Feature Selection for Image Retrieval and Object Recognition

Size: px
Start display at page:

Download "Feature Selection for Image Retrieval and Object Recognition"

Transcription

1 Feature Selection for Image Retrieval and Object Recognition Nuno Vasconcelos et al. Statistical Visual Computing Lab ECE, UCSD Presented by Dashan Gao

2 Scalable Discriminant Feature Selection for Image Retrieval and Recognition N. Vasconcelos and M. Vasconcelos To appear in IEEE CVPR 2004 Feature Selection by Maximum Marginal Diversity: optimality and implications for visual recognition N. Vasconcelos Proceedings of IEEE CVPR, 2003 Feature Selection by Maximum Marginal Diversity N. Vasconcelos Proceedings of Neural Information Processing Systems,

3 Overview (1) Image retrieval is a large scale classification problem: A large number of classes, large amounts of data per class A discriminant feature space (of small dimensionality) is a pre-requisite for success Feature Selection (FS) makes learning easier and tractable, in a lower dimensional feature space X Goal: Find transformation T, constrained to be a subset projection Find the projection matrix T that optimizes a criterion for feature goodness 3

4 Overview (2) Weaknesses of traditional methods: Based on sub-optimal criteria: variance maximization (principal component analysis PCA) Lack of scalability: they take infeasible time to compute Difficult to extend to multi-class problems (boosting) Ultimate goal: minimize probability of error (MPE) Search for the Bayes error-optimal space of a given classification problem Achievable goal (discriminant sense) : maximize separation between the different classes to recognize. 4

5 Information theoretic feature selection (ITFS) Infomax goal: maximize mutual information between the selected features and class labels Outline: Optimality properties (in MPE and discriminant sense) (Contribution 1) Trade-off between optimality and complexity (Contribution 2) Algorithmic implementation with low complexity 5

6 Bayes Error (BE) Advantage: BE depends only on the feature space, thus is the ultimate discriminant measure for FS. Disadvantage: nonlinearity of max(.) operation 6

7 Infomax principle H(X) H(XIY) H(Y) H(Y X) H(.) is entropy H(Y X) is conditional entropy (class posterior entropy, CPE) max I(Y;X) = min H(Y X) 7

8 Infomax example 2 classes (M=2), 2 features, x 2 x1 x1 x2 Note: Variance-based criteria (e.g. PCA) fail in this case!! 8

9 Infomax vs BE To show: Bayes error >= Infomax 9

10 Example Important observation: The gradients of the two curve have the same signs everywhere when defined The extrema of both sides are co-located LHS and RHS have the same optimization solution 10

11 Infomax vs BE Bayes error >= Infomax 11

12 example: M=2 µ BE and CPE as functions of m BE CPE (H(Y X) Infomax is optimal in MPE sense! Infomax is a good approximation of BE. The infomax solutions will be very similar to those BE. 12

13 Discriminant form of infomax Noting that Theorem 3: Infomax goal is equivalent to the goal that maximizes separation between the different classes 13

14 Feature Selection (FS) Forward sequential search for FS: A set of features are added to the current best subset in each step, with the goal of optimizing a cost function Denote the current subset by, the added features by, and the new subset by. We can prove or Maximizing mutual information (infomax) is simpler than minimizing BE 14

15 Proof Proof: 15

16 Feature Selection (cont d) favors discriminant features penalizes features redundant with previous unless redundancy provides information about Y A trade-off between the maximization of discriminant power and the minimization of redundancy Problem: Infomax requires high-dimensional density estimates Find a trade-off between optimality and complexity 16

17 Maximum Marginal Diversity (MMD) Marginal Diversity MMD based FS: a naïve infomax Select the subset of features that lead to a set of maximally diverse marginal densities. Optimality condition Lemma : MMD is optimal if the following holds: the average mutual information between features is not affected by the knowledge of the class label 17

18 the Naïve Bayes Classifier Assumption: features are only conditional independent given the class label however, the optimality condition for MMD doesn t hold under this assumption. Since Feature selected by MMD are not good for Naïve Bayes Classifier! 18

19 Advantage: MMD (continued) Computation is simple: only marginal distribution of each feature is considered. Disadvantage: The existence of optimality condition can hardly be proved practically. There is no guarantee for optimality if the condition does not hold. Fortunately, recent studies show that, for image recognition problems, MMD is very close to the optimal solution for the biologically plausible features, e.g. wavelet coefficients 19

20 Image statistics Feature dependencies tend to be localized across both space and image scale e.g. for standard wavelet decomposition: co-located coefficients of equal orientation can be arbitrarily dependent on the class average dependence between such sets of coefficients does not depend on the image class (strong V freq => weak H freq) This property is referred to as a more general casethan MMD: l-decomposability: feature set decomposable into mutually exclusive subsets of l th order features within subsets arbitrarily dependent, no constraints dependence between subsets does not depend on image class 20

21 More general case All the features are grouped as a collection of disjoint subsets The features within each subset are allowed to have arbitrary dependencies The dependencies between the subsets are constrained to be non-informative 21

22 l-decomposability A family of FS algorithms 22

23 A family of FS Algorithms (cont d) Theorem The optimal infomax FS solution only requires density estimates of dimension 23

24 A family of FS Algorithms (cont d) Parameter is a trade-off between optimality and complexity, sub-optimal but computationally efficient = 0, MMD case, all the features depend in a noninformative way. = n, all features depend in informative ways, optimal but computational unscalable 24

25 Infomax-based FS Algorithm 25

26 Algorithm Complexity Suppose C classes, F feature vectors per class, histogram with b bins along each axis 26

27 Experiments on MMD (1) A Simple example (the optimal feature subsets are known) Tow Gaussian classes of identity covariance and means, n = 20 Compare the average feature selection quality between with Jain&Zongker s result (Mahalanobis distance) Average Quality Branch and bound SFS MMD better # of training samples # of training samples In this sample, the optimal condition of MMD is satisfied feature selection quality : ratio between the correctly selected features and n 27

28 Experiments on MMD (2) Brodatz texture-base classification 112 texture classes, 64(8*8) dimensional feature space, classifiers based on Gaussian mixutures Classification Accuracy Cumulative MD # of features # of features 28

29 Experiments on MMD (3) Image retrieval on Brodatz texture database PRA MD # of features # of features PRA: area under precision/recall curve 29

30 Experiments on MMD (4) Features as filters projection of the textures onto the five most informative basis functions detectors of lines, corners, t-junctions and so forth 30

31 Experiment on infomax (1) Image retrieval on Corel image database (15 classes, 1500 images) Different size of the clusters ( ) Main observations: ITFS can significantly outperform variance-based methods (10 vs 30 features for equivalent PRA) for ITFS there is no noticeable gain for l > 1! PRA l=1 l=2 l=0 variance # of features 31

32 Experiment on infomax (2) Different number of histogram bins Main observations: Infomax-based FS is quite insensitive to the quality of the estimates (no noticeable variation above 8 bins per axis, small degradation for 4) Always significantly better than variance PRA # of features 32

33 Experiment on infomax (3) Image retrieval results on Corel 33

34 Conclusion Infomax based feature selection is optimal in MPE sense An explicit understanding of the trade-off between optimality and complexity, and the corresponding optimality condition implied by infomax (Most important contribution) A scalable Infomax-based FS algorithm for image retrieval and recognition Future work: Evaluation of optimality and efficiency of this infomax-based algorithm on other features (such as rectangular features in Viola&Jones face detector) and classification problems. 34

Feature Selection. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani

Feature Selection. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani Feature Selection CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Dimensionality reduction Feature selection vs. feature extraction Filter univariate

More information

Last week. Multi-Frame Structure from Motion: Multi-View Stereo. Unknown camera viewpoints

Last week. Multi-Frame Structure from Motion: Multi-View Stereo. Unknown camera viewpoints Last week Multi-Frame Structure from Motion: Multi-View Stereo Unknown camera viewpoints Last week PCA Today Recognition Today Recognition Recognition problems What is it? Object detection Who is it? Recognizing

More information

A Probabilistic Architecture for Content-based Image Retrieval

A Probabilistic Architecture for Content-based Image Retrieval Appears in Proc. IEEE Conference Computer Vision and Pattern Recognition, Hilton Head, North Carolina, 2. A Probabilistic Architecture for Content-based Image Retrieval Nuno Vasconcelos and Andrew Lippman

More information

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Classification Vladimir Curic Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Outline An overview on classification Basics of classification How to choose appropriate

More information

3 Feature Selection & Feature Extraction

3 Feature Selection & Feature Extraction 3 Feature Selection & Feature Extraction Overview: 3.1 Introduction 3.2 Feature Extraction 3.3 Feature Selection 3.3.1 Max-Dependency, Max-Relevance, Min-Redundancy 3.3.2 Relevance Filter 3.3.3 Redundancy

More information

Discriminate Analysis

Discriminate Analysis Discriminate Analysis Outline Introduction Linear Discriminant Analysis Examples 1 Introduction What is Discriminant Analysis? Statistical technique to classify objects into mutually exclusive and exhaustive

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing ECG782: Multidimensional Digital Signal Processing Object Recognition http://www.ee.unlv.edu/~b1morris/ecg782/ 2 Outline Knowledge Representation Statistical Pattern Recognition Neural Networks Boosting

More information

Face detection and recognition. Detection Recognition Sally

Face detection and recognition. Detection Recognition Sally Face detection and recognition Detection Recognition Sally Face detection & recognition Viola & Jones detector Available in open CV Face recognition Eigenfaces for face recognition Metric learning identification

More information

Adaptive Learning of an Accurate Skin-Color Model

Adaptive Learning of an Accurate Skin-Color Model Adaptive Learning of an Accurate Skin-Color Model Q. Zhu K.T. Cheng C. T. Wu Y. L. Wu Electrical & Computer Engineering University of California, Santa Barbara Presented by: H.T Wang Outline Generic Skin

More information

Face detection and recognition. Many slides adapted from K. Grauman and D. Lowe

Face detection and recognition. Many slides adapted from K. Grauman and D. Lowe Face detection and recognition Many slides adapted from K. Grauman and D. Lowe Face detection and recognition Detection Recognition Sally History Early face recognition systems: based on features and distances

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Learning without Class Labels (or correct outputs) Density Estimation Learn P(X) given training data for X Clustering Partition data into clusters Dimensionality Reduction Discover

More information

Introduction to Pattern Recognition Part II. Selim Aksoy Bilkent University Department of Computer Engineering

Introduction to Pattern Recognition Part II. Selim Aksoy Bilkent University Department of Computer Engineering Introduction to Pattern Recognition Part II Selim Aksoy Bilkent University Department of Computer Engineering saksoy@cs.bilkent.edu.tr RETINA Pattern Recognition Tutorial, Summer 2005 Overview Statistical

More information

Machine Learning Techniques for Data Mining

Machine Learning Techniques for Data Mining Machine Learning Techniques for Data Mining Eibe Frank University of Waikato New Zealand 10/25/2000 1 PART VII Moving on: Engineering the input and output 10/25/2000 2 Applying a learner is not all Already

More information

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition Pattern Recognition Kjell Elenius Speech, Music and Hearing KTH March 29, 2007 Speech recognition 2007 1 Ch 4. Pattern Recognition 1(3) Bayes Decision Theory Minimum-Error-Rate Decision Rules Discriminant

More information

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Classification Vladimir Curic Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Outline An overview on classification Basics of classification How to choose appropriate

More information

Generative and discriminative classification techniques

Generative and discriminative classification techniques Generative and discriminative classification techniques Machine Learning and Category Representation 013-014 Jakob Verbeek, December 13+0, 013 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.13.14

More information

Slides for Data Mining by I. H. Witten and E. Frank

Slides for Data Mining by I. H. Witten and E. Frank Slides for Data Mining by I. H. Witten and E. Frank 7 Engineering the input and output Attribute selection Scheme-independent, scheme-specific Attribute discretization Unsupervised, supervised, error-

More information

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu FMA901F: Machine Learning Lecture 3: Linear Models for Regression Cristian Sminchisescu Machine Learning: Frequentist vs. Bayesian In the frequentist setting, we seek a fixed parameter (vector), with value(s)

More information

Expectation Maximization (EM) and Gaussian Mixture Models

Expectation Maximization (EM) and Gaussian Mixture Models Expectation Maximization (EM) and Gaussian Mixture Models Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer 1 2 3 4 5 6 7 8 Unsupervised Learning Motivation

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Sources Hastie, Tibshirani, Friedman: The Elements of Statistical Learning James, Witten, Hastie, Tibshirani: An Introduction to Statistical Learning Andrew Ng:

More information

Object recognition (part 1)

Object recognition (part 1) Recognition Object recognition (part 1) CSE P 576 Larry Zitnick (larryz@microsoft.com) The Margaret Thatcher Illusion, by Peter Thompson Readings Szeliski Chapter 14 Recognition What do we mean by object

More information

Applying Supervised Learning

Applying Supervised Learning Applying Supervised Learning When to Consider Supervised Learning A supervised learning algorithm takes a known set of input data (the training set) and known responses to the data (output), and trains

More information

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor COSC160: Detection and Classification Jeremy Bolton, PhD Assistant Teaching Professor Outline I. Problem I. Strategies II. Features for training III. Using spatial information? IV. Reducing dimensionality

More information

Deep Generative Models Variational Autoencoders

Deep Generative Models Variational Autoencoders Deep Generative Models Variational Autoencoders Sudeshna Sarkar 5 April 2017 Generative Nets Generative models that represent probability distributions over multiple variables in some way. Directed Generative

More information

Homework. Gaussian, Bishop 2.3 Non-parametric, Bishop 2.5 Linear regression Pod-cast lecture on-line. Next lectures:

Homework. Gaussian, Bishop 2.3 Non-parametric, Bishop 2.5 Linear regression Pod-cast lecture on-line. Next lectures: Homework Gaussian, Bishop 2.3 Non-parametric, Bishop 2.5 Linear regression 3.0-3.2 Pod-cast lecture on-line Next lectures: I posted a rough plan. It is flexible though so please come with suggestions Bayes

More information

Machine Learning. Chao Lan

Machine Learning. Chao Lan Machine Learning Chao Lan Machine Learning Prediction Models Regression Model - linear regression (least square, ridge regression, Lasso) Classification Model - naive Bayes, logistic regression, Gaussian

More information

Large-Scale Lasso and Elastic-Net Regularized Generalized Linear Models

Large-Scale Lasso and Elastic-Net Regularized Generalized Linear Models Large-Scale Lasso and Elastic-Net Regularized Generalized Linear Models DB Tsai Steven Hillion Outline Introduction Linear / Nonlinear Classification Feature Engineering - Polynomial Expansion Big-data

More information

Density estimation. In density estimation problems, we are given a random from an unknown density. Our objective is to estimate

Density estimation. In density estimation problems, we are given a random from an unknown density. Our objective is to estimate Density estimation In density estimation problems, we are given a random sample from an unknown density Our objective is to estimate? Applications Classification If we estimate the density for each class,

More information

Machine Learning. Topic 5: Linear Discriminants. Bryan Pardo, EECS 349 Machine Learning, 2013

Machine Learning. Topic 5: Linear Discriminants. Bryan Pardo, EECS 349 Machine Learning, 2013 Machine Learning Topic 5: Linear Discriminants Bryan Pardo, EECS 349 Machine Learning, 2013 Thanks to Mark Cartwright for his extensive contributions to these slides Thanks to Alpaydin, Bishop, and Duda/Hart/Stork

More information

Image Processing. Image Features

Image Processing. Image Features Image Processing Image Features Preliminaries 2 What are Image Features? Anything. What they are used for? Some statements about image fragments (patches) recognition Search for similar patches matching

More information

FACE RECOGNITION USING INDEPENDENT COMPONENT

FACE RECOGNITION USING INDEPENDENT COMPONENT Chapter 5 FACE RECOGNITION USING INDEPENDENT COMPONENT ANALYSIS OF GABORJET (GABORJET-ICA) 5.1 INTRODUCTION PCA is probably the most widely used subspace projection technique for face recognition. A major

More information

The Curse of Dimensionality

The Curse of Dimensionality The Curse of Dimensionality ACAS 2002 p1/66 Curse of Dimensionality The basic idea of the curse of dimensionality is that high dimensional data is difficult to work with for several reasons: Adding more

More information

10/14/2017. Dejan Sarka. Anomaly Detection. Sponsors

10/14/2017. Dejan Sarka. Anomaly Detection. Sponsors Dejan Sarka Anomaly Detection Sponsors About me SQL Server MVP (17 years) and MCT (20 years) 25 years working with SQL Server Authoring 16 th book Authoring many courses, articles Agenda Introduction Simple

More information

CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS

CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS CHAPTER 4 CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS 4.1 Introduction Optical character recognition is one of

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Introduction Often, we have only a set of features x = x 1, x 2,, x n, but no associated response y. Therefore we are not interested in prediction nor classification,

More information

CS 521 Data Mining Techniques Instructor: Abdullah Mueen

CS 521 Data Mining Techniques Instructor: Abdullah Mueen CS 521 Data Mining Techniques Instructor: Abdullah Mueen LECTURE 2: DATA TRANSFORMATION AND DIMENSIONALITY REDUCTION Chapter 3: Data Preprocessing Data Preprocessing: An Overview Data Quality Major Tasks

More information

Facial Expression Recognition Using Non-negative Matrix Factorization

Facial Expression Recognition Using Non-negative Matrix Factorization Facial Expression Recognition Using Non-negative Matrix Factorization Symeon Nikitidis, Anastasios Tefas and Ioannis Pitas Artificial Intelligence & Information Analysis Lab Department of Informatics Aristotle,

More information

On Classification: An Empirical Study of Existing Algorithms Based on Two Kaggle Competitions

On Classification: An Empirical Study of Existing Algorithms Based on Two Kaggle Competitions On Classification: An Empirical Study of Existing Algorithms Based on Two Kaggle Competitions CAMCOS Report Day December 9th, 2015 San Jose State University Project Theme: Classification The Kaggle Competition

More information

PARALLEL CLASSIFICATION ALGORITHMS

PARALLEL CLASSIFICATION ALGORITHMS PARALLEL CLASSIFICATION ALGORITHMS By: Faiz Quraishi Riti Sharma 9 th May, 2013 OVERVIEW Introduction Types of Classification Linear Classification Support Vector Machines Parallel SVM Approach Decision

More information

CS6716 Pattern Recognition

CS6716 Pattern Recognition CS6716 Pattern Recognition Prototype Methods Aaron Bobick School of Interactive Computing Administrivia Problem 2b was extended to March 25. Done? PS3 will be out this real soon (tonight) due April 10.

More information

Modern Medical Image Analysis 8DC00 Exam

Modern Medical Image Analysis 8DC00 Exam Parts of answers are inside square brackets [... ]. These parts are optional. Answers can be written in Dutch or in English, as you prefer. You can use drawings and diagrams to support your textual answers.

More information

Mobile Face Recognization

Mobile Face Recognization Mobile Face Recognization CS4670 Final Project Cooper Bills and Jason Yosinski {csb88,jy495}@cornell.edu December 12, 2010 Abstract We created a mobile based system for detecting faces within a picture

More information

Segmentation of Images

Segmentation of Images Segmentation of Images SEGMENTATION If an image has been preprocessed appropriately to remove noise and artifacts, segmentation is often the key step in interpreting the image. Image segmentation is a

More information

Machine Learning. Supervised Learning. Manfred Huber

Machine Learning. Supervised Learning. Manfred Huber Machine Learning Supervised Learning Manfred Huber 2015 1 Supervised Learning Supervised learning is learning where the training data contains the target output of the learning system. Training data D

More information

A Course in Machine Learning

A Course in Machine Learning A Course in Machine Learning Hal Daumé III 13 UNSUPERVISED LEARNING If you have access to labeled training data, you know what to do. This is the supervised setting, in which you have a teacher telling

More information

What is machine learning?

What is machine learning? Machine learning, pattern recognition and statistical data modelling Lecture 12. The last lecture Coryn Bailer-Jones 1 What is machine learning? Data description and interpretation finding simpler relationship

More information

Machine Learning Lecture 3

Machine Learning Lecture 3 Machine Learning Lecture 3 Probability Density Estimation II 19.10.2017 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Exam dates We re in the process

More information

10-701/15-781, Fall 2006, Final

10-701/15-781, Fall 2006, Final -7/-78, Fall 6, Final Dec, :pm-8:pm There are 9 questions in this exam ( pages including this cover sheet). If you need more room to work out your answer to a question, use the back of the page and clearly

More information

We use non-bold capital letters for all random variables in these notes, whether they are scalar-, vector-, matrix-, or whatever-valued.

We use non-bold capital letters for all random variables in these notes, whether they are scalar-, vector-, matrix-, or whatever-valued. The Bayes Classifier We have been starting to look at the supervised classification problem: we are given data (x i, y i ) for i = 1,..., n, where x i R d, and y i {1,..., K}. In this section, we suppose

More information

Non-Parametric Modeling

Non-Parametric Modeling Non-Parametric Modeling CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Introduction Non-Parametric Density Estimation Parzen Windows Kn-Nearest Neighbor

More information

Recap: Gaussian (or Normal) Distribution. Recap: Minimizing the Expected Loss. Topics of This Lecture. Recap: Maximum Likelihood Approach

Recap: Gaussian (or Normal) Distribution. Recap: Minimizing the Expected Loss. Topics of This Lecture. Recap: Maximum Likelihood Approach Truth Course Outline Machine Learning Lecture 3 Fundamentals (2 weeks) Bayes Decision Theory Probability Density Estimation Probability Density Estimation II 2.04.205 Discriminative Approaches (5 weeks)

More information

Chapter 4: Non-Parametric Techniques

Chapter 4: Non-Parametric Techniques Chapter 4: Non-Parametric Techniques Introduction Density Estimation Parzen Windows Kn-Nearest Neighbor Density Estimation K-Nearest Neighbor (KNN) Decision Rule Supervised Learning How to fit a density

More information

Verification: is that a lamp? What do we mean by recognition? Recognition. Recognition

Verification: is that a lamp? What do we mean by recognition? Recognition. Recognition Recognition Recognition The Margaret Thatcher Illusion, by Peter Thompson The Margaret Thatcher Illusion, by Peter Thompson Readings C. Bishop, Neural Networks for Pattern Recognition, Oxford University

More information

Building Classifiers using Bayesian Networks

Building Classifiers using Bayesian Networks Building Classifiers using Bayesian Networks Nir Friedman and Moises Goldszmidt 1997 Presented by Brian Collins and Lukas Seitlinger Paper Summary The Naive Bayes classifier has reasonable performance

More information

Computer vision: models, learning and inference. Chapter 13 Image preprocessing and feature extraction

Computer vision: models, learning and inference. Chapter 13 Image preprocessing and feature extraction Computer vision: models, learning and inference Chapter 13 Image preprocessing and feature extraction Preprocessing The goal of pre-processing is to try to reduce unwanted variation in image due to lighting,

More information

Classification Algorithms in Data Mining

Classification Algorithms in Data Mining August 9th, 2016 Suhas Mallesh Yash Thakkar Ashok Choudhary CIS660 Data Mining and Big Data Processing -Dr. Sunnie S. Chung Classification Algorithms in Data Mining Deciding on the classification algorithms

More information

Density estimation. In density estimation problems, we are given a random from an unknown density. Our objective is to estimate

Density estimation. In density estimation problems, we are given a random from an unknown density. Our objective is to estimate Density estimation In density estimation problems, we are given a random sample from an unknown density Our objective is to estimate? Applications Classification If we estimate the density for each class,

More information

CPSC 340: Machine Learning and Data Mining. Probabilistic Classification Fall 2017

CPSC 340: Machine Learning and Data Mining. Probabilistic Classification Fall 2017 CPSC 340: Machine Learning and Data Mining Probabilistic Classification Fall 2017 Admin Assignment 0 is due tonight: you should be almost done. 1 late day to hand it in Monday, 2 late days for Wednesday.

More information

Neural Networks. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani

Neural Networks. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani Neural Networks CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Biological and artificial neural networks Feed-forward neural networks Single layer

More information

I How does the formulation (5) serve the purpose of the composite parameterization

I How does the formulation (5) serve the purpose of the composite parameterization Supplemental Material to Identifying Alzheimer s Disease-Related Brain Regions from Multi-Modality Neuroimaging Data using Sparse Composite Linear Discrimination Analysis I How does the formulation (5)

More information

Beyond Bags of Features

Beyond Bags of Features : for Recognizing Natural Scene Categories Matching and Modeling Seminar Instructed by Prof. Haim J. Wolfson School of Computer Science Tel Aviv University December 9 th, 2015

More information

Kernel Methods & Support Vector Machines

Kernel Methods & Support Vector Machines & Support Vector Machines & Support Vector Machines Arvind Visvanathan CSCE 970 Pattern Recognition 1 & Support Vector Machines Question? Draw a single line to separate two classes? 2 & Support Vector

More information

CSE 6242 A / CS 4803 DVA. Feb 12, Dimension Reduction. Guest Lecturer: Jaegul Choo

CSE 6242 A / CS 4803 DVA. Feb 12, Dimension Reduction. Guest Lecturer: Jaegul Choo CSE 6242 A / CS 4803 DVA Feb 12, 2013 Dimension Reduction Guest Lecturer: Jaegul Choo CSE 6242 A / CS 4803 DVA Feb 12, 2013 Dimension Reduction Guest Lecturer: Jaegul Choo Data is Too Big To Do Something..

More information

Bayes Classifiers and Generative Methods

Bayes Classifiers and Generative Methods Bayes Classifiers and Generative Methods CSE 4309 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 The Stages of Supervised Learning To

More information

22 October, 2012 MVA ENS Cachan. Lecture 5: Introduction to generative models Iasonas Kokkinos

22 October, 2012 MVA ENS Cachan. Lecture 5: Introduction to generative models Iasonas Kokkinos Machine Learning for Computer Vision 1 22 October, 2012 MVA ENS Cachan Lecture 5: Introduction to generative models Iasonas Kokkinos Iasonas.kokkinos@ecp.fr Center for Visual Computing Ecole Centrale Paris

More information

CS 195-5: Machine Learning Problem Set 5

CS 195-5: Machine Learning Problem Set 5 CS 195-5: Machine Learning Problem Set 5 Douglas Lanman dlanman@brown.edu 26 November 26 1 Clustering and Vector Quantization Problem 1 Part 1: In this problem we will apply Vector Quantization (VQ) to

More information

Clustering. Mihaela van der Schaar. January 27, Department of Engineering Science University of Oxford

Clustering. Mihaela van der Schaar. January 27, Department of Engineering Science University of Oxford Department of Engineering Science University of Oxford January 27, 2017 Many datasets consist of multiple heterogeneous subsets. Cluster analysis: Given an unlabelled data, want algorithms that automatically

More information

Fast Edge Detection Using Structured Forests

Fast Edge Detection Using Structured Forests Fast Edge Detection Using Structured Forests Piotr Dollár, C. Lawrence Zitnick [1] Zhihao Li (zhihaol@andrew.cmu.edu) Computer Science Department Carnegie Mellon University Table of contents 1. Introduction

More information

Predictive Analytics: Demystifying Current and Emerging Methodologies. Tom Kolde, FCAS, MAAA Linda Brobeck, FCAS, MAAA

Predictive Analytics: Demystifying Current and Emerging Methodologies. Tom Kolde, FCAS, MAAA Linda Brobeck, FCAS, MAAA Predictive Analytics: Demystifying Current and Emerging Methodologies Tom Kolde, FCAS, MAAA Linda Brobeck, FCAS, MAAA May 18, 2017 About the Presenters Tom Kolde, FCAS, MAAA Consulting Actuary Chicago,

More information

Data Mining. CS57300 Purdue University. Bruno Ribeiro. February 1st, 2018

Data Mining. CS57300 Purdue University. Bruno Ribeiro. February 1st, 2018 Data Mining CS57300 Purdue University Bruno Ribeiro February 1st, 2018 1 Exploratory Data Analysis & Feature Construction How to explore a dataset Understanding the variables (values, ranges, and empirical

More information

Naïve Bayes for text classification

Naïve Bayes for text classification Road Map Basic concepts Decision tree induction Evaluation of classifiers Rule induction Classification using association rules Naïve Bayesian classification Naïve Bayes for text classification Support

More information

Chapter DM:II. II. Cluster Analysis

Chapter DM:II. II. Cluster Analysis Chapter DM:II II. Cluster Analysis Cluster Analysis Basics Hierarchical Cluster Analysis Iterative Cluster Analysis Density-Based Cluster Analysis Cluster Evaluation Constrained Cluster Analysis DM:II-1

More information

INF 4300 Classification III Anne Solberg The agenda today:

INF 4300 Classification III Anne Solberg The agenda today: INF 4300 Classification III Anne Solberg 28.10.15 The agenda today: More on estimating classifier accuracy Curse of dimensionality and simple feature selection knn-classification K-means clustering 28.10.15

More information

Statistics of Natural Image Categories

Statistics of Natural Image Categories Statistics of Natural Image Categories Authors: Antonio Torralba and Aude Oliva Presented by: Sebastian Scherer Experiment Please estimate the average depth from the camera viewpoint to all locations(pixels)

More information

Louis Fourrier Fabien Gaie Thomas Rolf

Louis Fourrier Fabien Gaie Thomas Rolf CS 229 Stay Alert! The Ford Challenge Louis Fourrier Fabien Gaie Thomas Rolf Louis Fourrier Fabien Gaie Thomas Rolf 1. Problem description a. Goal Our final project is a recent Kaggle competition submitted

More information

Neural Network based textural labeling of images in multimedia applications

Neural Network based textural labeling of images in multimedia applications Neural Network based textural labeling of images in multimedia applications S.A. Karkanis +, G.D. Magoulas +, and D.A. Karras ++ + University of Athens, Dept. of Informatics, Typa Build., Panepistimiopolis,

More information

Dimension Reduction CS534

Dimension Reduction CS534 Dimension Reduction CS534 Why dimension reduction? High dimensionality large number of features E.g., documents represented by thousands of words, millions of bigrams Images represented by thousands of

More information

SYDE Winter 2011 Introduction to Pattern Recognition. Clustering

SYDE Winter 2011 Introduction to Pattern Recognition. Clustering SYDE 372 - Winter 2011 Introduction to Pattern Recognition Clustering Alexander Wong Department of Systems Design Engineering University of Waterloo Outline 1 2 3 4 5 All the approaches we have learned

More information

MTTTS17 Dimensionality Reduction and Visualization. Spring 2018 Jaakko Peltonen. Lecture 11: Neighbor Embedding Methods continued

MTTTS17 Dimensionality Reduction and Visualization. Spring 2018 Jaakko Peltonen. Lecture 11: Neighbor Embedding Methods continued MTTTS17 Dimensionality Reduction and Visualization Spring 2018 Jaakko Peltonen Lecture 11: Neighbor Embedding Methods continued This Lecture Neighbor embedding by generative modeling Some supervised neighbor

More information

Linear methods for supervised learning

Linear methods for supervised learning Linear methods for supervised learning LDA Logistic regression Naïve Bayes PLA Maximum margin hyperplanes Soft-margin hyperplanes Least squares resgression Ridge regression Nonlinear feature maps Sometimes

More information

Information-Driven Dynamic Sensor Collaboration for Tracking Applications

Information-Driven Dynamic Sensor Collaboration for Tracking Applications Information-Driven Dynamic Sensor Collaboration for Tracking Applications Feng Zhao, Jaewon Shin and James Reich IEEE Signal Processing Magazine, March 2002 CS321 Class Presentation Fall 2005 Main Points

More information

Face Modeling by Information Maximization 1

Face Modeling by Information Maximization 1 Face Modeling by Information Maximization 1 Marian Stewart Bartlett Javier R. Movellan Terrence J. Sejnowski UC San Diego UC San Diego UC San Diego; Salk marni@salk.edu movellan@mplab.ucsd.edu Howard Hughes

More information

Feature selection. LING 572 Fei Xia

Feature selection. LING 572 Fei Xia Feature selection LING 572 Fei Xia 1 Creating attribute-value table x 1 x 2 f 1 f 2 f K y Choose features: Define feature templates Instantiate the feature templates Dimensionality reduction: feature selection

More information

Dimensionality Reduction, including by Feature Selection.

Dimensionality Reduction, including by Feature Selection. Dimensionality Reduction, including by Feature Selection www.cs.wisc.edu/~dpage/cs760 Goals for the lecture you should understand the following concepts filtering-based feature selection information gain

More information

Skin and Face Detection

Skin and Face Detection Skin and Face Detection Linda Shapiro EE/CSE 576 1 What s Coming 1. Review of Bakic flesh detector 2. Fleck and Forsyth flesh detector 3. Details of Rowley face detector 4. Review of the basic AdaBoost

More information

Case Study 1: Estimating Click Probabilities

Case Study 1: Estimating Click Probabilities Case Study 1: Estimating Click Probabilities SGD cont d AdaGrad Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade March 31, 2015 1 Support/Resources Office Hours Yao Lu:

More information

What do we mean by recognition?

What do we mean by recognition? Announcements Recognition Project 3 due today Project 4 out today (help session + photos end-of-class) The Margaret Thatcher Illusion, by Peter Thompson Readings Szeliski, Chapter 14 1 Recognition What

More information

Application of Support Vector Machine Algorithm in Spam Filtering

Application of Support Vector Machine Algorithm in  Spam Filtering Application of Support Vector Machine Algorithm in E-Mail Spam Filtering Julia Bluszcz, Daria Fitisova, Alexander Hamann, Alexey Trifonov, Advisor: Patrick Jähnichen Abstract The problem of spam classification

More information

The exam is closed book, closed notes except your one-page cheat sheet.

The exam is closed book, closed notes except your one-page cheat sheet. CS 189 Fall 2015 Introduction to Machine Learning Final Please do not turn over the page before you are instructed to do so. You have 2 hours and 50 minutes. Please write your initials on the top-right

More information

Selection of Scale-Invariant Parts for Object Class Recognition

Selection of Scale-Invariant Parts for Object Class Recognition Selection of Scale-Invariant Parts for Object Class Recognition Gy. Dorkó and C. Schmid INRIA Rhône-Alpes, GRAVIR-CNRS 655, av. de l Europe, 3833 Montbonnot, France fdorko,schmidg@inrialpes.fr Abstract

More information

Metric Learning Applied for Automatic Large Image Classification

Metric Learning Applied for Automatic Large Image Classification September, 2014 UPC Metric Learning Applied for Automatic Large Image Classification Supervisors SAHILU WENDESON / IT4BI TOON CALDERS (PhD)/ULB SALIM JOUILI (PhD)/EuraNova Image Database Classification

More information

A Distance-Based Classifier Using Dissimilarity Based on Class Conditional Probability and Within-Class Variation. Kwanyong Lee 1 and Hyeyoung Park 2

A Distance-Based Classifier Using Dissimilarity Based on Class Conditional Probability and Within-Class Variation. Kwanyong Lee 1 and Hyeyoung Park 2 A Distance-Based Classifier Using Dissimilarity Based on Class Conditional Probability and Within-Class Variation Kwanyong Lee 1 and Hyeyoung Park 2 1. Department of Computer Science, Korea National Open

More information

Thorsten Joachims Then: Universität Dortmund, Germany Now: Cornell University, USA

Thorsten Joachims Then: Universität Dortmund, Germany Now: Cornell University, USA Retrospective ICML99 Transductive Inference for Text Classification using Support Vector Machines Thorsten Joachims Then: Universität Dortmund, Germany Now: Cornell University, USA Outline The paper in

More information

MULTIVARIATE TEXTURE DISCRIMINATION USING A PRINCIPAL GEODESIC CLASSIFIER

MULTIVARIATE TEXTURE DISCRIMINATION USING A PRINCIPAL GEODESIC CLASSIFIER MULTIVARIATE TEXTURE DISCRIMINATION USING A PRINCIPAL GEODESIC CLASSIFIER A.Shabbir 1, 2 and G.Verdoolaege 1, 3 1 Department of Applied Physics, Ghent University, B-9000 Ghent, Belgium 2 Max Planck Institute

More information

CS 229 Midterm Review

CS 229 Midterm Review CS 229 Midterm Review Course Staff Fall 2018 11/2/2018 Outline Today: SVMs Kernels Tree Ensembles EM Algorithm / Mixture Models [ Focus on building intuition, less so on solving specific problems. Ask

More information

Feature Selection Using Principal Feature Analysis

Feature Selection Using Principal Feature Analysis Feature Selection Using Principal Feature Analysis Ira Cohen Qi Tian Xiang Sean Zhou Thomas S. Huang Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana,

More information

Machine Learning A W 1sst KU. b) [1 P] Give an example for a probability distributions P (A, B, C) that disproves

Machine Learning A W 1sst KU. b) [1 P] Give an example for a probability distributions P (A, B, C) that disproves Machine Learning A 708.064 11W 1sst KU Exercises Problems marked with * are optional. 1 Conditional Independence I [2 P] a) [1 P] Give an example for a probability distribution P (A, B, C) that disproves

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Theory of Variational Inference: Inner and Outer Approximation Eric Xing Lecture 14, February 29, 2016 Reading: W & J Book Chapters Eric Xing @

More information

Fisher vector image representation

Fisher vector image representation Fisher vector image representation Jakob Verbeek January 13, 2012 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.11.12.php Fisher vector representation Alternative to bag-of-words image representation

More information

Wavelet Applications. Texture analysis&synthesis. Gloria Menegaz 1

Wavelet Applications. Texture analysis&synthesis. Gloria Menegaz 1 Wavelet Applications Texture analysis&synthesis Gloria Menegaz 1 Wavelet based IP Compression and Coding The good approximation properties of wavelets allow to represent reasonably smooth signals with

More information