USA c 122 E Burruss Hall, Virginia Tech., Blacksburg, VA , USA Accepted 4 September 2002 Abstract Constraint-based geometric modeling entails specifying geometric constraints to control the locations of the components in an assembly. Consequently, any future modifications of the components are governed by these constraints. In this paper, a set of constraint-based assembly operations for generating 3D details of building assemblies are presented. The operations constrain the locations and orientations of the components in a building assembly through a series of constructive steps and therefore allow for easier modification. These operations are used in a modeling system that extends the idea of constraint-based modeling to detailing architectural building assemblies. The system utilizes the constraint-based assembly operations, which employ traditional geometric constraints integrated with a set of constructive assembly operations. The constraint-based assembly operations allow for a more systematic generation of the assembly details, which can save repetitive work and reduce mistakes resulting from copying and pasting old details. Also, the technique allows the assemblies to be studied and analyzed. To illustrate this idea, a prototype 3D constraint-based system for assembling three-dimensional architectural details was developed. With the proposed system, the details of building assemblies do not need to be reinvented for every project. Examples of the proposed approach are provided and its limitations and benefits are discussed. D 2002 Elsevier Science B.V. All rights reserved. Keywords: Constraint-based modeling; Assemblies; Building details 1. Introduction During the early and mid-1980s, CAD was gaining ground and becoming an efficient alternative to the drafting table. With the increased use of CAD, architects were continuously devising ways to automate drafting and design tasks in order to increase their efficiency. Repetitive tasks were automated using * Corresponding author. addresses: knassar@bradley.edu (K. Nassar), thabet@vt.edu (W. Thabet). predefined scripts, utilizing the various scripting languages offered in the CAD systems (e.g. AutoCAD s AutoLISP). Object-oriented data was added to lines, arcs and circles, and systems began recognizing them as doors, windows and doors. Object data was then extended to the third dimension, so architects could work in 2D and 3D. A number of software tools were devised in which architects can define their designs in 3D and the complete object model is maintained by the system. This started with simple house modeling software marketed to help non-architects define their dream house (e.g. Home Architect, Home /02/$ - see front matter D 2002 Elsevier Science B.V. All rights reserved. doi: /s (02)

2 366 K. Nassar et al. / Automation in Construction 12 (2003) Designer, etc...). The idea was then extended to professional software like Triforma, Architectural Desktop and ArchiCad. Concurrently, in the mechanical design realm, parametric modelers were being introduced. The concept behind these modelers is that a user defines a set of parameters that in turn drives a 3D model. This means that changes in any parameter are propagated to the rest of the model. Additionally, various 2D details can be extracted from the model. In the architecture realm, Revit [14] first introduced this concept commercially. Revit is a parametric modeler that acts on parametric components (e.g. doors, windows and doors), and annotations (e.g. dimensions and grids) and parametric views (e.g. plans and sections) to ensure bidirectional association between the elements of design. When changing the location or size of a window in a floor plan, for example, the change is reflected in all views like elevations and perspectives. If a dimension measuring from the end of a wall to the center of a window is changed, not only will Revit move the window, but also any other windows parametrically related to it. This parametric model of the building, which is driven from a single integrated database, is what makes Revit unique. Simultaneously in the mechanical design realm, constraint-based modelers, like Mechanical Desktop [8], were being introduced and used. Constraint-based geometric modeling entails specifying geometric constraints to control the locations of the components in the assembly. Consequently, any future modifications of the components are governed by these constraints. The constraints are used to relate two components within an assembly to control their positions and orientation relative to one another. Similar concepts in architecture were described in a number of research studies as early as the 1960s [4]. Gross [1] described a system where building components can be assembled using Lego-style constraints that guide the placement of the components in the building. The constraints mainly relate to the various grids and modules used for the various systems in the building. Harfmann and Chen [5] and Harfmann et al. [6] also proposed a system where the various components of the building are linked together using constraints. An integrated database that stores all this information is maintained by the system. Frazer [2,3] described how constraints could be used to describe the rules of the physical and spatial structure of architecture designs, which he called plastic modeling. Kilkelly [7] described a comprehensive approach for construction drawings. The approach employs object-oriented entities to specify the composition of construction drawings and details. This paper presents a graphical modeling system that extends the idea of constraint-based modeling to detailing architectural building assemblies. The system utilizes constraint-based assembly operations, which employ traditional geometric constraints integrated with a set of constructive assembly operations. The constraint-based assembly operations allow for a more systematic generation of the assembly details, which can save repetitive work and reduce mistakes resulting from copying and pasting old details. Also, the technique allows the assemblies to be studied and analyzed more rationally than traditional techniques. To illustrate this idea, a prototype 3D constraint-based system for assembling three-dimensional architectural details was developed. In the next section, the concept of constraint-based assembly operations is presented. 2. Constraint-based modeling for architecture details 2.1. Overview One of the current practices for generating the details is to store details of the various assembly types in a detail library (which can be in an electronic format) and retrieve the details for each new design. However, the possible permutations and combinations that can be encountered are too many and oftentimes the current detail can be different from the retrieved library detail, resulting in design errors. The shapes, locations or number of components in the new selected detail can be different. Therefore, the retrieved detail becomes invalid and must be modified or drawn again. This paper introduces the use of constraint-based assembly operations to help the designer in the generation of building assembly details and overcoming the need to recreate the detail for each new design. Constraint-based assembly operations are essentially a set of constructive operations that act on components of the assembly to place them in the correct position within the assembly.

3 K. Nassar et al. / Automation in Construction 12 (2003) In architectural practice the details are generally drawn separately from the main plan, elevations, and sections. In constraint-based modeling, on the other hand, the generated detail is based on an abstract 3D representation of the assembly. The designer provides a 3D model of the building in terms of abstract building assemblies (such as that of Fig. 1). This is analogous to many of the commercial CAD tools (e.g. AutoDesk s Architectural Desktop, Graphisoft s ArchiCad, and Bentely s TriForma, and recently Revit). In this abstract representation of the building, each assembly is modeled as a separate 3D entity. Once the building is modeled in 3D, the constraint-based modeling operations can be used to generate the detail for a specific assembly (or a set of assemblies). Of course, it is possible to generate a complete set of details for all the building. However, this is generally not needed in practice and would make the model undecipherable. Architects usually concentrate and generate details of specific assemblies that are critical or need more explanation. Also, once the detail is generated, the original abstract 3D representation of the building still exists. This allows for viewing the complete 3D model of the building at different levels of detail. Constraint-based modeling operations can help to cut the time it takes to modify the detail and generate new ones and also to minimize the errors resulting from current cut-and-paste practice of details. In order to illustrate this concept, the properties of the abstract 3D representations of the assemblies and the components used in the proposed building assembly detailing system are first presented. Then, the set of constraintbased modeling operations are described next. This is followed by a discussion of the syntax and use of the system along with an example. Finally, the computer implementation is described and conclusions are drawn Abstract representations and work-features Once the building is modeled as a set of abstract building assemblies in 3D (e.g. Fig. 1), it is possible to Fig. 1. An example of an abstract 3D model of a house modeled in ArchiCad.

4 368 K. Nassar et al. / Automation in Construction 12 (2003) concentrate on a specific assembly (or set of assemblies) and generate the details accordingly. In the 3D building model, a solid model or CADREP (short for CAD representations) represents each of the assemblies in the building and components in the detail. Hence, two types of CADREPs are identified here: assembly CADREPs and component CADREPs. Various component CADREPs are shown in Fig. 2. In order to generate the 3D solid model of a complete assembly detail, some constraints that describe how these component CADREPs fit together within the context of the whole assembly have to be added. When two parts are constrained (which can be either two component CADREPs, or one component CADREP and one assembly CADREP), generally one geometric feature of one part is related to another geometric feature of the second part. Geometric features that can be used to create constraints are faces (both planar and curved), axes, points (end, mid, center, and others), and edges. A cube, for example, has 12 edges, 6 faces, and 16 standardized points. In this paper, these geometric features are called work-features. Therefore, work-features can either be work-points, work-axes or work-planes (as shown on the upper right component CADREP in Fig. 2). These work-features are referenced in the constraint-based operation (discussed next) to place the components in their correct positions. Each workfeature can be either relative or absolute. A relative work-feature relates to the main 3D assembly in relative proportions only. For example, one can define a work-axis to be in the center of the assembly CADREP, or a work-point to mark the upper left corner of an assembly, or a work-plane relates to the upper surface of the assembly CADREP. These relative work-features allow the CADREP to be scaled, rotated or transformed, and still retain these workfeatures in their corresponding relative positions. The absolute work-features on the other hand, relate to discrete locations on the assembly of the CADREP of the component. For example, a work-axis can be defined so that it is 1 in. from the left edge of the assembly. Given the assembly and the component CADREPs and their respective work-features, the next step then is to place the components in their correct position Fig. 2. Examples of component CADREPs.

5 K. Nassar et al. / Automation in Construction 12 (2003) within the assembly using the work-features and the constraint-based operations Constraint-based assembly operations The constraint-based operations used here are essentially declarative constraints packaged within a set of assembly operations. First, the declarative constraints are discussed and then the suggested assembly operations are presented Declarative constraints Declarative constraints relate the location of two objects together. Declarative constraints can be used to restrict the locations or orientations of certain objects in the model. For example a mate constraint can be used to insure that the beam object is geometrically located flush with a column as seen in Fig. 3. In this case, the mate constraint takes four parameters: the two objects to be constrained and two vectors on the objects to describe how to mate them. Once the constraint is specified, any modifications to the assembly have to comply with the set constraints, and a new assembly detail can be generated. The new details reflect the correct location of the components. So if the size of the beam in Fig. 3 changes for example (or the column is moved or resized), the model will be updated to reflect the new size marinating the flush constraint. The mate constraint in Fig. 3 is only one type of constraint. Various generic constraint sets have been proposed in the literature. However, there are, as yet, no standards for specifying or representing constraints [13]. Fig. 4 shows an example of generic classification of declarative constraints [12]. The constraints are divided into two main groups: orientation and position. The position constraints are used to define distances between two points as constraints. They specify the distance measure from a reference entity to a target entity. The orientation constraints are divided into five types: parallel, perpendicular, angle, coplanar and coaxial. Another set of declarative constraints is offered in a commercial constraint-based modeler, AutoCad Mechanical Desktop. This program allows users to specify four kinds of constraints: AMINSERT (insert), AMAN- GLE (angle constraint), AMFLUSH (flush constraint), and AMMATE (mate constraint) as shown in Table 1. Mechanical Desktop was used as the constraint-based engine for the prototype system developed in this research, and hence these constraints are used here. Next, a description of how these declarative constraints are integrated within the constraint-based assembly operations is presented Assembly operations Although the discrete parameters in traditional constraint-based modelers like Mechanical Desktop can be changed (e.g. the length or width of an element, a radius of cam, etc...), the parameters of the declarative constraints (the CADREPs themselves) have to be changed manually. For example, in order to Fig. 3. Examples of constraints.

6 370 K. Nassar et al. / Automation in Construction 12 (2003) Fig. 4. Different kinds of constraints, adapted from Ref. [12]. change parameters like the shape of an element (e.g. new brick shape), one has to manually do so and then refine the model again. Furthermore, when modeling building assemblies using constraint-based modeling, one often needs to resort to a number of steps in order to achieve the final effect [11]. In building assemblies, for example, there are usually repetitive objects. For example, the CMU units or the metal ties are repetitive objects with the same solid model. If we were to specify these units separately, the modeling time would increase significantly. A solution might be to define a 3D ARRAY operation that can used to create objects and then constrain the final set of objects as a whole using the traditional geometric constraints. In addition, the sequence of the assembly process itself could be important for further analysis of the properties of the objects.

7 K. Nassar et al. / Automation in Construction 12 (2003) Table 1 Constraints in mechanical desktop Constraint Description Mate To join points, axes, planes, or non-planar faces. Insert To align two circles, including their center axes and planes, use the Insert constraint. Flush To make two planes coplanar with their faces aligned in the same direction, use the Flush constraint. Angle To control an angle between two planes or two vectors, use the Angle constraint. Therefore, a set of constraint-based assembly operations is proposed. These operations can be used to specify the sequence of operations to constrain the locations and orientations of certain objects in relation to others. The set of constraining operations are constructive steps that place geometric elements relative to each other. This approach is often called constructive specification [10,11]. The operations and the constraints associated with them are shown in Table 2. They are a combination of constraints and standard solid modeling operations. Each operation takes component CADREPs of a particular type as its parameters. For example, the LAY- OUT operation in Fig. 5 operates on CADREPs that are to be placed at certain intervals and can take, for example, the metal ties CADREPs. Each operation also has a set of parameters associated with it. The LAYOUT operation, for example, has the spacing parameter s to determine the spacing between the elements. Note that in the LAYOUT constraint, all the work-features are on the same plane. The ASSEMBLE operation is the operation used to connect components together. It can also be used to place a component or assembled components in relation to an assembly. The STACK operation is used for masonry type CADREPs and can take a brick or a CMU CADREP as an input. This is a combination of a 3D ARRAY command and both an ANGLE and FLUSH constraints. COVER is the operation for overlaying material over a surface like tiles, plyroofing, etc... CUT operation is used to penetrate or trim components, e.g. wood. This is a standard 3D SUBTRACT command followed by an ASSEMBLE constraint Operations syntax Constraints usually have a target and a reference entity. The target entity is the entity that is to be constrained, while the reference entity is the entity the target is constrained to. The target and reference entities can be component CADREPs within an assembly or they can be assembly CADREPs themselves. In order to specify the constraints in each operation, the target and reference entities are actually the workfeatures on the assembly and component CADREPs. For example, the ASSEMBLE operation will take two points, e.g. one on the component CADREP and the other on the assembly CADREP (these have to satisfy a coincide constraint along with two directions that have to satisfy a coaxial constraint). In effect, this constraining operation is equivalent to combining more than one of the Mechanical Desktop constraints in relation to building elements. For example, the LAYOUT ðobject A; P1; D1; Object B; P2; D2; sþ This is equivalent to a standard 3D ARRAY operation followed by a MATE constraint and a FLUSH Table 2 The defined constraining operations Operation Geometric work-feature parameters on reference Geometric work-feature parameters on target Building parameters Example Layout one point, one line one point, one line spacing metal ties, fixtures Assemble one point, one line one point, one line bolts, screws Cover one point, one line one point, one line, angle, spacing, overlap tiles, sheet rock start point, end point Cut one point one point, one line angle sawing wood Stack one point, one line one point, one line, start point, end point vertical joint spacing, horizontal joint spacing masonry

8 372 K. Nassar et al. / Automation in Construction 12 (2003) Fig. 5. The LAYOUT and ASSEMBLE operations. constraint. The points P1 and D1 are work-features defined on the CADREP of Object A, i.e. a work-point and a work-axis. Similarly P2 and D2 are workfeatures defined on the CADREP of object B. The constraining operations required for the detail shown in Fig. 6 are shown. The user of the system would define the 3D model of the building, similar to the simple block building shown in upper left corner of Fig. 6. The 3D model of the building is defined using assembly CADREPs (i.e. columns, walls, roofs, etc...), which are instanced from base CADREPs. This is similar to defining 3D blocks in AutoCAD that resemble the different assembly CADREPs and then inserting (rotating, scaling, and moving around) instances of these blocks to define 3D model of the building. The operations required to generate different details would then be defined, such as those required to generate the simple Column Metal ties CMU

9 K. Nassar et al. / Automation in Construction 12 (2003) Fig. 6. The operations for a simple example. assembly in Fig. 6. Alternatively, assembly operations can be restored from a library of saved operation sets. These saved sets would specify the operations required to generate different details. Once the operations have been specified for an assembly detail, a user would then select a particular abstract assembly CADREP in the model and apply the defined operations to generate the detail. Furthermore, the same operation set can be used to generate other details with different CMU shapes, spacing, or metal-tie shapes or spacing by changing the parameters of the operations and without the need to draw a new model again. Notice that in this simple example an assembly Fig. 7. The sectioned 2D details.

10 374 K. Nassar et al. / Automation in Construction 12 (2003) Fig. 8. The example stair assembly.

11 K. Nassar et al. / Automation in Construction 12 (2003) CADREP itself (the column CADREP) is used as part of the complete detail. The hidden lines can be removed and the detail can be rendered with texture if required. Once these operations are defined, the same set of operations can be applied to different column CADREPS in the 3D model that are instances of the column CADREP used in the original definition of the assembly (for example, the same detail can be generated by selecting any of the columns in simple block building shown in Fig. 6). The operations relate to actual construction operations. This has the benefit of simplifying constraint definition, since a designer can relate more easily to these operations than abstract geometric operations and constraints. More importantly, since the described operations relate to building components, each component will be associated with the same operation regardless of the CADREP used. For example, a Vinyl Tile component will always be associated with the COVER operation. This allows us to draw a multitude of building assembly details in 3D with this concise set of operations. The created assembly detail is a solid model. This means that the assembly can actually be sectioned in many ways to produce different 2D details if desired. Examples of 2D details generated from the solid model of the detail of the developed example above are shown in Fig. 7. To increase the robustness of the assembly operations, the resulting subassembly of one operation can be used as an input in the following operation. This is demonstrated using the following stair example A stair example Consider the stair example in Fig. 8. Originally, the stair assembly was modeled as an abstract 3D assembly as shown. A set of operations is required so that they can then be applied to the selected abstract assembly CADREP and generate a detailed assembly such as that shown. There are four components represented by CADREPs (T, C, H, L). Given these four components, the sequence of the constraining operations is defined as shown. First, a CUT operation is used on C to cut out the place of T and similarly for the place of H. Then a LAYOUT operation is used to layout C along T. Next, two ASSEMBLE operations are used to assemble the rest of the stair assembly. Fig. 9. The modified details of the stair assembly with two carriages. Notice that the results from one operation can be used as input in the next. There are several benefits from this approach. By representing assemblies in that way, one can easily change the size, shape or number of components or subassemblies in an assembly and the changes can be propagated accordingly. For example, in the previous stair assembly, if the user decides to use two carriages instead of three, then he or she would have to modify the parameters of the LAYOUT operation in step 4 and a modified detail would be generated (Fig. 9). A prototype system that incorporates most of functionalities of constraint-based assembly operations was developed and is described next. 3. Computer implementation In this section a brief description of the developed prototype system is presented. The prototype, EASYBUILD, was developed as an extension to a popular commercial CAD package: AUTOCAD. One of the reasons AUTOCAD is a popular package is its ease of customization. AUTOCAD offers a multitude of ways to develop customized applications on top of the regular drafting interface. Different tools exist for developing application extensions in AUTOCAD, including AutoLisp, Visual Lisp, C++ and ADS and Visual Basic For Applications (VBA). In this research, the development tool used for implementing EASYBUILD was VBA. The reason for choosing this development tool is its ease of extension and compatibility with several other software packages like databases and spreadsheets [9]. Visual Basic was first introduced in AutoCad Version 14. The assembly generation module of EASYBUILD consists of three main modules, the Assembly/Component Definition

12 376 K. Nassar et al. / Automation in Construction 12 (2003) Module (ADM), the Constraint Editor (CE), and the Modeling Module (MM) The Assembly/Component Definition Module (ADM) The ADM has two main functions. Firstly, the ADM is the module that allows the user to define the CADREPs of the different components and assemblies as solid models. These are stored as blocks in AUTO- CAD so that they can be retrieved and instanced when drawing the building in the modeling module. Secondly, the ADM is where the users can model the different components and specify the various workfeatures for component CADREPs and assembly CADREPs to be used in the constraint-based operations. This is accomplished by attaching Xdata to the solid model of the component CADREP. Xdata is a method in AUTOCAD for attaching geometric and textual data to models so that they can be retrieved or altered later. The user can specify various work-features, like work-points or work-directions on the model of the component as needed. (Fig. 10) shows the interface of the ADM. The components and their work-features defined in the ADM are stored in a library in order to be retrieved when evaluating the constraint-based operations. EASYBUILD also allows the user to specify dummy geometries to be used in the generation of the assembly detail The Modeling Module (MM) The MM allows a user to model the 3D representation of the building using the various CADREPs of the building assemblies. The building is modeled by instancing the blocks of the assembly CADREPs defined earlier in the ADM. These blocks can then be rotated, transformed or scaled to define the building. The system is currently limited to four assembly CADREP types: walls, flat roofs, columns, and isolated footings. Once the building is modeled, the next step becomes to select one of the assembly CADREPs in the Fig. 10. Defining work features in the Assembly/Component Definition Module (ADM).

13 K. Nassar et al. / Automation in Construction 12 (2003) model and apply the appropriate set of constraint-based operations to generate the 3D detail of that assembly. Currently, the MM cannot import 3D models from other architectural modeling software (i.e. Architectural Desktop or ArchiCad) and therefore, the building currently must be modeled in the ADM. However, the ability to import 3D building models would be a useful addition to increase the versatility of the system, and can be accomplished by using recently developed universal standards such as the Industry Foundation Classes (IFCs) The Constraint Editor (CE) This module is where the constraint-based operations are defined. The definition of the operations required to generate the 3D building detail is carried out in a text-editor interface. This interface allows the user to specify the operations needed for a particular assembly detail in the form of a set of sequential commands. These commands are then parsed and evaluated for each new design. Alternatively, the user can retrieve a predefined set of operations saved earlier or save the current set of operations to be used later. The user would then select an assembly CADREP and apply the loaded set of operations to the selected assembly CADREP in order to generate the 3D building detail. The system retrieves the components from the predefined library of components (defined in the ADM and applies the set of operations, automatically generating the 3D detail. Fig. 11 shows the interface CE. Currently, only the ASSEMBLE, LAYOUT, and CUT operations are functional. Although the modeling succession can be different from the actual construction operations, the designer can visualize the assembly sequentially, in a systematic way. Assembly composition can be analyzed and examined critically, by changing different component shapes and sizes. This helps in analyzing the aesthetics and functionality of the assembly. More of the benefits and limitations of this approach are discussed below. 4. Benefits and limitations The set of defined operation here is only preliminary. Nevertheless, using the limited defined set, one can model a fair number of assembly details. How- Fig. 11. The Constraint Editor (CE).

14 378 K. Nassar et al. / Automation in Construction 12 (2003) ever, one of the limitations of the system as it stands, is the lack of error checks during the assembly operations. For example, in the stair example above, a CUT operation can be defined initially to ensure that the length of the ledger component (L) is similar to the width of the stair. However, if the length of the ledger component CADREP used in the assembly detail is smaller than the width of the stair, a problem will arise. Adding conditional statements in conjunction with the assembly operations can solve this problem. Conditional statement can be used to evaluate the different situations and guarantee a more accurate detail. Conditional statement can also be used for further analysis and decision-making about the detail. Another limitation of the current system relates to the number of subassemblies that the system can handle. The system can currently handle only up to five levels of subassemblies. Although five levels of subassemblies are sufficient for most details, this limitation can be easily extended with appropriate modifications to the system. An important feature of this method is that the designer modeling the assembly is concerned with coordinating at most two components at any one time. This is useful when modeling complex assemblies in 3D. Due to the fact that the designer can reuse the solid models of the components and the subassemblies, shorter initial development modeling time over both the traditional solid modeling approach and the constraint-based approach results after a comprehensive library of components and subassemblies has been developed. Furthermore, this method offers an increased ease of modification especially for complex assemblies. Benefits of the constraint-based approach also include the ability to generate an animated sequence of how assemblies are put together. Although the user of this system is mainly the architect, suppliers, contractors, or the construction manager who want to study how these assemblies will be built can also utilize this system. Architects do not always think in terms of the construction sequence. However, if the sequencing is considered in collaboration with the construction manager, many on-site sequencing problems can be avoided. The system can be used before construction to verify and test any sequencing problems before construction starts. 5. Conclusion and recommendations for future research Constraint-based modeling offers an efficient method for generating building assembly details. A set of constraint-based assembly operations was defined. These operations can be used to specify and constrain the components in an assembly through a series of constructive steps. The constraint-based assembly operations described here offer a systematic method to create building assembly details. The described method allows for more efficient modification of 3D assembly details to fit a specific design. With the proposed detailing system, architects do not need to reinvent the details for every project. Instead, they can concentrate their efforts and budget on the overall design and on gradual refinement of the details. With time, a library of details could be built and details from the library could be modified for each project as well as building new project-specific details. Moreover, the progression of the operations can be a useful tool to consider different composition options with real-time visualization. A prototype system was developed and examples to demonstrate the idea were presented. Future work includes refinement of the selected operations to remove redundancy and arrive at the most efficient set of operations to simplify the process of constraint definition. Also, a closer binding between these operations and actual construction sequence needs to be investigated. An integration of the modeling sequence with the construction sequence results in a kind of a 4D model that adds the time dimension. This provides a visual representation of how to actually build the assembly, which in turn can be used for demonstration or educational purposes also. References [1] M.D. Gross, Why can t CAD be more like Lego? CKB, a program for building construction kits, Automation in Construction 5 (4) (1996) [2] J. Frazer, An Evolutionary Architecture, Architecture Association Publications, ISBN [3] J. Frazer, Plastic modelling the flexible modeling of the logic of structure and spaces, CAAD Futures 87, Proceedings of The Second Conference On Computer Aided Architecture Design Futures, 1987, pp

15 K. Nassar et al. / Automation in Construction 12 (2003) [4] I.E. Sutherland, Sketchpad, A man machine graphical communication system, PhD Dissertation, MIT (1963). [5] A.C. Harfmann, S.S. Chen, Component-based building representation for design and construction, Automation in Construction 1 ( ) (1993). [6] A.C. Harfmann, B. Majkowski, S.S. Chen, A Component- Based Approach to Building Product Representation and Design Development, CAAD Futures 1993, Pittsburg, [7] M. Kilkelly, Off the page: object oriented construction drawings, ACADIA 2000, October. Catholic University, Washington (DC), [8] AutoDesk, Mechanical Desktop Users Manual (2000). [9] B. Kramer, J. Gibb, AutoCAD VBA Programming Tools & Techniques, Miller Freeman, San Francisco (CA), [10] K. Nassar, A framework for the selection and generation of building assemblies, PhD Thesis, Department of Building Construction, Virginia Tech., Blacksburg, VA (1999). [11] K. Nassar, Y. Beliveau, Integrating Parametric Modeling and Construction Simulation, CIB 99, Vancouver, Canada, [12] J. Shah, M. Mantyla, Parametric and Feature Based CAD/ CAM; Concepts Techniques and Applications, Wiley, New York, [13] W. Hower, H. Graf, A bibliographical survey of constraintbased approaches to CAD, graphics, layout, visualization, and related topics, Knowledge-Based Systems 9 (1996) [14] Revit Technology Corporation, Revit s Users Manual (2000).

Using Geometric Constraints to Capture. design intent

Using Geometric Constraints to Capture. design intent Journal for Geometry and Graphics Volume 3 (1999), No. 1, 39 45 Using Geometric Constraints to Capture Design Intent Holly K. Ault Mechanical Engineering Department, Worcester Polytechnic Institute 100

More information

Leveraging 2D Data in 3D Modeling

Leveraging 2D Data in 3D Modeling Leveraging D Data in 3D Modeling Leveraging D Data in 3D Modeling As more and more companies switch to 3D modeling the question of utilizing existing D data and referenced D data from collaborative sources

More information

Introduction to Autodesk Revit Structure

Introduction to Autodesk Revit Structure 11/30/2005-5:00 pm - 6:30 pm Room:N. Hemispheres (Salon E2) (Dolphin) Walt Disney World Swan and Dolphin Resort Orlando, Florida Nicolas Mangon - Autodesk SD35-1 This year, Autodesk is introducing the

More information

Building Information Modeling

Building Information Modeling Chapter Building Information Modeling 1 Building information modeling (BIM) is an integrated workflow built on coordinated, reliable information about a project from design through construction and into

More information

The power of BIM for structural engineering. Autodesk Revit. Structure

The power of BIM for structural engineering. Autodesk Revit. Structure The power of BIM for structural engineering. Autodesk Revit Structure Improve Efficiency, Accuracy, and Coordination Concurrent modeling for structural design, analysis, and coordinated documentation Building

More information

Parametric Modeling. With. Autodesk Inventor. Randy H. Shih. Oregon Institute of Technology SDC PUBLICATIONS

Parametric Modeling. With. Autodesk Inventor. Randy H. Shih. Oregon Institute of Technology SDC PUBLICATIONS Parametric Modeling With Autodesk Inventor R10 Randy H. Shih Oregon Institute of Technology SDC PUBLICATIONS Schroff Development Corporation www.schroff.com www.schroff-europe.com 2-1 Chapter 2 Parametric

More information

Go to contents 16 Smart Objects:

Go to contents 16 Smart Objects: Smart Objects: Constraints and Behaviors in a 3D Design Environment EGGINK, Dustin; GROSS, Mark D.; DO, Ellen Design Machine Group, Department of Architecture, University of Washington http://depts.washington.edu/dmachine/

More information

The foundation of BIM for structural engineering. Autodesk Revit. Structure 2010

The foundation of BIM for structural engineering. Autodesk Revit. Structure 2010 The foundation of BIM for structural engineering. Autodesk Revit Structure 2010 Building Information Modeling for Structural Engineering Integrated tools for modeling, coordination, analysis, design documentation,

More information

Design Production: Constructing freeform designs with rapid prototyping

Design Production: Constructing freeform designs with rapid prototyping Design Production: Constructing freeform designs with rapid prototyping 1 Lawrence Sass, PhD 1, Kristina Shea PhD 2, Michael Powell 3 1 Department of Architecture, MIT 2 Arup R+D, Cambridge University

More information

Revit Architecture. So you want to start a family? Veronica Lamb S2-2

Revit Architecture. So you want to start a family? Veronica Lamb S2-2 Revit Architecture So you want to start a family? Veronica Lamb S2-2 Course Summary: Learn the basics of creating families in Revit Architecture. This course is suited for individuals with little to no

More information

Chapter 19 Assembly Modeling with the TETRIX by Pitsco Building System Autodesk Inventor

Chapter 19 Assembly Modeling with the TETRIX by Pitsco Building System Autodesk Inventor Tools for Design Using AutoCAD and Autodesk Inventor 19-1 Chapter 19 Assembly Modeling with the TETRIX by Pitsco Building System Autodesk Inventor Create and Use Subassemblies in Assemblies Creating an

More information

Autodesk Revit. Structure

Autodesk Revit. Structure The power of BIM for structural engineering. Autodesk Revit S L N E TW R K Structure Improve Efficiency, Accuracy, and Coordination Concurrent modeling for structural design, analysis, and coordinated

More information

Semi-Automatic Techniques for Generating BIM Façade Models of Historic Buildings

Semi-Automatic Techniques for Generating BIM Façade Models of Historic Buildings Semi-Automatic Techniques for Generating BIM Façade Models of Historic Buildings C. Dore, M. Murphy School of Surveying & Construction Management Dublin Institute of Technology Bolton Street Campus, Dublin

More information

COMPUTER AIDED ARCHITECTURAL GRAPHICS FFD 201/Fall 2013 HAND OUT 1 : INTRODUCTION TO 3D

COMPUTER AIDED ARCHITECTURAL GRAPHICS FFD 201/Fall 2013 HAND OUT 1 : INTRODUCTION TO 3D COMPUTER AIDED ARCHITECTURAL GRAPHICS FFD 201/Fall 2013 INSTRUCTORS E-MAIL ADDRESS OFFICE HOURS Özgür Genca ozgurgenca@gmail.com part time Tuba Doğu tubadogu@gmail.com part time Şebnem Yanç Demirkan sebnem.demirkan@gmail.com

More information

Virginia Western Community College ARC 221 Architectural CAD Applications Software I

Virginia Western Community College ARC 221 Architectural CAD Applications Software I Virginia Western Community College ARC 221 Architectural CAD Applications Software I Prerequisites CAD 241 Course Description Teaches the principles and techniques of architectural drawing practices through

More information

Chief Architect X10 New Feature List

Chief Architect X10 New Feature List PRODUCTIVITY Saved Plan Views. Create and save multiple plan views (similar to saved cameras). Each view retains Layer Set, Annotation Set and Active Defaults. Open multiple Plan Views in Windows or Tabs,

More information

Autodesk Revit Structure Autodesk

Autodesk Revit Structure Autodesk Autodesk Revit Structure 2011 What s New Top Features Autodesk Revit Structure 2011 Software Enhanced Design Features Fit and Finish Slanted columns Beam systems and trusses Concrete clean-up Concrete

More information

Revit Architecture Syllabus Total duration: 80 hours (Theory 40 Hours + Lab 40 Hours)

Revit Architecture Syllabus Total duration: 80 hours (Theory 40 Hours + Lab 40 Hours) Faculty Start Date End Date No of Students Revit Architecture Syllabus Total duration: 80 hours (Theory 40 Hours + Lab 40 Hours) Introduction About BIM Introduction to Autodesk Revit Architecture Revit

More information

Computer Mediated Communication (CE6014) Modeling method

Computer Mediated Communication (CE6014) Modeling method University of Ljubljana Faculty of Civil and Geodetic Engineering Computer Mediated Communication (CE6014) Modeling method October 2013 Matevž Dolenc matevz.dolenc@gmail.com When we mean to build, We first

More information

Updated April 28, 2010

Updated April 28, 2010 Performance Chief Architect download is faster and more efficient now that Library Catalogs are download on demand and can be mass downloaded or on an as needed basis. New Ray Trace Rendering Engine. Enhanced

More information

Chapter 2 Parametric Modeling Fundamentals

Chapter 2 Parametric Modeling Fundamentals 2-1 Chapter 2 Parametric Modeling Fundamentals Create Simple Extruded Solid Models Understand the Basic Parametric Modeling Procedure Create 2-D Sketches Understand the "Shape before Size" Approach Use

More information

SWITCHING FROM SKETCHUP TO VECTORWORKS

SWITCHING FROM SKETCHUP TO VECTORWORKS SWITCHING FROM SKETCHUP TO VECTORWORKS INTRODUCTION There are a lot of 3D modeling software programs to choose from and each has its own strengths and weaknesses. For architects, flexibility and ease of

More information

Module 1: Basics of Solids Modeling with SolidWorks

Module 1: Basics of Solids Modeling with SolidWorks Module 1: Basics of Solids Modeling with SolidWorks Introduction SolidWorks is the state of the art in computer-aided design (CAD). SolidWorks represents an object in a virtual environment just as it exists

More information

Fabrication of partially double-curved surfaces out of flat sheet material through a 3d puzzle approach

Fabrication of partially double-curved surfaces out of flat sheet material through a 3d puzzle approach Fabrication of partially double-curved surfaces out of flat sheet material through a 3d puzzle approach tn03-081 Abstract The topic of this paper is connection of digital modeling with generative programming

More information

3D ModelingChapter1: Chapter. Objectives

3D ModelingChapter1: Chapter. Objectives Chapter 1 3D ModelingChapter1: The lessons covered in this chapter familiarize you with 3D modeling and how you view your designs as you create them. You also learn the coordinate system and how you can

More information

Course Title: Assembly Tips and Techniques in Autodesk Inventor

Course Title: Assembly Tips and Techniques in Autodesk Inventor Las Vegas, Nevada, December 3 6, 2002 Speaker Name: Neil Munro Course Title: Assembly Tips and Techniques in Autodesk Inventor Course ID: MA41-2 Course Outline: Investigate bottom-up, top-down, and middle-out

More information

Computer Integrated Manufacturing

Computer Integrated Manufacturing Computer Integrated anufacturing Performance Objectives 1 Fundamentals Demonstrate the ability to store, retrieve copy, and output drawing files depending upon system setup. Show-e Content Show-e Goals

More information

Elements that Follow Your Rules: Constraint Based CAD Layout

Elements that Follow Your Rules: Constraint Based CAD Layout Elements that Follow Your Rules: Constraint Based CAD Layout Mark D. Gross Sundance Laboratory for Computing in Design and Planning College of Architecture and Planning University of Colorado, Denver Boulder

More information

Autodesk Conceptual Design Curriculum 2011 Student Workbook Unit 2: Parametric Exploration Lesson 1: Parametric Modeling

Autodesk Conceptual Design Curriculum 2011 Student Workbook Unit 2: Parametric Exploration Lesson 1: Parametric Modeling Autodesk Conceptual Design Curriculum 2011 Student Workbook Unit 2: Parametric Exploration Lesson 1: Parametric Modeling Overview: Parametric Modeling In this lesson, you learn the basic principles of

More information

AUTODESK INVENTOR MODULAR BASED TRAINING

AUTODESK INVENTOR MODULAR BASED TRAINING AUTODESK INVENTOR MODULAR BASED TRAINING INTERMEDIATE AND ADVANCED DOCUMENT REVISION 0.0.0 REVISIONS DATE 30/06/2016 CREATION DATE 30/06/2016 PREPARED BY Craig Snell Symetri Limited Part of Addnode AB

More information

An Introduction to Autodesk Inventor 2010 and AutoCAD Randy H. Shih SDC PUBLICATIONS. Schroff Development Corporation

An Introduction to Autodesk Inventor 2010 and AutoCAD Randy H. Shih SDC PUBLICATIONS. Schroff Development Corporation An Introduction to Autodesk Inventor 2010 and AutoCAD 2010 Randy H. Shih SDC PUBLICATIONS Schroff Development Corporation www.schroff.com 2-1 Chapter 2 Parametric Modeling Fundamentals Create Simple Extruded

More information

Parametric Modeling with SolidWorks

Parametric Modeling with SolidWorks Parametric Modeling with SolidWorks 2012 LEGO MINDSTORMS NXT Assembly Project Included Randy H. Shih Paul J. Schilling SDC PUBLICATIONS Schroff Development Corporation Better Textbooks. Lower Prices. www.sdcpublications.com

More information

Lesson 1 Parametric Modeling Fundamentals

Lesson 1 Parametric Modeling Fundamentals 1-1 Lesson 1 Parametric Modeling Fundamentals Create Simple Parametric Models. Understand the Basic Parametric Modeling Process. Create and Profile Rough Sketches. Understand the "Shape before size" approach.

More information

Effective Collaboration using Autodesk Revit Structure and Autodesk Building Systems

Effective Collaboration using Autodesk Revit Structure and Autodesk Building Systems AUTODESK REVIT STRUCTURE AUTODESK BUILDING SYSTEMS Effective Collaboration using Autodesk Revit Structure and Autodesk Building Systems This white paper explains how structural engineers using Autodesk

More information

3D Modeling and Design Glossary - Beginner

3D Modeling and Design Glossary - Beginner 3D Modeling and Design Glossary - Beginner Align: to place or arrange (things) in a straight line. To use the Align tool, select at least two objects by Shift left-clicking on them or by dragging a box

More information

SIEMENS. Modeling assemblies. Self-Paced Training. spse01540

SIEMENS. Modeling assemblies. Self-Paced Training. spse01540 SIEMENS Modeling assemblies Self-Paced Training spse01540 Proprietary and restricted rights notice This software and related documentation are proprietary to Siemens Product Lifecycle Management Software

More information

Getting Started Follow the sequence below to get a twin track station up and running.

Getting Started Follow the sequence below to get a twin track station up and running. Getting Started Follow the sequence below to get a twin track station up and running. Place a Station Template component (red arrow denotes Platform 1) and two Ramp Templates (rotate so that the red arrows

More information

Publication Number spse01695

Publication Number spse01695 XpresRoute (tubing) Publication Number spse01695 XpresRoute (tubing) Publication Number spse01695 Proprietary and restricted rights notice This software and related documentation are proprietary to Siemens

More information

Chapter 20 Assembly Model with VEX Robot Kit - Autodesk Inventor

Chapter 20 Assembly Model with VEX Robot Kit - Autodesk Inventor Tools for Design Using AutoCAD and Autodesk Inventor 20-1 Chapter 20 Assembly Model with VEX Robot Kit - Autodesk Inventor Creating an Assembly Using Parts from the VEX Robot Kit Understand and Perform

More information

Multi-Discipline Project Coordination with Autodesk Revit. Jim Stoneberger Avatech Solutions Neal O Neill Avatech Solutions

Multi-Discipline Project Coordination with Autodesk Revit. Jim Stoneberger Avatech Solutions Neal O Neill Avatech Solutions Multi-Discipline Project Coordination with Autodesk Revit Jim Stoneberger Avatech Solutions Neal O Neill Avatech Solutions Origins Internal Origin, (0,0,0 in Revit) Revit does have an internal Origin point

More information

Covers Autodesk Advance Steel fundamentals, so you become quickly productive with the software

Covers Autodesk Advance Steel fundamentals, so you become quickly productive with the software Covers Autodesk Advance Steel fundamentals, so you become quickly productive with the software Autodesk Advance Steel 2017 www.autodesk.com new Autodesk Advance Steel users. It is recommended that you

More information

Features and Benefits

Features and Benefits AutoCAD 2005 Features and s AutoCAD 2005 software provides powerhouse productivity tools that help you create single drawings as productively as possible, as well as new features for the efficient creation,

More information

Importing and Exporting FilesChapter1:

Importing and Exporting FilesChapter1: Importing and Exporting FilesChapter1: Chapter 1 You can use Revit Architecture to import and export various file types, including AutoCAD and AutoCAD Architecture DWG files to use as design aids. You

More information

Publication Number spse01695

Publication Number spse01695 XpresRoute (tubing) Publication Number spse01695 XpresRoute (tubing) Publication Number spse01695 Proprietary and restricted rights notice This software and related documentation are proprietary to Siemens

More information

Acknowledgement INTRODUCTION

Acknowledgement INTRODUCTION Submitted by: 1 Acknowledgement INTRODUCTION Computers are increasingly being used for doing engineering drawings and graphics work because computers allow the graphics designer or the draughtsman to change

More information

Algorithms and Design Descriptions for Relational Modeling

Algorithms and Design Descriptions for Relational Modeling Algorithms and Design Descriptions for Relational Modeling Kenfield Griffith Department of Architecture Massachusetts Institute of Technology Taro Narahara Department of Architecture Massachusetts Institute

More information

Building Information Modeling

Building Information Modeling Chapter Building Information Modeling 1 Building information modeling (BIM) is an integrated workflow built on coordinated, reliable information about a project from design through construction and into

More information

Critical Essentials. Overview. Objectives. Recommended Prior Skills. Upon completion of these topics, you should be able to:

Critical Essentials. Overview. Objectives. Recommended Prior Skills. Upon completion of these topics, you should be able to: Critical Essentials Visualizing spaces in three dimensions is critical to the success of the design of architectural spaces. The interplay of light, color, and space are critical concepts to master. Traditional

More information

Parametric Modeling with NX 12

Parametric Modeling with NX 12 Parametric Modeling with NX 12 NEW Contains a new chapter on 3D printing Randy H. Shih SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com Powered by TCPDF (www.tcpdf.org) Visit the

More information

Building Information ModelingChapter1:

Building Information ModelingChapter1: Chapter 1 Building Information ModelingChapter1: Building information modeling (BIM) is an integrated workflow built on coordinated, reliable information about a project from design through construction

More information

Input CAD Solid Model Assemblies - Split into separate Part Files. DXF, IGES WMF, EMF STL, VDA, Rhino Parasolid, ACIS

Input CAD Solid Model Assemblies - Split into separate Part Files. DXF, IGES WMF, EMF STL, VDA, Rhino Parasolid, ACIS General NC File Output List NC Code Post Processor Selection Printer/Plotter Output Insert Existing Drawing File Input NC Code as Geometry or Tool Paths Input Raster Image Files Report Creator and Designer

More information

76 ACADIA22 >> CONNECTING CROSSROADS OF DIGITAL DISCOURSE

76 ACADIA22 >> CONNECTING CROSSROADS OF DIGITAL DISCOURSE Fabrication of Partially Doublecurved Surfaces out of Flat Sheet Material Through a 3D Puzzle Approach Axel Kilian Massachusetts Institute of Technology 1 Introduction Rapid prototyping and CNC machining

More information

Autodesk REVIT (Architecture) Mastering

Autodesk REVIT (Architecture) Mastering Autodesk REVIT (Architecture) Mastering Training details DESCRIPTION Revit software is specifically built for Building Information Modeling (BIM), empowering design and construction professionals to bring

More information

Advances in MicroStation 3D

Advances in MicroStation 3D MW1HC515 Advances in MicroStation 3D Hands-on class sponsored by the Bentley Institute Presenter: Sam Hendrick, Senior MicroStation Product Consultant Bentley Systems, Incorporated 685 Stockton Drive Exton,

More information

Autodesk Revit 6. Preview Guide. Contents

Autodesk Revit 6. Preview Guide. Contents Autodesk Revit 6 Preview Guide Contents Contents... 1 Welcome to Autodesk Revit... 3 About This Guide... 3 Autodesk Revit Terms... 3 What s New for 6.0... 4 Multi-user Element Borrowing... 4 Design Options...

More information

Alternate assemblies

Alternate assemblies Alternate assemblies Publication Number spse01685 Alternate assemblies Publication Number spse01685 Proprietary and restricted rights notice This software and related documentation are proprietary to

More information

GstarCAD Complete Features Guide

GstarCAD Complete Features Guide GstarCAD 2017 Complete Features Guide Table of Contents Core Performance Improvement... 3 Block Data Sharing Process... 3 Hatch Boundary Search Improvement... 4 New and Enhanced Functionalities... 5 Table...

More information

Parametric Modeling with. Autodesk Fusion 360. First Edition. Randy H. Shih SDC. Better Textbooks. Lower Prices.

Parametric Modeling with. Autodesk Fusion 360. First Edition. Randy H. Shih SDC. Better Textbooks. Lower Prices. Parametric Modeling with Autodesk Fusion 360 First Edition Randy H. Shih SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com Powered by TCPDF (www.tcpdf.org) Visit the following websites

More information

Parametric Modeling with UGS NX 4

Parametric Modeling with UGS NX 4 Parametric Modeling with UGS NX 4 Randy H. Shih Oregon Institute of Technology SDC PUBLICATIONS Schroff Development Corporation www.schroff.com www.schroff-europe.com 2-1 Chapter 2 Parametric Modeling

More information

The World s Leading Stamping Die Design Software for AutoCAD!

The World s Leading Stamping Die Design Software for AutoCAD! DIE is a comprehensive suite of AutoCAD based software products designed to automate many facets of the stamping die design process. DIE software modules can operate independently to address specific design

More information

SWITCHING FROM RHINO TO VECTORWORKS

SWITCHING FROM RHINO TO VECTORWORKS SWITCHING FROM RHINO TO VECTORWORKS INTRODUCTION There are a lot of 3D modeling software programs to choose from and each has its own strengths and weaknesses. For architects, flexibility and ease of use

More information

Tools for Design. with VEX Robot Kit: Randy H. Shih Oregon Institute of Technology SDC PUBLICATIONS

Tools for Design. with VEX Robot Kit: Randy H. Shih Oregon Institute of Technology SDC PUBLICATIONS Tools for Design with VEX Robot Kit: AutoCAD 2011 and Autodesk Inventor 2011 2D Drawing 3D Modeling Hand Sketching Randy H. Shih Oregon Institute of Technology INSIDE: SUPPLEMENTAL FILES ON CD SDC PUBLICATIONS

More information

All In the Family: Creating Parametric Components In Autodesk Revit

All In the Family: Creating Parametric Components In Autodesk Revit All In the Family: Creating Parametric Components In Autodesk Revit Matt Dillon D C CADD AB4013 The key to mastering Autodesk Revit Architecture, Revit MEP, or Revit Structure is the ability to create

More information

The Department of Construction Management and Civil Engineering Technology CMCE-1110 Construction Drawings 1 Lecture Introduction to AutoCAD What is

The Department of Construction Management and Civil Engineering Technology CMCE-1110 Construction Drawings 1 Lecture Introduction to AutoCAD What is The Department of Construction Management and Civil Engineering Technology CMCE-1110 Construction Drawings 1 Lecture Introduction to AutoCAD What is AutoCAD? The term CAD (Computer Aided Design /Drafting)

More information

A MODULARIZED APPROACH TO THE INTEGRATED ENVIRONMENT

A MODULARIZED APPROACH TO THE INTEGRATED ENVIRONMENT A MODULARIZED APPROACH TO THE INTEGRATED ENVIRONMENT Faraj I. and Alshawi M. Department of Surveying, University of Salford Salford M5 4WT, United Kingdom ABSTRACT: The lack of a high level structure for

More information

Chapter 18 Assembly Modeling with the LEGO MINDSTORMS NXT Set Autodesk Inventor

Chapter 18 Assembly Modeling with the LEGO MINDSTORMS NXT Set Autodesk Inventor Tools for Design Using AutoCAD and Autodesk Inventor 18-1 Chapter 18 Assembly Modeling with the LEGO MINDSTORMS NXT Set Autodesk Inventor Creating an Assembly Using Parts from the LEGO MINDSTORMS NXT Set

More information

Mechanical Design V5R19 Update

Mechanical Design V5R19 Update CATIA V5 Training Foils Mechanical Design V5R19 Update Version 5 Release 19 August 2008 EDU_CAT_EN_MD2_UF_V5R19 1 About this course Objectives of the course Upon completion of this course you will be able

More information

Selective Space Structures Manual

Selective Space Structures Manual Selective Space Structures Manual February 2017 CONTENTS 1 Contents 1 Overview and Concept 4 1.1 General Concept........................... 4 1.2 Modules................................ 6 2 The 3S Generator

More information

Tools for Design. A practical guide to 2D Drawing, Sketching, 3D Parametric Modeling and Finite Element Analysis

Tools for Design. A practical guide to 2D Drawing, Sketching, 3D Parametric Modeling and Finite Element Analysis Tools for Design Using AutoCAD 2011, Autodesk Inventor 2011, and LEGO MINDSTORMS NXT & TETRIX A practical guide to 2D Drawing, Sketching, 3D Parametric Modeling and Finite Element Analysis INSIDE: SUPPLEMENTAL

More information

Assembly Modeling & Assembling Parts

Assembly Modeling & Assembling Parts This week you will learn assembly modeling & assembling parts. The steps to follow are: Assembly modeling Assembly hierarchy Assembly constraints Configurations Assembly strategy 1 Creating Assembly Components

More information

Designed objects visualization with Autodesk CAD systems

Designed objects visualization with Autodesk CAD systems Designed objects visualization with Autodesk CAD systems Authors: Tilmute Pilkaite, Kaunas University of Technology, Lithuania, tilma@ktu.lt Nomeda Puodziuniene, Kaunas University of Technology, Lithuania,

More information

DESIGN A DETAIL 3D MODEL OF A BUILDING WITH COMPARISON OF MANUAL AND SOFTWARE ESTIMATE ON AUTODESK REVIT

DESIGN A DETAIL 3D MODEL OF A BUILDING WITH COMPARISON OF MANUAL AND SOFTWARE ESTIMATE ON AUTODESK REVIT DESIGN A DETAIL 3D MODEL OF A BUILDING WITH COMPARISON OF MANUAL AND SOFTWARE ESTIMATE ON AUTODESK REVIT R. S. Bute 1, Md. G. Pathan 2, R. H. Mohankar 3, M. D. Pidurkar 4 1,2,3,4 Assistant Professor, Department

More information

Autodesk Inventor : From Concept to Digital Prototype

Autodesk Inventor : From Concept to Digital Prototype Autodesk Inventor : From Concept to Digital Prototype Bryan Fields Advanced Solutions, Inc. MA305-5 Using the tools available in Autodesk Inventor, this session will look at the progression from concept

More information

Sheet Metal Overview. Chapter. Chapter Objectives

Sheet Metal Overview. Chapter. Chapter Objectives Chapter 1 Sheet Metal Overview This chapter describes the terminology, design methods, and fundamental tools used in the design of sheet metal parts. Building upon these foundational elements of design,

More information

Interoperability with Structural Disciplines

Interoperability with Structural Disciplines Interoperability with Structural Disciplines GRAPHISOFT Visit the GRAPHISOFT website at http://www.graphisoft.com for local distributor and product availability information. Interoperability with Structural

More information

SpaceClaim Professional The Natural 3D Design System. Advanced Technology

SpaceClaim Professional The Natural 3D Design System. Advanced Technology SpaceClaim Professional The Natural 3D Design System SpaceClaim Professional is the 3D productivity tool for engineers who contribute to the design and manufacture of mechanical products across a broad

More information

Equipment Support Structures

Equipment Support Structures Equipment Support Structures Overview Conventions What's New? Getting Started Setting Up Your Session Creating a Simple Structural Frame Creating Non-uniform Columns Creating Plates with Openings Bracing

More information

Adaptive Components Making Them Work For You. Chris Mawson Arup

Adaptive Components Making Them Work For You. Chris Mawson Arup Adaptive Components Making Them Work For You Chris Mawson Arup Essential Viewing Visit the following websites for essential, awesome tips and tricks! Zach Kron s blog :- buildzblogsport.com David Light

More information

ADVANCED DIRECT MANIPULATION OF FEATURE MODELS

ADVANCED DIRECT MANIPULATION OF FEATURE MODELS ADVANCED DIRECT MANIPULATION OF FEATURE MODELS Rafael Bidarra, Alex Noort Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, The Netherlands A.R.Bidarra@tudelft.nl,

More information

A Comprehensive Introduction to SolidWorks 2011

A Comprehensive Introduction to SolidWorks 2011 A Comprehensive Introduction to SolidWorks 2011 Godfrey Onwubolu, Ph.D. SDC PUBLICATIONS www.sdcpublications.com Schroff Development Corporation Chapter 2 Geometric Construction Tools Objectives: When

More information

AUTOMATIC COLLISION DETECTION FOR ASSEMBLY SEQUENCE PLANNING USING A THREE-DIMENSIONAL SOLID MODEL

AUTOMATIC COLLISION DETECTION FOR ASSEMBLY SEQUENCE PLANNING USING A THREE-DIMENSIONAL SOLID MODEL Journal of Advanced Manufacturing Systems Vol. 10, No. 2 (2011) 277 291 c World Scientific Publishing Company DOI: 10.1142/S021968671100220X AUTOMATIC COLLISION DETECTION FOR ASSEMBLY SEQUENCE PLANNING

More information

GDL Toolbox 2 Reference Manual

GDL Toolbox 2 Reference Manual Reference Manual Archi-data Ltd. Copyright 2002. New Features Reference Manual New Save GDL command Selected GDL Toolbox elements can be exported into simple GDL scripts. During the export process, the

More information

CAD/CAM COURSE TOPIC OF DISCUSSION GEOMETRIC MODELING DAWOOD COLLEGE OF ENGINEERING & TECHNOLOGY- KARACHI- ENGR. ASSAD ANIS 4/16/2011 1

CAD/CAM COURSE TOPIC OF DISCUSSION GEOMETRIC MODELING DAWOOD COLLEGE OF ENGINEERING & TECHNOLOGY- KARACHI- ENGR. ASSAD ANIS 4/16/2011 1 CAD/CAM COURSE TOPIC OF DISCUSSION GEOMETRIC MODELING 1 CAD attempts to eliminate the need of developing a prototype for testing and optimizing the design CAD evaluates a design using a model with geometric

More information

SolidWorks Implementation Guides. User Interface

SolidWorks Implementation Guides. User Interface SolidWorks Implementation Guides User Interface Since most 2D CAD and SolidWorks are applications in the Microsoft Windows environment, tool buttons, toolbars, and the general appearance of the windows

More information

Advanced Autodesk Revit Building Techniques

Advanced Autodesk Revit Building Techniques 12/1/2005-8:00 am - 11:30 am Room:N. Hemispheres (Salon B/C) (Dolphin) Walt Disney World Swan and Dolphin Resort Orlando, Florida Advanced Autodesk Revit Building Techniques Greg Demchak - Autodesk and

More information

User s Manual ❹ Tools

User s Manual ❹ Tools User s Manual ❹ Tools 2 CONTENTS I. THE NEW UPGRADED INTERFACE of SCADA Pro 5 II. DETAILED DESCRIPTION OF THE NEW INTERFACE 6 1. Tools 6 1.1 Structural Elements 6 1.2 USC-WCS 12 1.3 Model 13 1.4 Members

More information

AutoCAD 2013 Tutorial - Second Level: 3D Modeling

AutoCAD 2013 Tutorial - Second Level: 3D Modeling AutoCAD 2013 Tutorial - Second Level: 3D Modeling Randy H. Shih SDC PUBLICATIONS Schroff Development Corporation Better Textbooks. Lower Prices. www.sdcpublications.com Visit the following websites to

More information

Dgp _ lecture 2. Curves

Dgp _ lecture 2. Curves Dgp _ lecture 2 Curves Questions? This lecture will be asking questions about curves, their Relationship to surfaces, and how they are used and controlled. Topics of discussion will be: Free form Curves

More information

Tools for Design. with FischerTechnik: Randy H. Shih Oregon Institute of Technology SDC PUBLICATIONS

Tools for Design. with FischerTechnik: Randy H. Shih Oregon Institute of Technology SDC PUBLICATIONS Tools for Design with FischerTechnik: AutoCAD 2012 and Autodesk Inventor 2012 2D Drawing 3D Modeling Hand Sketching INCLUDES: Randy H. Shih Oregon Institute of Technology AUTODESK INVENTOR PART FILES FOR

More information

An Introduction to Autodesk Inventor 2012 and AutoCAD Randy H. Shih SDC PUBLICATIONS. Schroff Development Corporation

An Introduction to Autodesk Inventor 2012 and AutoCAD Randy H. Shih SDC PUBLICATIONS.  Schroff Development Corporation An Introduction to Autodesk Inventor 2012 and AutoCAD 2012 Randy H. Shih SDC PUBLICATIONS www.sdcpublications.com Schroff Development Corporation Visit the following websites to learn more about this book:

More information

Revit. Website:

Revit.   Website: Revit Email: info@computertraininingwales.co.uk Website: www.computertrainingwales.co.uk Revit Beginner The objective of this Revit training course is to give delegates the fundamental skills to use the

More information

User Interface Revit s user interface is adaptive, changing based on your selections and views. options. Room Tag Split Elements

User Interface Revit s user interface is adaptive, changing based on your selections and views. options. Room Tag Split Elements NU REVIT TUTORIAL Instructor: David Snell, AIA LEED AP BD+C Tutorial 1: 2016-01-25 Page 1 of 8 User Interface Revit s user interface is adaptive, changing based on your selections and views. Application

More information

Importing and Exporting FilesChapter1:

Importing and Exporting FilesChapter1: Importing and Exporting FilesChapter1: Chapter 1 You can use Revit Architecture to import and export various file types, including AutoCAD and AutoCAD Architecture DWG files to use as design aids. You

More information

An Introduction to Autodesk Inventor 2013 and AutoCAD

An Introduction to Autodesk Inventor 2013 and AutoCAD An Introduction to Autodesk Inventor 2013 and AutoCAD 2013 Randy H. Shih SDC PUBLICATIONS Schroff Development Corporation Better Textbooks. Lower Prices. www.sdcpublications.com Visit the following websites

More information

S206E Lecture 3, 5/15/2017, Rhino 2D drawing an overview

S206E Lecture 3, 5/15/2017, Rhino 2D drawing an overview Copyright 2017, Chiu-Shui Chan. All Rights Reserved. S206E057 Spring 2017 Rhino 2D drawing is very much the same as it is developed in AutoCAD. There are a lot of similarities in interface and in executing

More information

Parametric Modeling. with. Autodesk Inventor Randy H. Shih. Oregon Institute of Technology SDC

Parametric Modeling. with. Autodesk Inventor Randy H. Shih. Oregon Institute of Technology SDC Parametric Modeling with Autodesk Inventor 2009 Randy H. Shih Oregon Institute of Technology SDC PUBLICATIONS Schroff Development Corporation www.schroff.com Better Textbooks. Lower Prices. 2-1 Chapter

More information

Volume1, Issue 2 October ISSN: Title. The importance of Computer Visualization in technical education. Anshu Singhal

Volume1, Issue 2 October ISSN: Title. The importance of Computer Visualization in technical education. Anshu Singhal Title The importance of Computer Visualization in technical education Anshu Singhal Student, Department of Computer Engineering BMN college of Engineering and Technology, India ABSTRACT Computer 3D displaying

More information

PARAMETRIC MODELING FOR MECHANICAL COMPONENTS 1

PARAMETRIC MODELING FOR MECHANICAL COMPONENTS 1 PARAMETRIC MODELING FOR MECHANICAL COMPONENTS 1 Wawre S.S. Abstract: parametric modeling is a technique to generalize specific solid model. This generalization of the solid model is used to automate modeling

More information

Architecture Engineering Training courses : Course BIM Architecture Diploma Revit Architecture 3D Max Vasari Navis Works Photoshop For Architects

Architecture Engineering Training courses : Course BIM Architecture Diploma Revit Architecture 3D Max Vasari Navis Works Photoshop For Architects Architecture Engineering Training courses : Course BIM Architecture Diploma Revit Architecture 3D Max Vasari Navis Works Photoshop For Architects BIM ARCHITECTURAL DIPLOMA ( Design and visualization ):

More information

SOLIDWORKS Parametric Modeling with SDC. Covers material found on the CSWA exam. Randy H. Shih Paul J. Schilling

SOLIDWORKS Parametric Modeling with SDC. Covers material found on the CSWA exam. Randy H. Shih Paul J. Schilling Parametric Modeling with SOLIDWORKS 2015 Covers material found on the CSWA exam Randy H. Shih Paul J. Schilling SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com Powered by TCPDF

More information