Non-linear dimension reduction

Size: px
Start display at page:

Download "Non-linear dimension reduction"

Transcription

1 Sta306b May 23, 2011 Dimension Reduction: 1 Non-linear dimension reduction ISOMAP: Tenenbaum, de Silva & Langford (2000) Local linear embedding: Roweis & Saul (2000) Local MDS: Chen (2006) all three methods try to map points on a high-dimensional non-linear manifold to a lower dimensional set of coordinates useful for problems where signal-to-noise ratio is very high (e.g. a physical system). May not be useful for observational data

2 Sta306b May 23, 2011 Dimension Reduction: 2 Swiss roll

3 Sta306b May 23, 2011 Dimension Reduction: 3 The Swiss roll data set, illustrating how Isomap exploits geodesic paths for nonlinear dimensionality reduction. (A) For two arbitrary points (circled) on a nonlinear manifold, their Euclidean distance in the high-dimensional input space (length of dashed line) may not accurately reflect their intrinsic similarity, as measured by geodesic distance along the low-dimensional manifold (length of solid curve). (B) The neighborhood graph G constructed in step one of Isomap (with K = 7 and N = 1000 data points) allows an approximation (red segments) to the true geodesic path to be computed efficiently in step two, as the shortest path in G. (C) The two-dimensional embedding recovered by Isomap in step three, which best preserves the shortest path distances in the neighborhood graph (overlaid). Straight lines in the embedding (blue) now represent simpler and cleaner approximations to the true geodesic paths than do the corresponding graph paths (red)

4 Sta306b May 23, 2011 Dimension Reduction: 4 ISOMAP we start with many data points in high dimensional space, lying near some manifold For each data point i we find the points j on manifold within some Euclidean distance d X (i,j) ǫ We construct a graph on the manifold with an edge between i and j if d X (i,j) ǫ We find the shortest path d G (i,j) between points i and j on the graph. Finally, we apply classical MDS to the distances d G (i,j)

5 Sta306b May 23, 2011 Dimension Reduction: 5 Hand position example

6 Sta306b May 23, 2011 Dimension Reduction: 6

7 Sta306b May 23, 2011 Dimension Reduction: 7 Isomap (K=6) applied to N=2000 images (64 pixels by 64 pixels) of a hand in different configurations. The images were generated by making a series of opening and closing movements of the hand at different wrist orientations, designed to give rise to a two-dimensional manifold. The images were treated as 4096-dimensional vectors, with input-space distances defined in the Euclidean metric. As shown in Fig. 2C of the paper, Isomap correctly detects two clearly significant dimensions, plus several weak dimensions of noise; PCA and MDS do not detect the correct dimensionality and suggest a much higher level of noise. The recovered coordinate axes map approximately onto the distinct underlying degrees of freedom: wrist rotation (x axis) and finger extension (y axis).

8 Sta306b May 23, 2011 Dimension Reduction: 8 LLE 1. For each data point i in p dims, we find the K- nearest neighbors N(i) in Euclidean distance 2. compute a kind of local principal component plane to the points in the neighborhood, minimizing x i W ij x j 2 i j N(i) over weights W ij satisfying j W ij = 1. [weights not assumed to be non-negative]? W ij is the contribution of point j to the reconstruction of point i. 3. Finally, we find points y i in a lower dimensional space to minimize y i W ij y j 2 i j with W ij fixed.

9 Sta306b May 23, 2011 Dimension Reduction: 9 Details of step 3 Minimize tr[(y WY) T (Y WY)] = tr[y(i W) T (I W)Y] W is N N; Y is N d, for some small d < p. solutions Y are the bottom eigenvectors of M = (I W) T (I W). They also assume 1 T Y = 0 (i.e. they are centered at the origin), and (1/N)Y T Y = I, the identity matrix in d dimensions. This means they discard the smallest eigenvector of M and keep the next d.

10 Sta306b May 23, 2011 Dimension Reduction: 10

11 Sta306b May 23, 2011 Dimension Reduction: 11 Swissroll

12 Sta306b May 23, 2011 Dimension Reduction: 12 The problem of nonlinear dimensionality reduction, as illustrated (10) for three-dimensional data (B) sampled from a two-dimensional manifold (A). An unsupervised learning algorithm must discover the global internal coordinates of the manifold without signals that explicitly indicate how the data should be embedded in two dimensions. The color coding illustrates the neighborhood-preserving mapping discovered by LLE; black outlines in (B) and (C) show the neighborhood of a single point. Unlike LLE, projections of the data by principal component analysis (PCA) (28) or classical MDS (2) map faraway data points to nearby points in the plane, failing to identify the underlying structure of the manifold. Note that mixture models for local dimensionality reduction (29), which cluster the data and perform PCA within each cluster, do not address the problem considered here: namely, how to map high-dimensional data into a single global coordinate system of lower dimensionality.

13 Sta306b May 23, 2011 Dimension Reduction: 13 Faces

14 Sta306b May 23, 2011 Dimension Reduction: 14 Images of faces (11) mapped into the embedding space described by the first two coordinates of LLE. Representative faces are shown next to circled points in different parts of the space. The bottom images correspond to points along the top-right path (linked by solid line), illustrating one particular mode of variability in pose and expression.

15 Sta306b May 23, 2011 Dimension Reduction: 15 Local multidimensional scaling Local MDS (Chen 2006) takes the simplest and arguably the most direct approach. We define N to be the symmetric set of nearby pairs of points; specifically a pair (i,i ) is in N if point i is among the K-nearest neighbors of i, or vice-versa. Then we construct the stress function S(z 1,z 2,...,z N ) = (d ii z i z i ) 2 (i,i ) N + (i,i )/ N w (D z i z i ) 2. (1)

16 Sta306b May 23, 2011 Dimension Reduction: 16 Local multidimensional scaling -ctd Here D is some large constant and w is a weight. The idea is that points that are not neighbors are considered to be very far apart; such pairs are given a small weight w so that they don t dominate the overall stress function. To simplify the expression, we take w 1/D, and let D. Expanding (1), this gives S(z 1,z 2,...,z N ) = (d ii z i z i ) 2 t z i z i, where t = 2wD. (i,i ) N (i,i )/ N (2)

17 Sta306b May 23, 2011 Dimension Reduction: 17 Local multidimensional scaling -ctd The first term in (2) tries to preserve local structure in the data, while the second term encourages image pairs (i,i ) for non-neighbors to be farther apart in the representation. Local MDS minimizes the stress function (2) over z i, for fixed values of the number of neighbors K and the tuning parameter t. In experiments reported in Chen (2006), local MDS shows superior performance, as compared to ISOMAP and LLE. They also demonstrate the usefulness of local MDS for graph layout. There are also close connections between the methods discussed here, spectral clustering and kernel PCA.

18 Sta306b May 23, 2011 Dimension Reduction: 17-1 References Chen, L. (2006), Local Multidimensional Scaling for Nonlinear Dimension Reduction, Graph Layout and Proximity Analysis, PhD thesis, University of Pennsylvania. Roweis, S. T. & Saul, L. K. (2000), Locally linear embedding, Science 290, Tenenbaum, J. B., de Silva, V. & Langford, J. C. (2000), A global geometric framework for nonlinear dimensionality reduction, Science 290,

Dimension Reduction CS534

Dimension Reduction CS534 Dimension Reduction CS534 Why dimension reduction? High dimensionality large number of features E.g., documents represented by thousands of words, millions of bigrams Images represented by thousands of

More information

Evgeny Maksakov Advantages and disadvantages: Advantages and disadvantages: Advantages and disadvantages: Advantages and disadvantages:

Evgeny Maksakov Advantages and disadvantages: Advantages and disadvantages: Advantages and disadvantages: Advantages and disadvantages: Today Problems with visualizing high dimensional data Problem Overview Direct Visualization Approaches High dimensionality Visual cluttering Clarity of representation Visualization is time consuming Dimensional

More information

Large-Scale Face Manifold Learning

Large-Scale Face Manifold Learning Large-Scale Face Manifold Learning Sanjiv Kumar Google Research New York, NY * Joint work with A. Talwalkar, H. Rowley and M. Mohri 1 Face Manifold Learning 50 x 50 pixel faces R 2500 50 x 50 pixel random

More information

Head Frontal-View Identification Using Extended LLE

Head Frontal-View Identification Using Extended LLE Head Frontal-View Identification Using Extended LLE Chao Wang Center for Spoken Language Understanding, Oregon Health and Science University Abstract Automatic head frontal-view identification is challenging

More information

Robust Pose Estimation using the SwissRanger SR-3000 Camera

Robust Pose Estimation using the SwissRanger SR-3000 Camera Robust Pose Estimation using the SwissRanger SR- Camera Sigurjón Árni Guðmundsson, Rasmus Larsen and Bjarne K. Ersbøll Technical University of Denmark, Informatics and Mathematical Modelling. Building,

More information

CIE L*a*b* color model

CIE L*a*b* color model CIE L*a*b* color model To further strengthen the correlation between the color model and human perception, we apply the following non-linear transformation: with where (X n,y n,z n ) are the tristimulus

More information

RDRToolbox A package for nonlinear dimension reduction with Isomap and LLE.

RDRToolbox A package for nonlinear dimension reduction with Isomap and LLE. RDRToolbox A package for nonlinear dimension reduction with Isomap and LLE. Christoph Bartenhagen October 30, 2017 Contents 1 Introduction 1 1.1 Loading the package......................................

More information

Learning a Manifold as an Atlas Supplementary Material

Learning a Manifold as an Atlas Supplementary Material Learning a Manifold as an Atlas Supplementary Material Nikolaos Pitelis Chris Russell School of EECS, Queen Mary, University of London [nikolaos.pitelis,chrisr,lourdes]@eecs.qmul.ac.uk Lourdes Agapito

More information

Selecting Models from Videos for Appearance-Based Face Recognition

Selecting Models from Videos for Appearance-Based Face Recognition Selecting Models from Videos for Appearance-Based Face Recognition Abdenour Hadid and Matti Pietikäinen Machine Vision Group Infotech Oulu and Department of Electrical and Information Engineering P.O.

More information

Differential Structure in non-linear Image Embedding Functions

Differential Structure in non-linear Image Embedding Functions Differential Structure in non-linear Image Embedding Functions Robert Pless Department of Computer Science, Washington University in St. Louis pless@cse.wustl.edu Abstract Many natural image sets are samples

More information

CSE 6242 A / CX 4242 DVA. March 6, Dimension Reduction. Guest Lecturer: Jaegul Choo

CSE 6242 A / CX 4242 DVA. March 6, Dimension Reduction. Guest Lecturer: Jaegul Choo CSE 6242 A / CX 4242 DVA March 6, 2014 Dimension Reduction Guest Lecturer: Jaegul Choo Data is Too Big To Analyze! Limited memory size! Data may not be fitted to the memory of your machine! Slow computation!

More information

SELECTION OF THE OPTIMAL PARAMETER VALUE FOR THE LOCALLY LINEAR EMBEDDING ALGORITHM. Olga Kouropteva, Oleg Okun and Matti Pietikäinen

SELECTION OF THE OPTIMAL PARAMETER VALUE FOR THE LOCALLY LINEAR EMBEDDING ALGORITHM. Olga Kouropteva, Oleg Okun and Matti Pietikäinen SELECTION OF THE OPTIMAL PARAMETER VALUE FOR THE LOCALLY LINEAR EMBEDDING ALGORITHM Olga Kouropteva, Oleg Okun and Matti Pietikäinen Machine Vision Group, Infotech Oulu and Department of Electrical and

More information

CSE 6242 / CX October 9, Dimension Reduction. Guest Lecturer: Jaegul Choo

CSE 6242 / CX October 9, Dimension Reduction. Guest Lecturer: Jaegul Choo CSE 6242 / CX 4242 October 9, 2014 Dimension Reduction Guest Lecturer: Jaegul Choo Volume Variety Big Data Era 2 Velocity Veracity 3 Big Data are High-Dimensional Examples of High-Dimensional Data Image

More information

CSE 6242 A / CS 4803 DVA. Feb 12, Dimension Reduction. Guest Lecturer: Jaegul Choo

CSE 6242 A / CS 4803 DVA. Feb 12, Dimension Reduction. Guest Lecturer: Jaegul Choo CSE 6242 A / CS 4803 DVA Feb 12, 2013 Dimension Reduction Guest Lecturer: Jaegul Choo CSE 6242 A / CS 4803 DVA Feb 12, 2013 Dimension Reduction Guest Lecturer: Jaegul Choo Data is Too Big To Do Something..

More information

Image Similarities for Learning Video Manifolds. Selen Atasoy MICCAI 2011 Tutorial

Image Similarities for Learning Video Manifolds. Selen Atasoy MICCAI 2011 Tutorial Image Similarities for Learning Video Manifolds Selen Atasoy MICCAI 2011 Tutorial Image Spaces Image Manifolds Tenenbaum2000 Roweis2000 Tenenbaum2000 [Tenenbaum2000: J. B. Tenenbaum, V. Silva, J. C. Langford:

More information

Dimension Reduction of Image Manifolds

Dimension Reduction of Image Manifolds Dimension Reduction of Image Manifolds Arian Maleki Department of Electrical Engineering Stanford University Stanford, CA, 9435, USA E-mail: arianm@stanford.edu I. INTRODUCTION Dimension reduction of datasets

More information

Locality Preserving Projections (LPP) Abstract

Locality Preserving Projections (LPP) Abstract Locality Preserving Projections (LPP) Xiaofei He Partha Niyogi Computer Science Department Computer Science Department The University of Chicago The University of Chicago Chicago, IL 60615 Chicago, IL

More information

Clustering Data That Resides on a Low-Dimensional Manifold in a High-Dimensional Measurement Space. Avinash Kak Purdue University

Clustering Data That Resides on a Low-Dimensional Manifold in a High-Dimensional Measurement Space. Avinash Kak Purdue University Clustering Data That Resides on a Low-Dimensional Manifold in a High-Dimensional Measurement Space Avinash Kak Purdue University February 15, 2016 10:37am An RVL Tutorial Presentation Originally presented

More information

Geodesic Based Ink Separation for Spectral Printing

Geodesic Based Ink Separation for Spectral Printing Geodesic Based Ink Separation for Spectral Printing Behnam Bastani*, Brian Funt**, *Hewlett-Packard Company, San Diego, CA, USA **Simon Fraser University, Vancouver, BC, Canada Abstract An ink separation

More information

Locally Linear Landmarks for large-scale manifold learning

Locally Linear Landmarks for large-scale manifold learning Locally Linear Landmarks for large-scale manifold learning Max Vladymyrov and Miguel Á. Carreira-Perpiñán Electrical Engineering and Computer Science University of California, Merced http://eecs.ucmerced.edu

More information

Remote Sensing Data Classification Using Combined Spectral and Spatial Local Linear Embedding (CSSLE)

Remote Sensing Data Classification Using Combined Spectral and Spatial Local Linear Embedding (CSSLE) 2016 International Conference on Artificial Intelligence and Computer Science (AICS 2016) ISBN: 978-1-60595-411-0 Remote Sensing Data Classification Using Combined Spectral and Spatial Local Linear Embedding

More information

How to project circular manifolds using geodesic distances?

How to project circular manifolds using geodesic distances? How to project circular manifolds using geodesic distances? John Aldo Lee, Michel Verleysen Université catholique de Louvain Place du Levant, 3, B-1348 Louvain-la-Neuve, Belgium {lee,verleysen}@dice.ucl.ac.be

More information

Locality Preserving Projections (LPP) Abstract

Locality Preserving Projections (LPP) Abstract Locality Preserving Projections (LPP) Xiaofei He Partha Niyogi Computer Science Department Computer Science Department The University of Chicago The University of Chicago Chicago, IL 60615 Chicago, IL

More information

Global versus local methods in nonlinear dimensionality reduction

Global versus local methods in nonlinear dimensionality reduction Global versus local methods in nonlinear dimensionality reduction Vin de Silva Department of Mathematics, Stanford University, Stanford. CA 94305 silva@math.stanford.edu Joshua B. Tenenbaum Department

More information

Lecture Topic Projects

Lecture Topic Projects Lecture Topic Projects 1 Intro, schedule, and logistics 2 Applications of visual analytics, basic tasks, data types 3 Introduction to D3, basic vis techniques for non-spatial data Project #1 out 4 Data

More information

Manifold Learning for Video-to-Video Face Recognition

Manifold Learning for Video-to-Video Face Recognition Manifold Learning for Video-to-Video Face Recognition Abstract. We look in this work at the problem of video-based face recognition in which both training and test sets are video sequences, and propose

More information

Curvilinear Distance Analysis versus Isomap

Curvilinear Distance Analysis versus Isomap Curvilinear Distance Analysis versus Isomap John Aldo Lee, Amaury Lendasse, Michel Verleysen Université catholique de Louvain Place du Levant, 3, B-1348 Louvain-la-Neuve, Belgium {lee,verleysen}@dice.ucl.ac.be,

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Learning without Class Labels (or correct outputs) Density Estimation Learn P(X) given training data for X Clustering Partition data into clusters Dimensionality Reduction Discover

More information

Data fusion and multi-cue data matching using diffusion maps

Data fusion and multi-cue data matching using diffusion maps Data fusion and multi-cue data matching using diffusion maps Stéphane Lafon Collaborators: Raphy Coifman, Andreas Glaser, Yosi Keller, Steven Zucker (Yale University) Part of this work was supported by

More information

Neighbor Line-based Locally linear Embedding

Neighbor Line-based Locally linear Embedding Neighbor Line-based Locally linear Embedding De-Chuan Zhan and Zhi-Hua Zhou National Laboratory for Novel Software Technology Nanjing University, Nanjing 210093, China {zhandc, zhouzh}@lamda.nju.edu.cn

More information

Multidimensional scaling Based in part on slides from textbook, slides of Susan Holmes. October 10, Statistics 202: Data Mining

Multidimensional scaling Based in part on slides from textbook, slides of Susan Holmes. October 10, Statistics 202: Data Mining Multidimensional scaling Based in part on slides from textbook, slides of Susan Holmes October 10, 2012 1 / 1 Multidimensional scaling A visual tool Recall the PCA scores were X V = U where X = HX S 1/2

More information

Manifold Clustering. Abstract. 1. Introduction

Manifold Clustering. Abstract. 1. Introduction Manifold Clustering Richard Souvenir and Robert Pless Washington University in St. Louis Department of Computer Science and Engineering Campus Box 1045, One Brookings Drive, St. Louis, MO 63130 {rms2,

More information

Stratified Structure of Laplacian Eigenmaps Embedding

Stratified Structure of Laplacian Eigenmaps Embedding Stratified Structure of Laplacian Eigenmaps Embedding Abstract We construct a locality preserving weight matrix for Laplacian eigenmaps algorithm used in dimension reduction. Our point cloud data is sampled

More information

Recognizing Handwritten Digits Using the LLE Algorithm with Back Propagation

Recognizing Handwritten Digits Using the LLE Algorithm with Back Propagation Recognizing Handwritten Digits Using the LLE Algorithm with Back Propagation Lori Cillo, Attebury Honors Program Dr. Rajan Alex, Mentor West Texas A&M University Canyon, Texas 1 ABSTRACT. This work is

More information

Isometric Mapping Hashing

Isometric Mapping Hashing Isometric Mapping Hashing Yanzhen Liu, Xiao Bai, Haichuan Yang, Zhou Jun, and Zhihong Zhang Springer-Verlag, Computer Science Editorial, Tiergartenstr. 7, 692 Heidelberg, Germany {alfred.hofmann,ursula.barth,ingrid.haas,frank.holzwarth,

More information

Sparse Manifold Clustering and Embedding

Sparse Manifold Clustering and Embedding Sparse Manifold Clustering and Embedding Ehsan Elhamifar Center for Imaging Science Johns Hopkins University ehsan@cis.jhu.edu René Vidal Center for Imaging Science Johns Hopkins University rvidal@cis.jhu.edu

More information

Robot Manifolds for Direct and Inverse Kinematics Solutions

Robot Manifolds for Direct and Inverse Kinematics Solutions Robot Manifolds for Direct and Inverse Kinematics Solutions Bruno Damas Manuel Lopes Abstract We present a novel algorithm to estimate robot kinematic manifolds incrementally. We relate manifold learning

More information

Appearance Manifold of Facial Expression

Appearance Manifold of Facial Expression Appearance Manifold of Facial Expression Caifeng Shan, Shaogang Gong and Peter W. McOwan Department of Computer Science Queen Mary, University of London, London E1 4NS, UK {cfshan, sgg, pmco}@dcs.qmul.ac.uk

More information

Modelling and Visualization of High Dimensional Data. Sample Examination Paper

Modelling and Visualization of High Dimensional Data. Sample Examination Paper Duration not specified UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE Modelling and Visualization of High Dimensional Data Sample Examination Paper Examination date not specified Time: Examination

More information

WITH the wide usage of information technology in almost. Supervised Nonlinear Dimensionality Reduction for Visualization and Classification

WITH the wide usage of information technology in almost. Supervised Nonlinear Dimensionality Reduction for Visualization and Classification 1098 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL. 35, NO. 6, DECEMBER 2005 Supervised Nonlinear Dimensionality Reduction for Visualization and Classification Xin Geng, De-Chuan

More information

Face Recognition using Tensor Analysis. Prahlad R. Enuganti

Face Recognition using Tensor Analysis. Prahlad R. Enuganti Face Recognition using Tensor Analysis Prahlad R. Enuganti The University of Texas at Austin Final Report EE381K 14 Multidimensional Digital Signal Processing May 16, 2005 Submitted to Prof. Brian Evans

More information

Global versus local methods in nonlinear dimensionality reduction

Global versus local methods in nonlinear dimensionality reduction Global versus local methods in nonlinear dimensionality reduction Vin de Silva Department of Mathematics, Stanford University, Stanford. CA 94305 silva@math.stanford.edu Joshua B. Tenenbaum Department

More information

CPSC 340: Machine Learning and Data Mining. Multi-Dimensional Scaling Fall 2017

CPSC 340: Machine Learning and Data Mining. Multi-Dimensional Scaling Fall 2017 CPSC 340: Machine Learning and Data Mining Multi-Dimensional Scaling Fall 2017 Assignment 4: Admin 1 late day for tonight, 2 late days for Wednesday. Assignment 5: Due Monday of next week. Final: Details

More information

无监督学习中的选代表和被代表问题 - AP & LLE 张响亮. Xiangliang Zhang. King Abdullah University of Science and Technology. CNCC, Oct 25, 2018 Hangzhou, China

无监督学习中的选代表和被代表问题 - AP & LLE 张响亮. Xiangliang Zhang. King Abdullah University of Science and Technology. CNCC, Oct 25, 2018 Hangzhou, China 无监督学习中的选代表和被代表问题 - AP & LLE 张响亮 Xiangliang Zhang King Abdullah University of Science and Technology CNCC, Oct 25, 2018 Hangzhou, China Outline Affinity Propagation (AP) [Frey and Dueck, Science, 2007]

More information

Iterative Non-linear Dimensionality Reduction by Manifold Sculpting

Iterative Non-linear Dimensionality Reduction by Manifold Sculpting Iterative Non-linear Dimensionality Reduction by Manifold Sculpting Mike Gashler, Dan Ventura, and Tony Martinez Brigham Young University Provo, UT 84604 Abstract Many algorithms have been recently developed

More information

Generalized Principal Component Analysis CVPR 2007

Generalized Principal Component Analysis CVPR 2007 Generalized Principal Component Analysis Tutorial @ CVPR 2007 Yi Ma ECE Department University of Illinois Urbana Champaign René Vidal Center for Imaging Science Institute for Computational Medicine Johns

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Clustering Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574 1 / 19 Outline

More information

Finding Structure in CyTOF Data

Finding Structure in CyTOF Data Finding Structure in CyTOF Data Or, how to visualize low dimensional embedded manifolds. Panagiotis Achlioptas panos@cs.stanford.edu General Terms Algorithms, Experimentation, Measurement Keywords Manifold

More information

ABSTRACT. Keywords: visual training, unsupervised learning, lumber inspection, projection 1. INTRODUCTION

ABSTRACT. Keywords: visual training, unsupervised learning, lumber inspection, projection 1. INTRODUCTION Comparison of Dimensionality Reduction Methods for Wood Surface Inspection Matti Niskanen and Olli Silvén Machine Vision Group, Infotech Oulu, University of Oulu, Finland ABSTRACT Dimensionality reduction

More information

Technical Report. Title: Manifold learning and Random Projections for multi-view object recognition

Technical Report. Title: Manifold learning and Random Projections for multi-view object recognition Technical Report Title: Manifold learning and Random Projections for multi-view object recognition Authors: Grigorios Tsagkatakis 1 and Andreas Savakis 2 1 Center for Imaging Science, Rochester Institute

More information

Challenges motivating deep learning. Sargur N. Srihari

Challenges motivating deep learning. Sargur N. Srihari Challenges motivating deep learning Sargur N. srihari@cedar.buffalo.edu 1 Topics In Machine Learning Basics 1. Learning Algorithms 2. Capacity, Overfitting and Underfitting 3. Hyperparameters and Validation

More information

InterAxis: Steering Scatterplot Axes via Observation-Level Interaction

InterAxis: Steering Scatterplot Axes via Observation-Level Interaction Interactive Axis InterAxis: Steering Scatterplot Axes via Observation-Level Interaction IEEE VAST 2015 Hannah Kim 1, Jaegul Choo 2, Haesun Park 1, Alex Endert 1 Georgia Tech 1, Korea University 2 October

More information

Lecture 8 Mathematics of Data: ISOMAP and LLE

Lecture 8 Mathematics of Data: ISOMAP and LLE Lecture 8 Mathematics of Data: ISOMAP and LLE John Dewey If knowledge comes from the impressions made upon us by natural objects, it is impossible to procure knowledge without the use of objects which

More information

Indian Institute of Technology Kanpur. Visuomotor Learning Using Image Manifolds: ST-GK Problem

Indian Institute of Technology Kanpur. Visuomotor Learning Using Image Manifolds: ST-GK Problem Indian Institute of Technology Kanpur Introduction to Cognitive Science SE367A Visuomotor Learning Using Image Manifolds: ST-GK Problem Author: Anurag Misra Department of Computer Science and Engineering

More information

Non-linear CCA and PCA by Alignment of Local Models

Non-linear CCA and PCA by Alignment of Local Models Non-linear CCA and PCA by Alignment of Local Models Jakob J. Verbeek, Sam T. Roweis, and Nikos Vlassis Informatics Institute, University of Amsterdam Department of Computer Science,University of Toronto

More information

Data Mining Chapter 3: Visualizing and Exploring Data Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 3: Visualizing and Exploring Data Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Data Mining Chapter 3: Visualizing and Exploring Data Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Exploratory data analysis tasks Examine the data, in search of structures

More information

School of Computer and Communication, Lanzhou University of Technology, Gansu, Lanzhou,730050,P.R. China

School of Computer and Communication, Lanzhou University of Technology, Gansu, Lanzhou,730050,P.R. China Send Orders for Reprints to reprints@benthamscienceae The Open Automation and Control Systems Journal, 2015, 7, 253-258 253 Open Access An Adaptive Neighborhood Choosing of the Local Sensitive Discriminant

More information

Réduction de modèles pour des problèmes d optimisation et d identification en calcul de structures

Réduction de modèles pour des problèmes d optimisation et d identification en calcul de structures Réduction de modèles pour des problèmes d optimisation et d identification en calcul de structures Piotr Breitkopf Rajan Filomeno Coelho, Huanhuan Gao, Anna Madra, Liang Meng, Guénhaël Le Quilliec, Balaji

More information

The Analysis of Parameters t and k of LPP on Several Famous Face Databases

The Analysis of Parameters t and k of LPP on Several Famous Face Databases The Analysis of Parameters t and k of LPP on Several Famous Face Databases Sujing Wang, Na Zhang, Mingfang Sun, and Chunguang Zhou College of Computer Science and Technology, Jilin University, Changchun

More information

A Discriminative Non-Linear Manifold Learning Technique for Face Recognition

A Discriminative Non-Linear Manifold Learning Technique for Face Recognition A Discriminative Non-Linear Manifold Learning Technique for Face Recognition Bogdan Raducanu 1 and Fadi Dornaika 2,3 1 Computer Vision Center, 08193 Bellaterra, Barcelona, Spain bogdan@cvc.uab.es 2 IKERBASQUE,

More information

Enhanced Multilevel Manifold Learning

Enhanced Multilevel Manifold Learning Journal of Machine Learning Research x (21x) xx-xx Submitted x/xx; Published xx/xx Enhanced Multilevel Manifold Learning Haw-ren Fang Yousef Saad Department of Computer Science and Engineering University

More information

LEARNING ON STATISTICAL MANIFOLDS FOR CLUSTERING AND VISUALIZATION

LEARNING ON STATISTICAL MANIFOLDS FOR CLUSTERING AND VISUALIZATION LEARNING ON STATISTICAL MANIFOLDS FOR CLUSTERING AND VISUALIZATION Kevin M. Carter 1, Raviv Raich, and Alfred O. Hero III 1 1 Department of EECS, University of Michigan, Ann Arbor, MI 4819 School of EECS,

More information

Linear local tangent space alignment and application to face recognition

Linear local tangent space alignment and application to face recognition Neurocomputing 70 (2007) 1547 1553 Letters Linear local tangent space alignment and application to face recognition Tianhao Zhang, Jie Yang, Deli Zhao, inliang Ge Institute of Image Processing and Pattern

More information

Part I. Graphical exploratory data analysis. Graphical summaries of data. Graphical summaries of data

Part I. Graphical exploratory data analysis. Graphical summaries of data. Graphical summaries of data Week 3 Based in part on slides from textbook, slides of Susan Holmes Part I Graphical exploratory data analysis October 10, 2012 1 / 1 2 / 1 Graphical summaries of data Graphical summaries of data Exploratory

More information

Dimensionality reduction and visualisation of geoscientific images via locally linear embedding 1

Dimensionality reduction and visualisation of geoscientific images via locally linear embedding 1 Dimensionality reduction and visualisation of geoscientific images via locally linear embedding 1 Fabio Boschetti Fabio.Boschetti@csiro.au CSIRO Exploration & Mining PO Box 1130, Bentley WA 6102, Australia

More information

Extended Isomap for Pattern Classification

Extended Isomap for Pattern Classification From: AAAI- Proceedings. Copyright, AAAI (www.aaai.org). All rights reserved. Extended for Pattern Classification Ming-Hsuan Yang Honda Fundamental Research Labs Mountain View, CA 944 myang@hra.com Abstract

More information

Discovering Shared Structure in Manifold Learning

Discovering Shared Structure in Manifold Learning Discovering Shared Structure in Manifold Learning Yoshua Bengio and Martin Monperrus Dept. IRO, Université de Montréal P.O. Box 1, Downtown Branch, Montreal, H3C 3J7, Qc, Canada {bengioy,monperrm}@iro.umontreal.ca

More information

Globally and Locally Consistent Unsupervised Projection

Globally and Locally Consistent Unsupervised Projection Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence Globally and Locally Consistent Unsupervised Projection Hua Wang, Feiping Nie, Heng Huang Department of Electrical Engineering

More information

A Stochastic Optimization Approach for Unsupervised Kernel Regression

A Stochastic Optimization Approach for Unsupervised Kernel Regression A Stochastic Optimization Approach for Unsupervised Kernel Regression Oliver Kramer Institute of Structural Mechanics Bauhaus-University Weimar oliver.kramer@uni-weimar.de Fabian Gieseke Institute of Structural

More information

Estimating Cluster Overlap on Manifolds and its Application to Neuropsychiatric Disorders

Estimating Cluster Overlap on Manifolds and its Application to Neuropsychiatric Disorders Estimating Cluster Overlap on Manifolds and its Application to Neuropsychiatric Disorders Peng Wang 1, Christian Kohler 2, Ragini Verma 1 1 Department of Radiology University of Pennsylvania Philadelphia,

More information

Generalized Autoencoder: A Neural Network Framework for Dimensionality Reduction

Generalized Autoencoder: A Neural Network Framework for Dimensionality Reduction Generalized Autoencoder: A Neural Network Framework for Dimensionality Reduction Wei Wang 1, Yan Huang 1, Yizhou Wang 2, Liang Wang 1 1 Center for Research on Intelligent Perception and Computing, CRIPAC

More information

Learning Manifolds in Forensic Data

Learning Manifolds in Forensic Data Learning Manifolds in Forensic Data Frédéric Ratle 1, Anne-Laure Terrettaz-Zufferey 2, Mikhail Kanevski 1, Pierre Esseiva 2, and Olivier Ribaux 2 1 Institut de Géomatique et d Analyse du Risque, Faculté

More information

Locality Condensation: A New Dimensionality Reduction Method for Image Retrieval

Locality Condensation: A New Dimensionality Reduction Method for Image Retrieval Locality Condensation: A New Dimensionality Reduction Method for Image Retrieval Zi Huang Heng Tao Shen Jie Shao Stefan Rüger Xiaofang Zhou School of Information Technology and Electrical Engineering,

More information

Kernel Principal Component Analysis: Applications and Implementation

Kernel Principal Component Analysis: Applications and Implementation Kernel Principal Component Analysis: Applications and Daniel Olsson Royal Institute of Technology Stockholm, Sweden Examiner: Prof. Ulf Jönsson Supervisor: Prof. Pando Georgiev Master s Thesis Presentation

More information

Local Linear Embedding. Katelyn Stringer ASTR 689 December 1, 2015

Local Linear Embedding. Katelyn Stringer ASTR 689 December 1, 2015 Local Linear Embedding Katelyn Stringer ASTR 689 December 1, 2015 Idea Behind LLE Good at making nonlinear high-dimensional data easier for computers to analyze Example: A high-dimensional surface Think

More information

Hyperspectral image segmentation using spatial-spectral graphs

Hyperspectral image segmentation using spatial-spectral graphs Hyperspectral image segmentation using spatial-spectral graphs David B. Gillis* and Jeffrey H. Bowles Naval Research Laboratory, Remote Sensing Division, Washington, DC 20375 ABSTRACT Spectral graph theory

More information

Data Preprocessing. Javier Béjar. URL - Spring 2018 CS - MAI 1/78 BY: $\

Data Preprocessing. Javier Béjar. URL - Spring 2018 CS - MAI 1/78 BY: $\ Data Preprocessing Javier Béjar BY: $\ URL - Spring 2018 C CS - MAI 1/78 Introduction Data representation Unstructured datasets: Examples described by a flat set of attributes: attribute-value matrix Structured

More information

DIMENSIONALITY REDUCTION OF FLOW CYTOMETRIC DATA THROUGH INFORMATION PRESERVATION

DIMENSIONALITY REDUCTION OF FLOW CYTOMETRIC DATA THROUGH INFORMATION PRESERVATION DIMENSIONALITY REDUCTION OF FLOW CYTOMETRIC DATA THROUGH INFORMATION PRESERVATION Kevin M. Carter 1, Raviv Raich 2, William G. Finn 3, and Alfred O. Hero III 1 1 Department of EECS, University of Michigan,

More information

Non-Local Manifold Tangent Learning

Non-Local Manifold Tangent Learning Non-Local Manifold Tangent Learning Yoshua Bengio and Martin Monperrus Dept. IRO, Université de Montréal P.O. Box 1, Downtown Branch, Montreal, H3C 3J7, Qc, Canada {bengioy,monperrm}@iro.umontreal.ca Abstract

More information

Shape Classification and Cell Movement in 3D Matrix Tutorial (Part I)

Shape Classification and Cell Movement in 3D Matrix Tutorial (Part I) Shape Classification and Cell Movement in 3D Matrix Tutorial (Part I) Fred Park UCI icamp 2011 Outline 1. Motivation and Shape Definition 2. Shape Descriptors 3. Classification 4. Applications: Shape Matching,

More information

IMAGE MASKING SCHEMES FOR LOCAL MANIFOLD LEARNING METHODS. Hamid Dadkhahi and Marco F. Duarte

IMAGE MASKING SCHEMES FOR LOCAL MANIFOLD LEARNING METHODS. Hamid Dadkhahi and Marco F. Duarte IMAGE MASKING SCHEMES FOR LOCAL MANIFOLD LEARNING METHODS Hamid Dadkhahi and Marco F. Duarte Dept. of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003 ABSTRACT We consider

More information

Classification Performance related to Intrinsic Dimensionality in Mammographic Image Analysis

Classification Performance related to Intrinsic Dimensionality in Mammographic Image Analysis Classification Performance related to Intrinsic Dimensionality in Mammographic Image Analysis Harry Strange a and Reyer Zwiggelaar a a Department of Computer Science, Aberystwyth University, SY23 3DB,

More information

IT-Dendrogram: A New Member of the In-Tree (IT) Clustering Family

IT-Dendrogram: A New Member of the In-Tree (IT) Clustering Family IT-Dendrogram: A New Member of the In-Tree (IT) Clustering Family Teng Qiu (qiutengcool@163.com) Yongjie Li (liyj@uestc.edu.cn) University of Electronic Science and Technology of China, Chengdu, China

More information

A Supervised Non-linear Dimensionality Reduction Approach for Manifold Learning

A Supervised Non-linear Dimensionality Reduction Approach for Manifold Learning A Supervised Non-linear Dimensionality Reduction Approach for Manifold Learning B. Raducanu 1 and F. Dornaika 2,3 1 Computer Vision Center, Barcelona, SPAIN 2 Department of Computer Science and Artificial

More information

( ) =cov X Y = W PRINCIPAL COMPONENT ANALYSIS. Eigenvectors of the covariance matrix are the principal components

( ) =cov X Y = W PRINCIPAL COMPONENT ANALYSIS. Eigenvectors of the covariance matrix are the principal components Review Lecture 14 ! PRINCIPAL COMPONENT ANALYSIS Eigenvectors of the covariance matrix are the principal components 1. =cov X Top K principal components are the eigenvectors with K largest eigenvalues

More information

Subspace manifold learning with sample weights

Subspace manifold learning with sample weights Image and Vision Computing xxx (2007) xxx xxx www.elsevier.com/locate/imavis Subspace manifold learning with sample weights Nathan Mekuz *, Christian Bauckhage, John K. Tsotsos Department of Computer Science

More information

Sensitivity to parameter and data variations in dimensionality reduction techniques

Sensitivity to parameter and data variations in dimensionality reduction techniques Sensitivity to parameter and data variations in dimensionality reduction techniques Francisco J. García-Fernández 1,2,MichelVerleysen 2, John A. Lee 3 and Ignacio Díaz 1 1- Univ. of Oviedo - Department

More information

A Taxonomy of Semi-Supervised Learning Algorithms

A Taxonomy of Semi-Supervised Learning Algorithms A Taxonomy of Semi-Supervised Learning Algorithms Olivier Chapelle Max Planck Institute for Biological Cybernetics December 2005 Outline 1 Introduction 2 Generative models 3 Low density separation 4 Graph

More information

Think Globally, Fit Locally : Unsupervised Learning of Low Dimensional Manifolds

Think Globally, Fit Locally : Unsupervised Learning of Low Dimensional Manifolds University of Pennsylvania ScholarlyCommons Departmental Papers (CIS) Department of Computer & Information Science June 2003 Think Globally, Fit Locally : Unsupervised Learning of Low Dimensional Manifolds

More information

Mapping a manifold of perceptual observations

Mapping a manifold of perceptual observations Mapping a manifold of perceptual observations Joshua. Tenenbaum Department of rain and Cognitive Sciences Massachusetts Institute of Technology, Cambridge, M 2139 jbt@psyche.mit.edu bstract Nonlinear dimensionality

More information

Automatic Alignment of Local Representations

Automatic Alignment of Local Representations Automatic Alignment of Local Representations Yee Whye Teh and Sam Roweis Department of Computer Science, University of Toronto ywteh,roweis @cs.toronto.edu Abstract We present an automatic alignment procedure

More information

Data Preprocessing. Javier Béjar AMLT /2017 CS - MAI. (CS - MAI) Data Preprocessing AMLT / / 71 BY: $\

Data Preprocessing. Javier Béjar AMLT /2017 CS - MAI. (CS - MAI) Data Preprocessing AMLT / / 71 BY: $\ Data Preprocessing S - MAI AMLT - 2016/2017 (S - MAI) Data Preprocessing AMLT - 2016/2017 1 / 71 Outline 1 Introduction Data Representation 2 Data Preprocessing Outliers Missing Values Normalization Discretization

More information

Digital Geometry Processing

Digital Geometry Processing Digital Geometry Processing Spring 2011 physical model acquired point cloud reconstructed model 2 Digital Michelangelo Project Range Scanning Systems Passive: Stereo Matching Find and match features in

More information

GEOMETRIC MANIFOLD APPROXIMATION USING LOCALLY LINEAR APPROXIMATIONS

GEOMETRIC MANIFOLD APPROXIMATION USING LOCALLY LINEAR APPROXIMATIONS GEOMETRIC MANIFOLD APPROXIMATION USING LOCALLY LINEAR APPROXIMATIONS BY TALAL AHMED A thesis submitted to the Graduate School New Brunswick Rutgers, The State University of New Jersey in partial fulfillment

More information

Manifold Spanning Graphs

Manifold Spanning Graphs Manifold Spanning Graphs CJ Carey and Sridhar Mahadevan School of Computer Science University of Massachusetts, Amherst Amherst, Massachusetts, 01003 {ccarey,mahadeva}@cs.umass.edu Abstract Graph construction

More information

INFORMATION PRESERVING EMBEDDINGS FOR DISCRIMINATION

INFORMATION PRESERVING EMBEDDINGS FOR DISCRIMINATION INFORMATION PRESERVING EMBEDDINGS FOR DISCRIMINATION Kevin M. Carter 1, Christine Kyung-min Kim 1, Raviv Raich 2, Alfred O. Hero III 1 1 Department of EECS, University of Michigan, Ann Arbor, MI 4819 2

More information

Feature selection. Term 2011/2012 LSI - FIB. Javier Béjar cbea (LSI - FIB) Feature selection Term 2011/ / 22

Feature selection. Term 2011/2012 LSI - FIB. Javier Béjar cbea (LSI - FIB) Feature selection Term 2011/ / 22 Feature selection Javier Béjar cbea LSI - FIB Term 2011/2012 Javier Béjar cbea (LSI - FIB) Feature selection Term 2011/2012 1 / 22 Outline 1 Dimensionality reduction 2 Projections 3 Attribute selection

More information

Recognition: Face Recognition. Linda Shapiro EE/CSE 576

Recognition: Face Recognition. Linda Shapiro EE/CSE 576 Recognition: Face Recognition Linda Shapiro EE/CSE 576 1 Face recognition: once you ve detected and cropped a face, try to recognize it Detection Recognition Sally 2 Face recognition: overview Typical

More information

Polygonal representation of 3D urban terrain point-cloud data

Polygonal representation of 3D urban terrain point-cloud data Polygonal representation of 3D urban terrain point-cloud data part I Borislav Karaivanov The research is supported by ARO MURI 23 February 2011 USC 1 Description of problem Assumptions: unstructured 3D

More information

Modern Medical Image Analysis 8DC00 Exam

Modern Medical Image Analysis 8DC00 Exam Parts of answers are inside square brackets [... ]. These parts are optional. Answers can be written in Dutch or in English, as you prefer. You can use drawings and diagrams to support your textual answers.

More information