Cubic spline interpolation

Size: px
Start display at page:

Download "Cubic spline interpolation"

Transcription

1 Cubic spline interpolation In the following, we want to derive the collocation matrix for cubic spline interpolation. Let us assume that we have equidistant knots. To fulfill the Schoenberg-Whitney condition that N in (u i ) 0, for n=3 we set u i =i+2 for all i. The spline shall be given in B-spline representation, i.e., with n= : ESM4A - Numerical Methods 363

2 Cubic spline interpolation Cubic B-splines: For the collocation matrix, we need to evaluate the B- splines at the knots. Obviously, N i3 (u j ) 0 only for j=i-1, j=i, and j=i+1. And, N i3 (u i-1 ) = N i3 (u i+1 ) : ESM4A - Numerical Methods 364

3 Cubic spline interpolation We use the de Boor algorithm to obtain N i3 (u i-1 ) = 1/6, N i3 (u i ) = 4/6, and N i3 (u i+1 ) = 1/6. (Exercise) : ESM4A - Numerical Methods 365

4 Cubic spline interpolation Putting it all together, we obtain the collocation matrix The matrix is sparse. More precisely, it is a tridiagonal matrix. The linear equation system can be solved efficiently (see Section 2.3). Thisiswhywepickedbasissplineswithminimal support : ESM4A - Numerical Methods 366

5 Affine invariance Looking at the first and the last row of the collocation matrix, we observe that they do not sum up to one. Hence, the solution is not affinely invariant. Affine invariance, however, is often desired, especially in geometric modeling. How can we fix it? : ESM4A - Numerical Methods 367

6 Modified cubic spline interpolation One idea is to adjust the knot sequence, i.e., make it non-equidistant at the endpoints. Suggestion: instead of knot sequence (2,3,4,5,,m-1,m,m+1,m+2) use knot sequence (3,3½,4,5,,m-1,m,m+½,m+1). Hence, for the collocation matrix, we need to evaluate the B-splines at values 3½ and m+½ : ESM4A - Numerical Methods 368

7 Modified cubic spline interpolation We have: N 03 (3½) = N 33 (3½) = 1/48, N 13 (3½) = N 23 (3½) = 23/48. The collocation matrix becomes Now all rows sum up to one (partition of unity of B- splines over [3,m-3]). The Schoenberg-Whitney condition is still satisfied : ESM4A - Numerical Methods 369

8 Example Given: points (p 0,, p 4 ) = (1,2,2,0,1) knots (u 0,, u 4 ) = (3,3½,4,4½,5) Collocation matrix: Solving for the control points. Result: (c 0,, c 4 ) = (5/3, 0, 13/3, -16/3, 23) : ESM4A - Numerical Methods 370

9 Example Scaling of delivers : ESM4A - Numerical Methods 371

10 Example Summing of delivers s(u) : ESM4A - Numerical Methods 372

11 Example Interpolation is, of course, restricted to interval [3,5]. For example, at u=u 0 =3, we obtain: s(u 0 ) = s(3) = 5/3 N 03 (3) + 0 N 13 (3) + 13/3 N 23 (3) = 5/3 1/ /6 + 13/3 4/6 = 1 = c : ESM4A - Numerical Methods 373

12 Clamped cubic spline interpolation Clamped spline interpolation is another way to obtain affine invariance. The idea is to only interpolate points p i at knots u i = i+2 for u 1 =3,, u m-1 =m+1. In addition, we interpolate the derivatives at the endpoints u 1 and u m-1. I.e., we have additional interpolation conditions s (u 1 )= d 1 and s (u m-1 )=d m : ESM4A - Numerical Methods 374

13 Clamped cubic spline interpolation To do so, we need to compute s (u). The derivative of a B-spline of degree n can be derived to be (Exercise). Hence, we directly obtain with first backward differences : ESM4A - Numerical Methods 375

14 Clamped cubic spline interpolation In order to fullfill s (u 1 ) = d 1, we have to look at the B-splines of degree 2. Recall: For our equidistant knots, we obtain N 12 (u 1 ) = N 22 (u 1 ) = ½ Hence, s (u 1 ) = ½ a 1 + ½ a 2 = ½ (c 1 c 0 ) + ½ (c 2 - c 1 ) = ½ ( c 0 + c 2 ) : ESM4A - Numerical Methods 376

15 Clamped cubic spline interpolation The collocation matrix becomes : ESM4A - Numerical Methods 377

16 Clamped cubic spline interpolation Clamped cubic spline: : ESM4A - Numerical Methods 378

17 Periodic cubic spline interpolation For some applications, one is interested in periodic splines, i.e., s(u) = s(u+m). This implies that c i+m = c i. In particular, c m = c 0 (and p m = p 0 ). We have the interpolation conditions s(u i ) = p i for i=0,,m-1 and s(u m ) = p : ESM4A - Numerical Methods 379

18 Periodic cubic spline interpolation Collocation matrix: : ESM4A - Numerical Methods 380

19 Periodic cubic spline interpolation Periodic spline: : ESM4A - Numerical Methods 381

Remark. Jacobs University Visualization and Computer Graphics Lab : ESM4A - Numerical Methods 331

Remark. Jacobs University Visualization and Computer Graphics Lab : ESM4A - Numerical Methods 331 Remark Reconsidering the motivating example, we observe that the derivatives are typically not given by the problem specification. However, they can be estimated in a pre-processing step. A good estimate

More information

Derivative. Bernstein polynomials: Jacobs University Visualization and Computer Graphics Lab : ESM4A - Numerical Methods 313

Derivative. Bernstein polynomials: Jacobs University Visualization and Computer Graphics Lab : ESM4A - Numerical Methods 313 Derivative Bernstein polynomials: 120202: ESM4A - Numerical Methods 313 Derivative Bézier curve (over [0,1]): with differences. being the first forward 120202: ESM4A - Numerical Methods 314 Derivative

More information

Homework #6 Brief Solutions 2012

Homework #6 Brief Solutions 2012 Homework #6 Brief Solutions %page 95 problem 4 data=[-,;-,;,;4,] data = - - 4 xk=data(:,);yk=data(:,);s=csfit(xk,yk,-,) %Using the program to find the coefficients S =.456 -.456 -.. -.5.9 -.5484. -.58.87.

More information

08 - Designing Approximating Curves

08 - Designing Approximating Curves 08 - Designing Approximating Curves Acknowledgement: Olga Sorkine-Hornung, Alexander Sorkine-Hornung, Ilya Baran Last time Interpolating curves Monomials Lagrange Hermite Different control types Polynomials

More information

CS130 : Computer Graphics Curves (cont.) Tamar Shinar Computer Science & Engineering UC Riverside

CS130 : Computer Graphics Curves (cont.) Tamar Shinar Computer Science & Engineering UC Riverside CS130 : Computer Graphics Curves (cont.) Tamar Shinar Computer Science & Engineering UC Riverside Blending Functions Blending functions are more convenient basis than monomial basis canonical form (monomial

More information

(Spline, Bezier, B-Spline)

(Spline, Bezier, B-Spline) (Spline, Bezier, B-Spline) Spline Drafting terminology Spline is a flexible strip that is easily flexed to pass through a series of design points (control points) to produce a smooth curve. Spline curve

More information

February 2017 (1/20) 2 Piecewise Polynomial Interpolation 2.2 (Natural) Cubic Splines. MA378/531 Numerical Analysis II ( NA2 )

February 2017 (1/20) 2 Piecewise Polynomial Interpolation 2.2 (Natural) Cubic Splines. MA378/531 Numerical Analysis II ( NA2 ) f f f f f (/2).9.8.7.6.5.4.3.2. S Knots.7.6.5.4.3.2. 5 5.2.8.6.4.2 S Knots.2 5 5.9.8.7.6.5.4.3.2..9.8.7.6.5.4.3.2. S Knots 5 5 S Knots 5 5 5 5.35.3.25.2.5..5 5 5.6.5.4.3.2. 5 5 4 x 3 3.5 3 2.5 2.5.5 5

More information

Numerical Integration

Numerical Integration Numerical Integration Numerical Integration is the process of computing the value of a definite integral, when the values of the integrand function, are given at some tabular points. As in the case of

More information

Interpolation & Polynomial Approximation. Cubic Spline Interpolation II

Interpolation & Polynomial Approximation. Cubic Spline Interpolation II Interpolation & Polynomial Approximation Cubic Spline Interpolation II Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University

More information

Handout 4 - Interpolation Examples

Handout 4 - Interpolation Examples Handout 4 - Interpolation Examples Middle East Technical University Example 1: Obtaining the n th Degree Newton s Interpolating Polynomial Passing through (n+1) Data Points Obtain the 4 th degree Newton

More information

Bézier Splines. B-Splines. B-Splines. CS 475 / CS 675 Computer Graphics. Lecture 14 : Modelling Curves 3 B-Splines. n i t i 1 t n i. J n,i.

Bézier Splines. B-Splines. B-Splines. CS 475 / CS 675 Computer Graphics. Lecture 14 : Modelling Curves 3 B-Splines. n i t i 1 t n i. J n,i. Bézier Splines CS 475 / CS 675 Computer Graphics Lecture 14 : Modelling Curves 3 n P t = B i J n,i t with 0 t 1 J n, i t = i=0 n i t i 1 t n i No local control. Degree restricted by the control polygon.

More information

Design considerations

Design considerations Curves Design considerations local control of shape design each segment independently smoothness and continuity ability to evaluate derivatives stability small change in input leads to small change in

More information

lecture 10: B-Splines

lecture 10: B-Splines 9 lecture : -Splines -Splines: a basis for splines Throughout our discussion of standard polynomial interpolation, we viewed P n as a linear space of dimension n +, and then expressed the unique interpolating

More information

Consider functions such that then satisfies these properties: So is represented by the cubic polynomials on on and on.

Consider functions such that then satisfies these properties: So is represented by the cubic polynomials on on and on. 1 of 9 3/1/2006 2:28 PM ne previo Next: Trigonometric Interpolation Up: Spline Interpolation Previous: Piecewise Linear Case Cubic Splines A piece-wise technique which is very popular. Recall the philosophy

More information

CS 475 / CS Computer Graphics. Modelling Curves 3 - B-Splines

CS 475 / CS Computer Graphics. Modelling Curves 3 - B-Splines CS 475 / CS 675 - Computer Graphics Modelling Curves 3 - Bézier Splines n P t = i=0 No local control. B i J n,i t with 0 t 1 J n,i t = n i t i 1 t n i Degree restricted by the control polygon. http://www.cs.mtu.edu/~shene/courses/cs3621/notes/spline/bezier/bezier-move-ct-pt.html

More information

Bezier Curves, B-Splines, NURBS

Bezier Curves, B-Splines, NURBS Bezier Curves, B-Splines, NURBS Example Application: Font Design and Display Curved objects are everywhere There is always need for: mathematical fidelity high precision artistic freedom and flexibility

More information

Spline Curves. Spline Curves. Prof. Dr. Hans Hagen Algorithmic Geometry WS 2013/2014 1

Spline Curves. Spline Curves. Prof. Dr. Hans Hagen Algorithmic Geometry WS 2013/2014 1 Spline Curves Prof. Dr. Hans Hagen Algorithmic Geometry WS 2013/2014 1 Problem: In the previous chapter, we have seen that interpolating polynomials, especially those of high degree, tend to produce strong

More information

Designing by a Quadratic Trigonometric Spline with Point and Interval Shape Control

Designing by a Quadratic Trigonometric Spline with Point and Interval Shape Control Int'l Conf. Scientific Computing CSC'18 195 Designing by a Quadratic Trigonometric Spline with Point and Interval Shape Control Shamaila Samreen Department of Mathematics University of Engineering & Technology,

More information

Cubic Spline Questions

Cubic Spline Questions Cubic Spline Questions. Find natural cubic splines which interpolate the following dataset of, points:.0,.,.,.0, 7.0,.,.0,0.; estimate the value for. Solution: Step : Use the n- cubic spline equations

More information

B-Spline Polynomials. B-Spline Polynomials. Uniform Cubic B-Spline Curves CS 460. Computer Graphics

B-Spline Polynomials. B-Spline Polynomials. Uniform Cubic B-Spline Curves CS 460. Computer Graphics CS 460 B-Spline Polynomials Computer Graphics Professor Richard Eckert March 24, 2004 B-Spline Polynomials Want local control Smoother curves B-spline curves: Segmented approximating curve 4 control points

More information

Natural Quartic Spline

Natural Quartic Spline Natural Quartic Spline Rafael E Banchs INTRODUCTION This report describes the natural quartic spline algorithm developed for the enhanced solution of the Time Harmonic Field Electric Logging problem As

More information

Important Properties of B-spline Basis Functions

Important Properties of B-spline Basis Functions Important Properties of B-spline Basis Functions P2.1 N i,p (u) = 0 if u is outside the interval [u i, u i+p+1 ) (local support property). For example, note that N 1,3 is a combination of N 1,0, N 2,0,

More information

Homework #6 Brief Solutions 2011

Homework #6 Brief Solutions 2011 Homework #6 Brief Solutions %page 95 problem 4 data=[-,;-,;,;4,] data = - - 4 xk=data(:,);yk=data(:,);s=csfit(xk,yk,-,) %Using the program to find the coefficients S =.456 -.456 -.. -.5.9 -.5484. -.58.87.

More information

A Practical Review of Uniform B-Splines

A Practical Review of Uniform B-Splines A Practical Review of Uniform B-Splines Kristin Branson A B-spline is a convenient form for representing complicated, smooth curves. A uniform B-spline of order k is a piecewise order k Bezier curve, and

More information

CS348a: Computer Graphics Handout #24 Geometric Modeling Original Handout #20 Stanford University Tuesday, 27 October 1992

CS348a: Computer Graphics Handout #24 Geometric Modeling Original Handout #20 Stanford University Tuesday, 27 October 1992 CS348a: Computer Graphics Handout #24 Geometric Modeling Original Handout #20 Stanford University Tuesday, 27 October 1992 Original Lecture #9: 29 October 1992 Topics: B-Splines Scribe: Brad Adelberg 1

More information

15.10 Curve Interpolation using Uniform Cubic B-Spline Curves. CS Dept, UK

15.10 Curve Interpolation using Uniform Cubic B-Spline Curves. CS Dept, UK 1 An analysis of the problem: To get the curve constructed, how many knots are needed? Consider the following case: So, to interpolate (n +1) data points, one needs (n +7) knots,, for a uniform cubic B-spline

More information

Rational Bezier Surface

Rational Bezier Surface Rational Bezier Surface The perspective projection of a 4-dimensional polynomial Bezier surface, S w n ( u, v) B i n i 0 m j 0, u ( ) B j m, v ( ) P w ij ME525x NURBS Curve and Surface Modeling Page 97

More information

A story about Non Uniform Rational B-Splines. E. Shcherbakov

A story about Non Uniform Rational B-Splines. E. Shcherbakov A story about Non Uniform Rational B-Splines E. Shcherbakov Speakers 09-06: B-spline curves (W. Dijkstra) 16-06: NURBS (E. Shcherbakov) 30-06: B-spline surfaces (M. Patricio) Seminar 16-06-2004 2 Outline

More information

Multiple-Choice Test Spline Method Interpolation COMPLETE SOLUTION SET

Multiple-Choice Test Spline Method Interpolation COMPLETE SOLUTION SET Multiple-Choice Test Spline Method Interpolation COMPLETE SOLUTION SET 1. The ollowing n data points, ( x ), ( x ),.. ( x, ) 1, y 1, y n y n quadratic spline interpolation the x-data needs to be (A) equally

More information

Second Triangular Hermite Spline Curves and Its Application

Second Triangular Hermite Spline Curves and Its Application Progress in Applied Mathematics Vol. 4, No. 1, 1, pp. [3 36] DOI: 1.3968/j.pam.19558141.1533 ISSN 195-51X [Print] ISSN 195-58 [Online] www.cscanada.net www.cscanada.org Second Triangular Hermite Spline

More information

Curve fitting using linear models

Curve fitting using linear models Curve fitting using linear models Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark September 28, 2012 1 / 12 Outline for today linear models and basis functions polynomial regression

More information

Table for Third-Degree Spline Interpolation Using Equi-Spaced Knots. By W. D. Hoskins

Table for Third-Degree Spline Interpolation Using Equi-Spaced Knots. By W. D. Hoskins MATHEMATICS OF COMPUTATION, VOLUME 25, NUMBER 116, OCTOBER, 1971 Table for Third-Degree Spline Interpolation Using Equi-Spaced Knots By W. D. Hoskins Abstract. A table is given for the calculation of the

More information

Need for Parametric Equations

Need for Parametric Equations Curves and Surfaces Curves and Surfaces Need for Parametric Equations Affine Combinations Bernstein Polynomials Bezier Curves and Surfaces Continuity when joining curves B Spline Curves and Surfaces Need

More information

Figure 5.1: Spline and ducks.

Figure 5.1: Spline and ducks. Chapter 5 B-SPLINE CURVES Most shapes are simply too complicated to define using a single Bézier curve. A spline curve is a sequence of curve segments that are connected together to form a single continuous

More information

2D Spline Curves. CS 4620 Lecture 13

2D Spline Curves. CS 4620 Lecture 13 2D Spline Curves CS 4620 Lecture 13 2008 Steve Marschner 1 Motivation: smoothness In many applications we need smooth shapes [Boeing] that is, without discontinuities So far we can make things with corners

More information

An Introduction to B-Spline Curves

An Introduction to B-Spline Curves An Introduction to B-Spline Curves Thomas W. Sederberg March 14, 2005 1 B-Spline Curves Most shapes are simply too complicated to define using a single Bézier curve. A spline curve is a sequence of curve

More information

Curves and Surfaces 1

Curves and Surfaces 1 Curves and Surfaces 1 Representation of Curves & Surfaces Polygon Meshes Parametric Cubic Curves Parametric Bi-Cubic Surfaces Quadric Surfaces Specialized Modeling Techniques 2 The Teapot 3 Representing

More information

99 International Journal of Engineering, Science and Mathematics

99 International Journal of Engineering, Science and Mathematics Journal Homepage: Applications of cubic splines in the numerical solution of polynomials Najmuddin Ahmad 1 and Khan Farah Deeba 2 Department of Mathematics Integral University Lucknow Abstract: In this

More information

3D Modeling Parametric Curves & Surfaces

3D Modeling Parametric Curves & Surfaces 3D Modeling Parametric Curves & Surfaces Shandong University Spring 2012 3D Object Representations Raw data Point cloud Range image Polygon soup Solids Voxels BSP tree CSG Sweep Surfaces Mesh Subdivision

More information

Intro to Curves Week 4, Lecture 7

Intro to Curves Week 4, Lecture 7 CS 430/536 Computer Graphics I Intro to Curves Week 4, Lecture 7 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science Drexel University

More information

APPM/MATH Problem Set 4 Solutions

APPM/MATH Problem Set 4 Solutions APPM/MATH 465 Problem Set 4 Solutions This assignment is due by 4pm on Wednesday, October 16th. You may either turn it in to me in class on Monday or in the box outside my office door (ECOT 35). Minimal

More information

Deficient Quartic Spline Interpolation

Deficient Quartic Spline Interpolation International Journal of Computational Science and Mathematics. ISSN 0974-3189 Volume 3, Number 2 (2011), pp. 227-236 International Research Publication House http://www.irphouse.com Deficient Quartic

More information

Numerical Analysis I - Final Exam Matrikelnummer:

Numerical Analysis I - Final Exam Matrikelnummer: Dr. Behrens Center for Mathematical Sciences Technische Universität München Winter Term 2005/2006 Name: Numerical Analysis I - Final Exam Matrikelnummer: I agree to the publication of the results of this

More information

The Simplex Algorithm. Chapter 5. Decision Procedures. An Algorithmic Point of View. Revision 1.0

The Simplex Algorithm. Chapter 5. Decision Procedures. An Algorithmic Point of View. Revision 1.0 The Simplex Algorithm Chapter 5 Decision Procedures An Algorithmic Point of View D.Kroening O.Strichman Revision 1.0 Outline 1 Gaussian Elimination 2 Satisfiability with Simplex 3 General Simplex Form

More information

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013 3D Modeling Parametric Curves & Surfaces Shandong University Spring 2013 3D Object Representations Raw data Point cloud Range image Polygon soup Surfaces Mesh Subdivision Parametric Implicit Solids Voxels

More information

Computer Graphics Curves and Surfaces. Matthias Teschner

Computer Graphics Curves and Surfaces. Matthias Teschner Computer Graphics Curves and Surfaces Matthias Teschner Outline Introduction Polynomial curves Bézier curves Matrix notation Curve subdivision Differential curve properties Piecewise polynomial curves

More information

Math 226A Homework 4 Due Monday, December 11th

Math 226A Homework 4 Due Monday, December 11th Math 226A Homework 4 Due Monday, December 11th 1. (a) Show that the polynomial 2 n (T n+1 (x) T n 1 (x)), is the unique monic polynomial of degree n + 1 with roots at the Chebyshev points x k = cos ( )

More information

Set 5, Total points: 100 Issued: week of

Set 5, Total points: 100 Issued: week of Prof. P. Koumoutsakos Prof. Dr. Jens Walther ETH Zentrum, CLT F 1, E 11 CH-809 Zürich Models, Algorithms and Data (MAD): Introduction to Computing Spring semester 018 Set 5, Total points: 100 Issued: week

More information

Properties of Blending Functions

Properties of Blending Functions Chapter 5 Properties of Blending Functions We have just studied how the Bernstein polynomials serve very nicely as blending functions. We have noted that a degree n Bézier curve always begins at P 0 and

More information

CAP 6736 Geometric Modeling Team Hamilton B-Spline Basis Functions. Presented by Padmavathi Siddi Vigneshkumar Suresh Jorge Medrano

CAP 6736 Geometric Modeling Team Hamilton B-Spline Basis Functions. Presented by Padmavathi Siddi Vigneshkumar Suresh Jorge Medrano CAP 6736 Geometric Modeling Team Hamilton B-Spline Basis Functions Presented by Padmavathi Siddi Vigneshkumar Suresh Jorge Medrano 1 Team members contributions Member: Padmavathi Siddi Piecewise Polynomials

More information

MA 323 Geometric Modelling Course Notes: Day 28 Data Fitting to Surfaces

MA 323 Geometric Modelling Course Notes: Day 28 Data Fitting to Surfaces MA 323 Geometric Modelling Course Notes: Day 28 Data Fitting to Surfaces David L. Finn Today, we want to exam interpolation and data fitting problems for surface patches. Our general method is the same,

More information

Splines and Piecewise Interpolation. Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan

Splines and Piecewise Interpolation. Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan Splines and Piecewise Interpolation Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan chanhl@mail.cgu.edu.tw Splines n 1 intervals and n data points 2 Splines (cont.) Go through

More information

Parametric Surfaces. Michael Kazhdan ( /657) HB , FvDFH 11.2

Parametric Surfaces. Michael Kazhdan ( /657) HB , FvDFH 11.2 Parametric Surfaces Michael Kazhdan (601.457/657) HB 10.6 -- 10.9, 10.1 FvDFH 11.2 Announcement OpenGL review session: When: Wednesday (10/1) @ 7:00-9:00 PM Where: Olin 05 Cubic Splines Given a collection

More information

Interactive Graphics. Lecture 9: Introduction to Spline Curves. Interactive Graphics Lecture 9: Slide 1

Interactive Graphics. Lecture 9: Introduction to Spline Curves. Interactive Graphics Lecture 9: Slide 1 Interactive Graphics Lecture 9: Introduction to Spline Curves Interactive Graphics Lecture 9: Slide 1 Interactive Graphics Lecture 13: Slide 2 Splines The word spline comes from the ship building trade

More information

3. Replace any row by the sum of that row and a constant multiple of any other row.

3. Replace any row by the sum of that row and a constant multiple of any other row. Math Section. Section.: Solving Systems of Linear Equations Using Matrices As you may recall from College Algebra or Section., you can solve a system of linear equations in two variables easily by applying

More information

Know it. Control points. B Spline surfaces. Implicit surfaces

Know it. Control points. B Spline surfaces. Implicit surfaces Know it 15 B Spline Cur 14 13 12 11 Parametric curves Catmull clark subdivision Parametric surfaces Interpolating curves 10 9 8 7 6 5 4 3 2 Control points B Spline surfaces Implicit surfaces Bezier surfaces

More information

Connected Minimal Acceleration Trigonometric Curves

Connected Minimal Acceleration Trigonometric Curves Connected Minimal Acceleration Trigonometric Curves Tony Barrera Barrera Kristiansen AB Anders Hast Creative Media Lab, University of Gävle Ewert Bengtsson Centre for Image Analysis Uppsala University

More information

Polynomials tend to oscillate (wiggle) a lot, even when our true function does not.

Polynomials tend to oscillate (wiggle) a lot, even when our true function does not. AMSC/CMSC 460 Computational Methods, Fall 2007 UNIT 2: Spline Approximations Dianne P O Leary c 2001, 2002, 2007 Piecewise polynomial interpolation Piecewise polynomial interpolation Read: Chapter 3 Skip:

More information

Lecture 9: Introduction to Spline Curves

Lecture 9: Introduction to Spline Curves Lecture 9: Introduction to Spline Curves Splines are used in graphics to represent smooth curves and surfaces. They use a small set of control points (knots) and a function that generates a curve through

More information

Rational Bezier Curves

Rational Bezier Curves Rational Bezier Curves Use of homogeneous coordinates Rational spline curve: define a curve in one higher dimension space, project it down on the homogenizing variable Mathematical formulation: n P(u)

More information

Central issues in modelling

Central issues in modelling Central issues in modelling Construct families of curves, surfaces and volumes that can represent common objects usefully; are easy to interact with; interaction includes: manual modelling; fitting to

More information

Cubic Splines and Matlab

Cubic Splines and Matlab Cubic Splines and Matlab October 7, 2006 1 Introduction In this section, we introduce the concept of the cubic spline, and how they are implemented in Matlab. Of particular importance are the new Matlab

More information

Interpolation - 2D mapping Tutorial 1: triangulation

Interpolation - 2D mapping Tutorial 1: triangulation Tutorial 1: triangulation Measurements (Zk) at irregular points (xk, yk) Ex: CTD stations, mooring, etc... The known Data How to compute some values on the regular spaced grid points (+)? The unknown data

More information

ME 261: Numerical Analysis Lecture-12: Numerical Interpolation

ME 261: Numerical Analysis Lecture-12: Numerical Interpolation 1 ME 261: Numerical Analysis Lecture-12: Numerical Interpolation Md. Tanver Hossain Department of Mechanical Engineering, BUET http://tantusher.buet.ac.bd 2 Inverse Interpolation Problem : Given a table

More information

Quasi-Quartic Trigonometric Bézier Curves and Surfaces with Shape Parameters

Quasi-Quartic Trigonometric Bézier Curves and Surfaces with Shape Parameters Quasi-Quartic Trigonometric Bézier Curves and Surfaces with Shape Parameters Reenu Sharma Assistant Professor, Department of Mathematics, Mata Gujri Mahila Mahavidyalaya, Jabalpur, Madhya Pradesh, India

More information

Geometric Modeling of Curves

Geometric Modeling of Curves Curves Locus of a point moving with one degree of freedom Locus of a one-dimensional parameter family of point Mathematically defined using: Explicit equations Implicit equations Parametric equations (Hermite,

More information

Freeform Curves on Spheres of Arbitrary Dimension

Freeform Curves on Spheres of Arbitrary Dimension Freeform Curves on Spheres of Arbitrary Dimension Scott Schaefer and Ron Goldman Rice University 6100 Main St. Houston, TX 77005 sschaefe@rice.edu and rng@rice.edu Abstract Recursive evaluation procedures

More information

NAG Library Function Document nag_1d_spline_fit_knots (e02bac)

NAG Library Function Document nag_1d_spline_fit_knots (e02bac) e02 Curve and Surface Fitting e02bac NAG Library Function Document nag_1d_spline_fit_knots (e02bac) 1 Purpose nag_1d_spline_fit_knots (e02bac) computes a weighted least squares approximation to an arbitrary

More information

Justify all your answers and write down all important steps. Unsupported answers will be disregarded.

Justify all your answers and write down all important steps. Unsupported answers will be disregarded. Numerical Analysis FMN011 2017/05/30 The exam lasts 5 hours and has 15 questions. A minimum of 35 points out of the total 70 are required to get a passing grade. These points will be added to those you

More information

A general matrix representation for non-uniform B-spline subdivision with boundary control

A general matrix representation for non-uniform B-spline subdivision with boundary control A general matrix representation for non-uniform B-spline subdivision with boundary control G. Casciola a, L. Romani a a Department of Mathematics, University of Bologna, P.zza di Porta San Donato 5, 40127

More information

Curves and Surfaces for Computer-Aided Geometric Design

Curves and Surfaces for Computer-Aided Geometric Design Curves and Surfaces for Computer-Aided Geometric Design A Practical Guide Fourth Edition Gerald Farin Department of Computer Science Arizona State University Tempe, Arizona /ACADEMIC PRESS I San Diego

More information

Generalised Mean Averaging Interpolation by Discrete Cubic Splines

Generalised Mean Averaging Interpolation by Discrete Cubic Splines Publ. RIMS, Kyoto Univ. 30 (1994), 89-95 Generalised Mean Averaging Interpolation by Discrete Cubic Splines By Manjulata SHRIVASTAVA* Abstract The aim of this work is to introduce for a discrete function,

More information

Intro to Curves Week 1, Lecture 2

Intro to Curves Week 1, Lecture 2 CS 536 Computer Graphics Intro to Curves Week 1, Lecture 2 David Breen, William Regli and Maxim Peysakhov Department of Computer Science Drexel University Outline Math review Introduction to 2D curves

More information

LECTURE NOTES - SPLINE INTERPOLATION. 1. Introduction. Problems can arise when a single high-degree polynomial is fit to a large number

LECTURE NOTES - SPLINE INTERPOLATION. 1. Introduction. Problems can arise when a single high-degree polynomial is fit to a large number LECTURE NOTES - SPLINE INTERPOLATION DR MAZHAR IQBAL 1 Introduction Problems can arise when a single high-degree polynomial is fit to a large number of points High-degree polynomials would obviously pass

More information

Runge Example Revisited for Splines

Runge Example Revisited for Splines Runge Example Revisited for Splines The Runge function f(x) = +25x on [, ] provided an very nice function that was not wellapproximated by its polynomials of interpolation. In fact, a higher degree (more

More information

Fathi El-Yafi Project and Software Development Manager Engineering Simulation

Fathi El-Yafi Project and Software Development Manager Engineering Simulation An Introduction to Geometry Design Algorithms Fathi El-Yafi Project and Software Development Manager Engineering Simulation 1 Geometry: Overview Geometry Basics Definitions Data Semantic Topology Mathematics

More information

CS 536 Computer Graphics Intro to Curves Week 1, Lecture 2

CS 536 Computer Graphics Intro to Curves Week 1, Lecture 2 CS 536 Computer Graphics Intro to Curves Week 1, Lecture 2 David Breen, William Regli and Maxim Peysakhov Department of Computer Science Drexel University 1 Outline Math review Introduction to 2D curves

More information

Advanced Graphics. Beziers, B-splines, and NURBS. Alex Benton, University of Cambridge Supported in part by Google UK, Ltd

Advanced Graphics. Beziers, B-splines, and NURBS. Alex Benton, University of Cambridge Supported in part by Google UK, Ltd Advanced Graphics Beziers, B-splines, and NURBS Alex Benton, University of Cambridge A.Benton@damtp.cam.ac.uk Supported in part by Google UK, Ltd Bezier splines, B-Splines, and NURBS Expensive products

More information

COMPUTER AIDED GEOMETRIC DESIGN. Thomas W. Sederberg

COMPUTER AIDED GEOMETRIC DESIGN. Thomas W. Sederberg COMPUTER AIDED GEOMETRIC DESIGN Thomas W. Sederberg January 31, 2011 ii T. W. Sederberg iii Preface This semester is the 24 th time I have taught a course at Brigham Young University titled, Computer Aided

More information

Normals of subdivision surfaces and their control polyhedra

Normals of subdivision surfaces and their control polyhedra Computer Aided Geometric Design 24 (27 112 116 www.elsevier.com/locate/cagd Normals of subdivision surfaces and their control polyhedra I. Ginkel a,j.peters b,,g.umlauf a a University of Kaiserslautern,

More information

Most shapes are simply too complicated to dene using a single Bezier curve. A spline curve is

Most shapes are simply too complicated to dene using a single Bezier curve. A spline curve is Chapter 5 B-SPLINE CURVES Most shapes are simply too complicated to dene using a single Bezier curve. A spline curve is a sequence of curve segments that are connected together to form a single continuous

More information

MA 323 Geometric Modelling Course Notes: Day 21 Three Dimensional Bezier Curves, Projections and Rational Bezier Curves

MA 323 Geometric Modelling Course Notes: Day 21 Three Dimensional Bezier Curves, Projections and Rational Bezier Curves MA 323 Geometric Modelling Course Notes: Day 21 Three Dimensional Bezier Curves, Projections and Rational Bezier Curves David L. Finn Over the next few days, we will be looking at extensions of Bezier

More information

Quadratic and cubic b-splines by generalizing higher-order voronoi diagrams

Quadratic and cubic b-splines by generalizing higher-order voronoi diagrams Quadratic and cubic b-splines by generalizing higher-order voronoi diagrams Yuanxin Liu and Jack Snoeyink Joshua Levine April 18, 2007 Computer Science and Engineering, The Ohio State University 1 / 24

More information

Parametric curves. Brian Curless CSE 457 Spring 2016

Parametric curves. Brian Curless CSE 457 Spring 2016 Parametric curves Brian Curless CSE 457 Spring 2016 1 Reading Required: Angel 10.1-10.3, 10.5.2, 10.6-10.7, 10.9 Optional Bartels, Beatty, and Barsky. An Introduction to Splines for use in Computer Graphics

More information

4. Simplicial Complexes and Simplicial Homology

4. Simplicial Complexes and Simplicial Homology MATH41071/MATH61071 Algebraic topology Autumn Semester 2017 2018 4. Simplicial Complexes and Simplicial Homology Geometric simplicial complexes 4.1 Definition. A finite subset { v 0, v 1,..., v r } R n

More information

B(asis) Splines. Ashish Myles CISE, UF

B(asis) Splines. Ashish Myles CISE, UF B(asis) Splines Ashish Myles CISE, UF Splines Piecewise polynomial More flexible than single polynomials can have finite support can be periodic Degree d splines typically C d 1 continuity Some polynomial

More information

Parameterization of triangular meshes

Parameterization of triangular meshes Parameterization of triangular meshes Michael S. Floater November 10, 2009 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to

More information

Parametric curves. Reading. Curves before computers. Mathematical curve representation. CSE 457 Winter Required:

Parametric curves. Reading. Curves before computers. Mathematical curve representation. CSE 457 Winter Required: Reading Required: Angel 10.1-10.3, 10.5.2, 10.6-10.7, 10.9 Parametric curves CSE 457 Winter 2014 Optional Bartels, Beatty, and Barsky. An Introduction to Splines for use in Computer Graphics and Geometric

More information

Interpolation and Splines

Interpolation and Splines Interpolation and Splines Anna Gryboś October 23, 27 1 Problem setting Many of physical phenomenona are described by the functions that we don t know exactly. Often we can calculate or measure the values

More information

Piecewise Polynomial Interpolation, cont d

Piecewise Polynomial Interpolation, cont d Jim Lambers MAT 460/560 Fall Semester 2009-0 Lecture 2 Notes Tese notes correspond to Section 4 in te text Piecewise Polynomial Interpolation, cont d Constructing Cubic Splines, cont d Having determined

More information

Fall CSCI 420: Computer Graphics. 4.2 Splines. Hao Li.

Fall CSCI 420: Computer Graphics. 4.2 Splines. Hao Li. Fall 2014 CSCI 420: Computer Graphics 4.2 Splines Hao Li http://cs420.hao-li.com 1 Roller coaster Next programming assignment involves creating a 3D roller coaster animation We must model the 3D curve

More information

CS-184: Computer Graphics

CS-184: Computer Graphics CS-184: Computer Graphics Lecture #12: Curves and Surfaces Prof. James O Brien University of California, Berkeley V2007-F-12-1.0 Today General curve and surface representations Splines and other polynomial

More information

Moving Beyond Linearity

Moving Beyond Linearity Moving Beyond Linearity Basic non-linear models one input feature: polynomial regression step functions splines smoothing splines local regression. more features: generalized additive models. Polynomial

More information

On an approach for cubic Bézier interpolation

On an approach for cubic Bézier interpolation Second International Conference Modelling and Development of Intelligent Systems Sibiu - Romania, September 29 - October 02, 2011 On an approach for cubic Bézier interpolation Dana Simian, Corina Simian

More information

See the course website for important information about collaboration and late policies, as well as where and when to turn in assignments.

See the course website for important information about collaboration and late policies, as well as where and when to turn in assignments. COS Homework # Due Tuesday, February rd See the course website for important information about collaboration and late policies, as well as where and when to turn in assignments. Data files The questions

More information

CS-184: Computer Graphics. Today

CS-184: Computer Graphics. Today CS-84: Computer Graphics Lecture #5: Curves and Surfaces Prof. James O Brien University of California, Berkeley V25F-5-. Today General curve and surface representations Splines and other polynomial bases

More information

B-Spline and NURBS Surfaces CS 525 Denbigh Starkey. 1. Background 2 2. B-Spline Surfaces 3 3. NURBS Surfaces 8 4. Surfaces of Rotation 9

B-Spline and NURBS Surfaces CS 525 Denbigh Starkey. 1. Background 2 2. B-Spline Surfaces 3 3. NURBS Surfaces 8 4. Surfaces of Rotation 9 B-Spline and NURBS Surfaces CS 525 Denbigh Starkey 1. Background 2 2. B-Spline Surfaces 3 3. NURBS Surfaces 8 4. Surfaces of Rotation 9 1. Background In my preious notes I e discussed B-spline and NURBS

More information

Splines. Connecting the Dots

Splines. Connecting the Dots Splines or: Connecting the Dots Jens Ogniewski Information Coding Group Linköping University Before we start... Some parts won t be part of the exam Basically all that is not described in the book. More

More information

Lecture 10 Graph algorithms: testing graph properties

Lecture 10 Graph algorithms: testing graph properties Lecture 10 Graph algorithms: testing graph properties COMP 523: Advanced Algorithmic Techniques Lecturer: Dariusz Kowalski Lecture 10: Testing Graph Properties 1 Overview Previous lectures: Representation

More information

An introduction to interpolation and splines

An introduction to interpolation and splines An introduction to interpolation and splines Kenneth H. Carpenter, EECE KSU November 22, 1999 revised November 20, 2001, April 24, 2002, April 14, 2004 1 Introduction Suppose one wishes to draw a curve

More information