Outline. Informed Search. Recall: Uninformed Search. An Idea. Heuristics Informed search techniques More on heuristics Iterative improvement

Size: px
Start display at page:

Download "Outline. Informed Search. Recall: Uninformed Search. An Idea. Heuristics Informed search techniques More on heuristics Iterative improvement"

Transcription

1 Outline Informed Search ECE457 Applied Artificial Intelligence Fall 2007 Lecture #3 Heuristics Informed search techniques More on heuristics Iterative improvement Russell & Norvig, chapter 4 Skip Genetic algorithms pages (will be covered in Lecture 12) ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 2 Recall: Uninformed Search Travel blindly until they reach Bucharest An Idea It would be better if the agent knew whether or not the city it is travelling to gets it closer to Bucharest Of course, the agent doesn t know the exact distance or path to Bucharest (it wouldn t need to search otherwise!) The agent must estimate the distance to Bucharest ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 3 ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 4 1

2 Heuristic Function More generally: We want the search algorithm to be able to estimate the path cost from the current node to the goal This estimate is called a heuristic function Cannot be done based on problem formulation Need to add additional information Informed search ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 5 Heuristic Function Heuristic function h(n) h(n): estimated cost from node n to goal h(n 1 ) < h(n 2 ) means it s probably cheaper to get to the goal from n 1 h(n goal ) = 0 Path cost g(n) Evaluation function f(n) f(n) = g(n) Uniform Cost f(n) = h(n) Greedy Best-First f(n) = g(n) + h(n) A* ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 6 Greedy Best-First Search f(n) = h(n) Always expand the node closest to the goal and ignore path cost Complete only if m is finite Rarely true in practice Not optimal Can go down a long path of cheap actions Time complexity = O(b m ) Space complexity = O(b m ) Greedy Best-First Search Worst case: goal is last node of the tree Number of nodes generated: b nodes for each node of m levels (entire tree) Time and space complexity: all generated nodes O(b m ) ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 7 ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 8 2

3 A* Search f(n) = g(n) + h(n) Best-first search Complete Optimal, given admissible heuristic Never overestimates the cost to the goal Optimally efficient No other optimal algorithm will expand less nodes Time complexity = O(b C*/є ) Space complexity = O(b C*/є ) A* Search Worst case: heuristic is the trivial h(n) = 0 A* becomes Uniform Cost Search Goal has path cost C*, all other actions have minimum cost of є Depth explored before taking action C*: C*/є Number of generated nodes: O(b C*/є ) Space & time complexity: all generated nodes C* є є є є є є є є є є є є є є є ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 9 ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 10 A* Search Using a good heuristic can reduce time complexity Can go down to O(bm) However, space complexity will always be exponential A* runs out of memory before running out of time Iterative Deepening A* Search Like Iterative Deepening Search, but cut-off limit is f-value instead of depth Next iteration limit is the smallest f-value of any node that exceeded the cut-off of current iteration Properties Complete and optimal like A* Space complexity of depth-first search (because it s possible to delete nodes and paths from memory when we explore down to the cut-off limit) Performs poorly if small action cost (small step in each iteration) ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 11 ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 12 3

4 Simplified Memory-Bounded A* Uses all available memory When memory limit reached, delete worst leaf node (highest f-value) If equality, delete oldest leaf node SMA memory problem If the entire optimal path fills the memory and there is only one non-goal leaf node SMA cannot continue expanding Goal is not reachable Simplified Memory-Bounded A* Space complexity known and controlled by system designer Complete if shallowest goal depth less than memory size Shallowest goal is reachable Optimal if optimal goal is reachable ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 13 ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 14 Example: Greedy Search h(n) = straight-line distance Example: A* Search h(n) = straight-line distance ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 15 ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 16 4

5 Heuristic Function Properties Admissible Never overestimate the cost Consistency / Monotonicity h(n p ) h(n c ) + cost(n p,n c ) h(n p ) + g(n p ) h(n c ) + cost(n p,n c ) + g(n p ) h(n p ) + g(n p ) h(n c ) + g(n c ) f(n p ) f(n c ) f(n) never decreases as we get closer to the goal Domination h 1 (n) h 2 (n) for all n ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 17 Creating Heuristic Functions Found by relaxing the problem Straight-line distance to Bucharest Eliminate constraint of traveling on roads 8-puzzle Move each square that s out of place (7) Move by the number of squares to get to place (12) Move some tiles in place ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 18 Creating Heuristic Functions Creating Heuristic Functions Puzzle: move the red block through the exit Action: move a block, if the path is clear A block can be moved any distance along a clear path in one action Design a heuristic for this game Relax by assuming that the red block can get to the exit following the path that has the fewest blocks in the way Further relax by assuming that each block in the way requires only one action to be moved out of the way But blocks must be moved out of the way! If there are no blank spots out of the way then another block will need to be moved h(n) = 1 (cost of moving the red block to the exit) + 1 for each block in the way + 1 for each 2 outof-the-way blank spots needed State g(n) h(n) Cost ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 19 ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 20 5

6 Creating Heuristic Functions Path to the Goal State Sometimes the path to the goal is irrelevant Only the solution matters n-queen puzzle g(n) h(n) Cost ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 21 ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 22 Different Search Problem No longer minimizing path cost Improve quality of state Minimize state cost Maximize state payoff Iterative improvement Example: Iterative Improvement Minimize cost: number of attacks ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 23 ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 24 6

7 Example: Travelling Salesman Tree search method Start with home city Visit next city until optimal round trip Iterative improvement method Start with random round trip Swap cities until optimal round trip ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 25 Value Graphic Visualisation State value / state plot: state space State axis can be states or specific properties Neighbouring states on the axis are states linked by actions or with similar property values State values are computed using a heuristic and do not include path cost State ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 26 Value Graphic Visualisation State value / state plot: state space Global maximum Local maxima Plateau Global minimum Graphic Visualisation If state payoff is a complex mathematical function depending on one state property -1 x * x 2 + sin 2 (x)/x + (1000-x)*cos(5x)/5x x/10 State space: x œ [10, 80] Max: x = 74 payoff = Local minima State ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 27 ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 28 7

8 Graphic Visualisation More complex state spaces can have several dimensions Example: States are X-Y coordinates, state value is Z coordinate ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 29 Graphic Visualisation Each state is a point on the map Each state s value is the distance to the CN Tower Locations in water always have the worst value because we can t swim 2D state space X-Y coordinates of the agent Z coordinate for state value Red = minimum distance Blue = maximum distance ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 30 Hill Climbing (Gradient Descent) Simple but efficient local optimization strategy Always take the action that most improves the state Hill Climbing (Gradient Descent) Generate random initial state Each iteration Generate and evaluate neighbours at step size Move to neighbour with greatest increase/decrease (i.e. take one step) End when there are no better neighbours ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 31 ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 32 8

9 Example: Travelling to Toronto Trying to get to downtown Toronto Take steps toward the CN Tower ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 33 Hill Climbing (Gradient Descent) Advantages Fast No search tree Disadvantages Gets stuck in local optimum Does not allow worse moves Solution dependant on initial state Selecting step size Common improvements Random restarts Intelligently-chosen initial state Decreasing step size ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 34 Simulated Annealing Problem with hill climbing: local best move doesn t lead to optimal goal Solution: allow bad moves Simulated annealing is a popular way of doing that Stochastic search method Simulates annealing process in metallurgy Annealing Tempering technique in metallurgy Weakness and defects come from atoms of crystals freezing in the wrong place (local optimum) Heating to unstuck the atoms (escape local optimum) Slow cooling to allow atoms to get to better place (global optimum) ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 35 ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 36 9

10 Simulated Annealing Annealing Atoms moving towards minimum-energy location in crystal while avoiding bad position. Atoms are more likely to move out of a bad position if the metal s temperature is high. Simulated Annealing Agent modifying state towards state with global optimal value while avoiding local optimum. Agents are more likely to accept bad moves if the temperature control parameter has a high value. ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 37 Simulated Annealing Annealing The metal s temperature starts hot, then it cools off continuously over time until the metal is room temperature Simulated Annealing The temperature control parameter starts with a high value, then it decreases incrementally with each iteration of the search until it reaches a pre-set threshold. ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 38 Simulated Annealing Allow some bad moves Bad enough to get out of local optimum Not so bad as to get out of global optimum Probability of accepting bad moves given Badness of the move (i.e. variation in state value V) Temperature T P = e - V/T Simulated Annealing Generate random initial state and high temperature Each iteration Generate and evaluate a random neighbour If neighbour better than current state Accept Else (if neighbour worse than current state) Accept with probability e - V/T Reduce temperature End when temperature less than threshold ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 39 ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 40 10

11 Simulated Annealing Advantages Avoids local optima Very good at finding high-quality solutions Very good for hard problems with complex state value functions Disadvantage Can be very slow in practice Simulated Annealing Application Traveling-wave tube (TWT) Uses focused electron beam to amplify electromagnetic communication waves Produces high-power radio frequency (RF) signals Critical components in deep-space probes and communication satellites Power efficiency becomes a key issue TWT research group at NASA working for over 30 years on improving power efficiency ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 41 ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 42 Simulated Annealing Application Optimizing TWT efficiency Synchronize electron velocity and phase velocity of RF wave Using phase velocity tapper to control and decrease RF wave phase velocity Improving tapper design improves synchronization, improves efficiency of TWT Tapper with simulated annealing algorithm to optimize synchronization Doubled TWT efficiency More flexible then past tappers Maximize overall power efficiency Maximize efficiency over various bandwidth Maximize efficiency while minimize signal distortion Assumptions Goal-based agent Environment Fully observable Deterministic Sequential Static Discrete Single agent ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 43 ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 44 11

12 Assumptions Updated Utility-based agent Environment Fully observable Deterministic Sequential Static Discrete / Continuous Single agent ECE457 Applied Artificial Intelligence R. Khoury (2007) Page 45 12

Outline. Informed Search. Recall: Uninformed Search. An Idea. Heuristics Informed search techniques More on heuristics Iterative improvement

Outline. Informed Search. Recall: Uninformed Search. An Idea. Heuristics Informed search techniques More on heuristics Iterative improvement Outline Informed Search EE457 pplied rtificial Intelligence Spring 8 Lecture # Heuristics Informed search techniques More on heuristics Iterative improvement Russell & Norvig, chapter 4 Skip Genetic algorithms

More information

Informed Search. CS 486/686 University of Waterloo May 10. cs486/686 Lecture Slides 2005 (c) K. Larson and P. Poupart

Informed Search. CS 486/686 University of Waterloo May 10. cs486/686 Lecture Slides 2005 (c) K. Larson and P. Poupart Informed Search CS 486/686 University of Waterloo May 0 Outline Using knowledge Heuristics Best-first search Greedy best-first search A* search Other variations of A* Back to heuristics 2 Recall from last

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Information Systems and Machine Learning Lab (ISMLL) Tomáš Horváth 16 rd November, 2011 Informed Search and Exploration Example (again) Informed strategy we use a problem-specific

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Information Systems and Machine Learning Lab (ISMLL) Tomáš Horváth 10 rd November, 2010 Informed Search and Exploration Example (again) Informed strategy we use a problem-specific

More information

ARTIFICIAL INTELLIGENCE. Informed search

ARTIFICIAL INTELLIGENCE. Informed search INFOB2KI 2017-2018 Utrecht University The Netherlands ARTIFICIAL INTELLIGENCE Informed search Lecturer: Silja Renooij These slides are part of the INFOB2KI Course Notes available from www.cs.uu.nl/docs/vakken/b2ki/schema.html

More information

Informed search algorithms. Chapter 4

Informed search algorithms. Chapter 4 Informed search algorithms Chapter 4 Outline Best-first search Greedy best-first search A * search Heuristics Memory Bounded A* Search Best-first search Idea: use an evaluation function f(n) for each node

More information

Informed search algorithms. Chapter 4

Informed search algorithms. Chapter 4 Informed search algorithms Chapter 4 Material Chapter 4 Section 1 - Exclude memory-bounded heuristic search 3 Outline Best-first search Greedy best-first search A * search Heuristics Local search algorithms

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Dr Ahmed Rafat Abas Computer Science Dept, Faculty of Computers and Informatics, Zagazig University arabas@zu.edu.eg http://www.arsaliem.faculty.zu.edu.eg/ Informed search algorithms

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Informed Search and Exploration Chapter 4 (4.1 4.2) A General Search algorithm: Chapter 3: Search Strategies Task : Find a sequence of actions leading from the initial state to

More information

4 INFORMED SEARCH AND EXPLORATION. 4.1 Heuristic Search Strategies

4 INFORMED SEARCH AND EXPLORATION. 4.1 Heuristic Search Strategies 55 4 INFORMED SEARCH AND EXPLORATION We now consider informed search that uses problem-specific knowledge beyond the definition of the problem itself This information helps to find solutions more efficiently

More information

Informed Search Methods

Informed Search Methods Informed Search Methods How can we improve searching strategy by using intelligence? Map example: Heuristic: Expand those nodes closest in as the crow flies distance to goal 8-puzzle: Heuristic: Expand

More information

Dr. Mustafa Jarrar. Chapter 4 Informed Searching. Artificial Intelligence. Sina Institute, University of Birzeit

Dr. Mustafa Jarrar. Chapter 4 Informed Searching. Artificial Intelligence. Sina Institute, University of Birzeit Lecture Notes on Informed Searching University of Birzeit, Palestine 1 st Semester, 2014 Artificial Intelligence Chapter 4 Informed Searching Dr. Mustafa Jarrar Sina Institute, University of Birzeit mjarrar@birzeit.edu

More information

Informed search algorithms. (Based on slides by Oren Etzioni, Stuart Russell)

Informed search algorithms. (Based on slides by Oren Etzioni, Stuart Russell) Informed search algorithms (Based on slides by Oren Etzioni, Stuart Russell) The problem # Unique board configurations in search space 8-puzzle 9! = 362880 15-puzzle 16! = 20922789888000 10 13 24-puzzle

More information

Artificial Intelligence p.1/49. n-queens. Artificial Intelligence p.2/49. Initial state: the empty board or a board with n random

Artificial Intelligence p.1/49. n-queens. Artificial Intelligence p.2/49. Initial state: the empty board or a board with n random Example: n-queens Put n queens on an n n board with no two queens on the same row, column, or diagonal A search problem! State space: the board with 0 to n queens Initial state: the empty board or a board

More information

CS 380: Artificial Intelligence Lecture #4

CS 380: Artificial Intelligence Lecture #4 CS 380: Artificial Intelligence Lecture #4 William Regli Material Chapter 4 Section 1-3 1 Outline Best-first search Greedy best-first search A * search Heuristics Local search algorithms Hill-climbing

More information

TDDC17. Intuitions behind heuristic search. Recall Uniform-Cost Search. Best-First Search. f(n) =... + h(n) g(n) = cost of path from root node to n

TDDC17. Intuitions behind heuristic search. Recall Uniform-Cost Search. Best-First Search. f(n) =... + h(n) g(n) = cost of path from root node to n Intuitions behind heuristic search The separation property of GRAPH-SEARCH TDDC17 Seminar III Search II Informed or Heuristic Search Beyond Classical Search Find a heuristic measure h(n) which estimates

More information

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS Lecture 4, 4/11/2005 University of Washington, Department of Electrical Engineering Spring 2005 Instructor: Professor Jeff A. Bilmes Today: Informed search algorithms

More information

Searching. Assume goal- or utilitybased. Next task to achieve is to determine the best path to the goal

Searching. Assume goal- or utilitybased. Next task to achieve is to determine the best path to the goal Searching Assume goal- or utilitybased agents: state information ability to perform actions goals to achieve Next task to achieve is to determine the best path to the goal CSC384 Lecture Slides Steve Engels,

More information

Outline. Best-first search

Outline. Best-first search Outline Best-first search Greedy best-first search A* search Heuristics Local search algorithms Hill-climbing search Beam search Simulated annealing search Genetic algorithms Constraint Satisfaction Problems

More information

Introduction to Computer Science and Programming for Astronomers

Introduction to Computer Science and Programming for Astronomers Introduction to Computer Science and Programming for Astronomers Lecture 9. István Szapudi Institute for Astronomy University of Hawaii March 21, 2018 Outline Reminder 1 Reminder 2 3 Reminder We have demonstrated

More information

Outline. Best-first search

Outline. Best-first search Outline Best-first search Greedy best-first search A* search Heuristics Admissible Heuristics Graph Search Consistent Heuristics Local search algorithms Hill-climbing search Beam search Simulated annealing

More information

Lecture Plan. Best-first search Greedy search A* search Designing heuristics. Hill-climbing. 1 Informed search strategies. Informed strategies

Lecture Plan. Best-first search Greedy search A* search Designing heuristics. Hill-climbing. 1 Informed search strategies. Informed strategies Lecture Plan 1 Informed search strategies (KA AGH) 1 czerwca 2010 1 / 28 Blind vs. informed search strategies Blind search methods You already know them: BFS, DFS, UCS et al. They don t analyse the nodes

More information

Today s s lecture. Lecture 3: Search - 2. Problem Solving by Search. Agent vs. Conventional AI View. Victor R. Lesser. CMPSCI 683 Fall 2004

Today s s lecture. Lecture 3: Search - 2. Problem Solving by Search. Agent vs. Conventional AI View. Victor R. Lesser. CMPSCI 683 Fall 2004 Today s s lecture Search and Agents Material at the end of last lecture Lecture 3: Search - 2 Victor R. Lesser CMPSCI 683 Fall 2004 Continuation of Simple Search The use of background knowledge to accelerate

More information

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld )

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) Local Search and Optimization Chapter 4 Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) 1 2 Outline Local search techniques and optimization Hill-climbing

More information

Problem Solving and Search

Problem Solving and Search Artificial Intelligence Problem Solving and Search Dae-Won Kim School of Computer Science & Engineering Chung-Ang University Outline Problem-solving agents Problem types Problem formulation Example problems

More information

Ar#ficial)Intelligence!!

Ar#ficial)Intelligence!! Introduc*on! Ar#ficial)Intelligence!! Roman Barták Department of Theoretical Computer Science and Mathematical Logic Uninformed (blind) search algorithms can find an (optimal) solution to the problem,

More information

Informed Search Algorithms

Informed Search Algorithms Informed Search Algorithms CITS3001 Algorithms, Agents and Artificial Intelligence Tim French School of Computer Science and Software Engineering The University of Western Australia 2017, Semester 2 Introduction

More information

mywbut.com Informed Search Strategies-II

mywbut.com Informed Search Strategies-II Informed Search Strategies-II 1 3.3 Iterative-Deepening A* 3.3.1 IDA* Algorithm Iterative deepening A* or IDA* is similar to iterative-deepening depth-first, but with the following modifications: The depth

More information

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld )

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) Local Search and Optimization Chapter 4 Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) 1 2 Outline Local search techniques and optimization Hill-climbing

More information

TDDC17. Intuitions behind heuristic search. Best-First Search. Recall Uniform-Cost Search. f(n) =... + h(n) g(n) = cost of path from root node to n

TDDC17. Intuitions behind heuristic search. Best-First Search. Recall Uniform-Cost Search. f(n) =... + h(n) g(n) = cost of path from root node to n Intuitions behind heuristic search The separation property of GRAPH-SEARCH TDDC17 Seminar III Search II Informed or Heuristic Search Beyond Classical Search Find a heuristic measure h(n) which estimates

More information

Dr. Mustafa Jarrar. Chapter 4 Informed Searching. Sina Institute, University of Birzeit

Dr. Mustafa Jarrar. Chapter 4 Informed Searching. Sina Institute, University of Birzeit Lecture Notes, Advanced Artificial Intelligence (SCOM7341) Sina Institute, University of Birzeit 2 nd Semester, 2012 Advanced Artificial Intelligence (SCOM7341) Chapter 4 Informed Searching Dr. Mustafa

More information

Informed search algorithms. (Based on slides by Oren Etzioni, Stuart Russell)

Informed search algorithms. (Based on slides by Oren Etzioni, Stuart Russell) Informed search algorithms (Based on slides by Oren Etzioni, Stuart Russell) Outline Greedy best-first search A * search Heuristics Local search algorithms Hill-climbing search Simulated annealing search

More information

Advanced A* Improvements

Advanced A* Improvements Advanced A* Improvements 1 Iterative Deepening A* (IDA*) Idea: Reduce memory requirement of A* by applying cutoff on values of f Consistent heuristic function h Algorithm IDA*: 1. Initialize cutoff to

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Search Marc Toussaint University of Stuttgart Winter 2015/16 (slides based on Stuart Russell s AI course) Outline Problem formulation & examples Basic search algorithms 2/100 Example:

More information

Informed Search and Exploration

Informed Search and Exploration Artificial Intelligence Informed Search and Exploration Readings: Chapter 4 of Russell & Norvig. Best-First Search Idea: use a function f for each node n to estimate of desirability Strategy: Alwasy expand

More information

Informed search strategies (Section ) Source: Fotolia

Informed search strategies (Section ) Source: Fotolia Informed search strategies (Section 3.5-3.6) Source: Fotolia Review: Tree search Initialize the frontier using the starting state While the frontier is not empty Choose a frontier node to expand according

More information

Problem Solving & Heuristic Search

Problem Solving & Heuristic Search 190.08 Artificial 2016-Spring Problem Solving & Heuristic Search Byoung-Tak Zhang School of Computer Science and Engineering Seoul National University 190.08 Artificial (2016-Spring) http://www.cs.duke.edu/courses/fall08/cps270/

More information

Lecture 4: Search 3. Victor R. Lesser. CMPSCI 683 Fall 2010

Lecture 4: Search 3. Victor R. Lesser. CMPSCI 683 Fall 2010 Lecture 4: Search 3 Victor R. Lesser CMPSCI 683 Fall 2010 First Homework 1 st Programming Assignment 2 separate parts (homeworks) First part due on (9/27) at 5pm Second part due on 10/13 at 5pm Send homework

More information

DIT411/TIN175, Artificial Intelligence. Peter Ljunglöf. 23 January, 2018

DIT411/TIN175, Artificial Intelligence. Peter Ljunglöf. 23 January, 2018 DIT411/TIN175, Artificial Intelligence Chapters 3 4: More search algorithms CHAPTERS 3 4: MORE SEARCH ALGORITHMS DIT411/TIN175, Artificial Intelligence Peter Ljunglöf 23 January, 2018 1 TABLE OF CONTENTS

More information

Informed Search. Best-first search. Greedy best-first search. Intelligent Systems and HCI D7023E. Romania with step costs in km

Informed Search. Best-first search. Greedy best-first search. Intelligent Systems and HCI D7023E. Romania with step costs in km Informed Search Intelligent Systems and HCI D7023E Lecture 5: Informed Search (heuristics) Paweł Pietrzak [Sec 3.5-3.6,Ch.4] A search strategy which searches the most promising branches of the state-space

More information

Solving Problems: Intelligent Search

Solving Problems: Intelligent Search Solving Problems: Intelligent Search Instructor: B. John Oommen Chancellor s Professor Fellow: IEEE; Fellow: IAPR School of Computer Science, Carleton University, Canada The primary source of these notes

More information

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld )

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) Local Search and Optimization Chapter 4 Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) 1 Outline Local search techniques and optimization Hill-climbing

More information

Problem Solving: Informed Search

Problem Solving: Informed Search Problem Solving: Informed Search References Russell and Norvig, Artificial Intelligence: A modern approach, 2nd ed. Prentice Hall, 2003 (Chapters 1,2, and 4) Nilsson, Artificial intelligence: A New synthesis.

More information

2006/2007 Intelligent Systems 1. Intelligent Systems. Prof. dr. Paul De Bra Technische Universiteit Eindhoven

2006/2007 Intelligent Systems 1. Intelligent Systems. Prof. dr. Paul De Bra Technische Universiteit Eindhoven test gamma 2006/2007 Intelligent Systems 1 Intelligent Systems Prof. dr. Paul De Bra Technische Universiteit Eindhoven debra@win.tue.nl 2006/2007 Intelligent Systems 2 Informed search and exploration Best-first

More information

DFS. Depth-limited Search

DFS. Depth-limited Search DFS Completeness? No, fails in infinite depth spaces or spaces with loops Yes, assuming state space finite. Time complexity? O(b m ), terrible if m is much bigger than d. can do well if lots of goals Space

More information

Robot Programming with Lisp

Robot Programming with Lisp 6. Search Algorithms Gayane Kazhoyan (Stuart Russell, Peter Norvig) Institute for University of Bremen Contents Problem Definition Uninformed search strategies BFS Uniform-Cost DFS Depth-Limited Iterative

More information

Informed Search Algorithms. Chapter 4

Informed Search Algorithms. Chapter 4 Informed Search Algorithms Chapter 4 Outline Informed Search and Heuristic Functions For informed search, we use problem-specific knowledge to guide the search. Topics: Best-first search A search Heuristics

More information

Heuristic (Informed) Search

Heuristic (Informed) Search Heuristic (Informed) Search (Where we try to choose smartly) R&N: Chap., Sect..1 3 1 Search Algorithm #2 SEARCH#2 1. INSERT(initial-node,Open-List) 2. Repeat: a. If empty(open-list) then return failure

More information

Informed Search. CS 486/686: Introduction to Artificial Intelligence Fall 2013

Informed Search. CS 486/686: Introduction to Artificial Intelligence Fall 2013 Informed Search CS 486/686: Introduction to Artificial Intelligence Fall 2013 1 Outline Using knowledge Heuristics Bestfirst search Greedy bestfirst search A* search Variations of A* Back to heuristics

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence hapter 1 hapter 1 1 Iterative deepening search function Iterative-Deepening-Search( problem) returns a solution inputs: problem, a problem for depth 0 to do result Depth-Limited-Search(

More information

A.I.: Informed Search Algorithms. Chapter III: Part Deux

A.I.: Informed Search Algorithms. Chapter III: Part Deux A.I.: Informed Search Algorithms Chapter III: Part Deux Best-first search Greedy best-first search A * search Heuristics Outline Overview Informed Search: uses problem-specific knowledge. General approach:

More information

Lecture 4: Informed/Heuristic Search

Lecture 4: Informed/Heuristic Search Lecture 4: Informed/Heuristic Search Outline Limitations of uninformed search methods Informed (or heuristic) search uses problem-specific heuristics to improve efficiency Best-first A* RBFS SMA* Techniques

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Local Search Vibhav Gogate The University of Texas at Dallas Some material courtesy of Luke Zettlemoyer, Dan Klein, Dan Weld, Alex Ihler, Stuart Russell, Mausam Systematic Search:

More information

SRI VIDYA COLLEGE OF ENGINEERING & TECHNOLOGY REPRESENTATION OF KNOWLEDGE PART A

SRI VIDYA COLLEGE OF ENGINEERING & TECHNOLOGY REPRESENTATION OF KNOWLEDGE PART A UNIT II REPRESENTATION OF KNOWLEDGE PART A 1. What is informed search? One that uses problem specific knowledge beyond the definition of the problem itself and it can find solutions more efficiently than

More information

Downloaded from ioenotes.edu.np

Downloaded from ioenotes.edu.np Chapter- 3: Searching - Searching the process finding the required states or nodes. - Searching is to be performed through the state space. - Search process is carried out by constructing a search tree.

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence CS482, CS682, MW 1 2:15, SEM 201, MS 227 Prerequisites: 302, 365 Instructor: Sushil Louis, sushil@cse.unr.edu, http://www.cse.unr.edu/~sushil Informed Search Best First Search A*

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence CSC348 Unit 3: Problem Solving and Search Syedur Rahman Lecturer, CSE Department North South University syedur.rahman@wolfson.oxon.org Artificial Intelligence: Lecture Notes The

More information

Foundations of AI. 4. Informed Search Methods. Heuristics, Local Search Methods, Genetic Algorithms

Foundations of AI. 4. Informed Search Methods. Heuristics, Local Search Methods, Genetic Algorithms Foundations of AI 4. Informed Search Methods Heuristics, Local Search Methods, Genetic Algorithms Luc De Raedt and Wolfram Burgard and Bernhard Nebel Contents Best-First Search A* and IDA* Local Search

More information

Outline for today s lecture. Informed Search. Informed Search II. Review: Properties of greedy best-first search. Review: Greedy best-first search:

Outline for today s lecture. Informed Search. Informed Search II. Review: Properties of greedy best-first search. Review: Greedy best-first search: Outline for today s lecture Informed Search II Informed Search Optimal informed search: A* (AIMA 3.5.2) Creating good heuristic functions Hill Climbing 2 Review: Greedy best-first search: f(n): estimated

More information

Mustafa Jarrar: Lecture Notes on Artificial Intelligence Birzeit University, Chapter 3 Informed Searching. Mustafa Jarrar. University of Birzeit

Mustafa Jarrar: Lecture Notes on Artificial Intelligence Birzeit University, Chapter 3 Informed Searching. Mustafa Jarrar. University of Birzeit Mustafa Jarrar: Lecture Notes on Artificial Intelligence Birzeit University, 2018 Chapter 3 Informed Searching Mustafa Jarrar University of Birzeit Jarrar 2018 1 Watch this lecture and download the slides

More information

Search : Lecture 2. September 9, 2003

Search : Lecture 2. September 9, 2003 Search 6.825: Lecture 2 September 9, 2003 1 Problem-Solving Problems When your environment can be effectively modeled as having discrete states and actions deterministic, known world dynamics known initial

More information

Informed Search and Exploration

Informed Search and Exploration Informed Search and Exploration Chapter 4 (4.1-4.3) CS 2710 1 Introduction Ch.3 searches good building blocks for learning about search But vastly inefficient eg: Can we do better? Breadth Depth Uniform

More information

Wissensverarbeitung. - Search - Alexander Felfernig und Gerald Steinbauer Institut für Softwaretechnologie Inffeldgasse 16b/2 A-8010 Graz Austria

Wissensverarbeitung. - Search - Alexander Felfernig und Gerald Steinbauer Institut für Softwaretechnologie Inffeldgasse 16b/2 A-8010 Graz Austria - Search - Alexander Felfernig und Gerald Steinbauer Institut für Softwaretechnologie Inffeldgasse 16b/2 A-8010 Graz Austria 1 References Skriptum (TU Wien, Institut für Informationssysteme, Thomas Eiter

More information

3 SOLVING PROBLEMS BY SEARCHING

3 SOLVING PROBLEMS BY SEARCHING 48 3 SOLVING PROBLEMS BY SEARCHING A goal-based agent aims at solving problems by performing actions that lead to desirable states Let us first consider the uninformed situation in which the agent is not

More information

Foundations of AI. 4. Informed Search Methods. Heuristics, Local Search Methods, Genetic Algorithms. Wolfram Burgard & Bernhard Nebel

Foundations of AI. 4. Informed Search Methods. Heuristics, Local Search Methods, Genetic Algorithms. Wolfram Burgard & Bernhard Nebel Foundations of AI 4. Informed Search Methods Heuristics, Local Search Methods, Genetic Algorithms Wolfram Burgard & Bernhard Nebel Contents Best-First Search A* and IDA* Local Search Methods Genetic Algorithms

More information

Informed search algorithms

Informed search algorithms Informed search algorithms This lecture topic Chapter 3.5-3.7 Next lecture topic Chapter 4.1-4.2 (Please read lecture topic material before and after each lecture on that topic) Outline Review limitations

More information

Outline. Best-first search. Greedy best-first search A* search Heuristics Local search algorithms

Outline. Best-first search. Greedy best-first search A* search Heuristics Local search algorithms Outline Best-first search Greedy best-first search A* search Heuristics Local search algorithms Hill-climbing search Beam search Simulated annealing search Genetic algorithms Constraint Satisfaction Problems

More information

Solving Problems using Search

Solving Problems using Search Solving Problems using Search Artificial Intelligence @ Allegheny College Janyl Jumadinova September 11, 2018 Janyl Jumadinova Solving Problems using Search September 11, 2018 1 / 35 Example: Romania On

More information

CS 331: Artificial Intelligence Local Search 1. Tough real-world problems

CS 331: Artificial Intelligence Local Search 1. Tough real-world problems CS 331: Artificial Intelligence Local Search 1 1 Tough real-world problems Suppose you had to solve VLSI layout problems (minimize distance between components, unused space, etc.) Or schedule airlines

More information

Informed search algorithms

Informed search algorithms Artificial Intelligence Topic 4 Informed search algorithms Best-first search Greedy search A search Admissible heuristics Memory-bounded search IDA SMA Reading: Russell and Norvig, Chapter 4, Sections

More information

Artificial Intelligence. Informed search methods

Artificial Intelligence. Informed search methods Artificial Intelligence Informed search methods In which we see how information about the state space can prevent algorithms from blundering about in the dark. 2 Uninformed vs. Informed Search Uninformed

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Informed Search and Exploration Chapter 4 (4.3 4.6) Searching: So Far We ve discussed how to build goal-based and utility-based agents that search to solve problems We ve also presented

More information

CS 771 Artificial Intelligence. Informed Search

CS 771 Artificial Intelligence. Informed Search CS 771 Artificial Intelligence Informed Search Outline Review limitations of uninformed search methods Informed (or heuristic) search Uses problem-specific heuristics to improve efficiency Best-first,

More information

Informed search methods

Informed search methods Informed search methods Tuomas Sandholm Computer Science Department Carnegie Mellon University Read Section 3.5-3.7 of Russell and Norvig Informed Search Methods Heuristic = to find, to discover Heuristic

More information

Informed Search and Exploration for Agents

Informed Search and Exploration for Agents Informed Search and Exploration for Agents R&N: 3.5, 3.6 Michael Rovatsos University of Edinburgh 29 th January 2015 Outline Best-first search Greedy best-first search A * search Heuristics Admissibility

More information

TDT4136 Logic and Reasoning Systems

TDT4136 Logic and Reasoning Systems TDT4136 Logic and Reasoning Systems Chapter 3 & 4.1 - Informed Search and Exploration Lester Solbakken solbakke@idi.ntnu.no Norwegian University of Science and Technology 18.10.2011 1 Lester Solbakken

More information

Informed/Heuristic Search

Informed/Heuristic Search Informed/Heuristic Search Outline Limitations of uninformed search methods Informed (or heuristic) search uses problem-specific heuristics to improve efficiency Best-first A* Techniques for generating

More information

COMP9414/ 9814/ 3411: Artificial Intelligence. 5. Informed Search. Russell & Norvig, Chapter 3. UNSW c Alan Blair,

COMP9414/ 9814/ 3411: Artificial Intelligence. 5. Informed Search. Russell & Norvig, Chapter 3. UNSW c Alan Blair, COMP9414/ 9814/ 3411: Artificial Intelligence 5. Informed Search Russell & Norvig, Chapter 3. COMP9414/9814/3411 15s1 Informed Search 1 Search Strategies General Search algorithm: add initial state to

More information

Informed search methods

Informed search methods CS 2710 Foundations of AI Lecture 5 Informed search methods Milos Hauskrecht milos@pitt.edu 5329 Sennott Square Announcements Homework assignment 2 is out Due on Tuesday, September 19, 2017 before the

More information

Informed Search and Exploration

Informed Search and Exploration Informed Search and Exploration Berlin Chen 2005 Reference: 1. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, Chapter 4 2. S. Russell s teaching materials AI - Berlin Chen 1 Introduction

More information

3.6.2 Generating admissible heuristics from relaxed problems

3.6.2 Generating admissible heuristics from relaxed problems 3.6.2 Generating admissible heuristics from relaxed problems To come up with heuristic functions one can study relaxed problems from which some restrictions of the original problem have been removed The

More information

ARTIFICIAL INTELLIGENCE LECTURE 3. Ph. D. Lect. Horia Popa Andreescu rd year, semester 5

ARTIFICIAL INTELLIGENCE LECTURE 3. Ph. D. Lect. Horia Popa Andreescu rd year, semester 5 ARTIFICIAL INTELLIGENCE LECTURE 3 Ph. D. Lect. Horia Popa Andreescu 2012-2013 3 rd year, semester 5 The slides for this lecture are based (partially) on chapter 4 of the Stuart Russel Lecture Notes [R,

More information

Informed Search and Exploration

Informed Search and Exploration Ch. 04 p.1/39 Informed Search and Exploration Chapter 4 Ch. 04 p.2/39 Outline Best-first search A search Heuristics IDA search Hill-climbing Simulated annealing Ch. 04 p.3/39 Review: Tree search function

More information

Informed Search. Dr. Richard J. Povinelli. Copyright Richard J. Povinelli Page 1

Informed Search. Dr. Richard J. Povinelli. Copyright Richard J. Povinelli Page 1 Informed Search Dr. Richard J. Povinelli Copyright Richard J. Povinelli Page 1 rev 1.1, 9/25/2001 Objectives You should be able to explain and contrast uniformed and informed searches. be able to compare,

More information

Heuristic Search. Heuristic Search. Heuristic Search. CSE 3401: Intro to AI & LP Informed Search

Heuristic Search. Heuristic Search. Heuristic Search. CSE 3401: Intro to AI & LP Informed Search CSE 3401: Intro to AI & LP Informed Search Heuristic Search. Required Readings: Chapter 3, Sections 5 and 6, and Chapter 4, Section 1. In uninformed search, we don t try to evaluate which of the nodes

More information

Chapter4. Tree Search (Reviewed, Fig. 3.9) Best-First Search. Search Strategies. Best-First Search (cont.-2) Best-First Search (cont.

Chapter4. Tree Search (Reviewed, Fig. 3.9) Best-First Search. Search Strategies. Best-First Search (cont.-2) Best-First Search (cont. Tree Search (Reviewed, Fig. 3.9) Chapter4 Informed Search and Exploration 20070322 chap4 1 20070322 chap4 2 Search Strategies A search strategy is defined by picking the order of node expansion Uninformed

More information

Lecture 9. Heuristic search, continued. CS-424 Gregory Dudek

Lecture 9. Heuristic search, continued. CS-424 Gregory Dudek Lecture 9 Heuristic search, continued A* revisited Reminder: with A* we want to find the best-cost (C ) path to the goal first. To do this, all we have to do is make sure our cost estimates are less than

More information

Set 2: State-spaces and Uninformed Search. ICS 271 Fall 2015 Kalev Kask

Set 2: State-spaces and Uninformed Search. ICS 271 Fall 2015 Kalev Kask Set 2: State-spaces and Uninformed Search ICS 271 Fall 2015 Kalev Kask You need to know State-space based problem formulation State space (graph) Search space Nodes vs. states Tree search vs graph search

More information

Expert Systems (Graz) Heuristic Search (Klagenfurt) - Search -

Expert Systems (Graz) Heuristic Search (Klagenfurt) - Search - Expert Systems (Graz) Heuristic Search (Klagenfurt) - Search - Institut für Softwaretechnologie Inffeldgasse 16b/2 A-8010 Graz Austria 1 References Skriptum (TU Wien, Institut für Informationssysteme,

More information

COMP9414: Artificial Intelligence Informed Search

COMP9414: Artificial Intelligence Informed Search COMP9, Wednesday March, 00 Informed Search COMP9: Artificial Intelligence Informed Search Wayne Wobcke Room J- wobcke@cse.unsw.edu.au Based on slides by Maurice Pagnucco Overview Heuristics Informed Search

More information

Chapters 3-5 Problem Solving using Search

Chapters 3-5 Problem Solving using Search CSEP 573 Chapters 3-5 Problem Solving using Search First, they do an on-line search CSE AI Faculty Example: The 8-puzzle Example: The 8-puzzle 1 2 3 8 4 7 6 5 1 2 3 4 5 6 7 8 2 Example: Route Planning

More information

Review Search. This material: Chapter 1 4 (3 rd ed.) Read Chapter 18 (Learning from Examples) for next week

Review Search. This material: Chapter 1 4 (3 rd ed.) Read Chapter 18 (Learning from Examples) for next week Review Search This material: Chapter 1 4 (3 rd ed.) Read Chapter 13 (Quantifying Uncertainty) for Thursday Read Chapter 18 (Learning from Examples) for next week Search: complete architecture for intelligence?

More information

S A E RC R H C I H NG N G IN N S T S A T T A E E G R G A R PH P S

S A E RC R H C I H NG N G IN N S T S A T T A E E G R G A R PH P S LECTURE 2 SEARCHING IN STATE GRAPHS Introduction Idea: Problem Solving as Search Basic formalism as State-Space Graph Graph explored by Tree Search Different algorithms to explore the graph Slides mainly

More information

Introduction to Artificial Intelligence 2 nd semester 2016/2017. Chapter 4: Beyond Classical Search

Introduction to Artificial Intelligence 2 nd semester 2016/2017. Chapter 4: Beyond Classical Search Introduction to Artificial Intelligence 2 nd semester 2016/2017 Chapter 4: Beyond Classical Search Mohamed B. Abubaker Palestine Technical College Deir El-Balah 1 Outlines local search algorithms and optimization

More information

Informed Search A* Algorithm

Informed Search A* Algorithm Informed Search A* Algorithm CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2018 Soleymani Artificial Intelligence: A Modern Approach, Chapter 3 Most slides have

More information

Downloded from: CSITauthority.blogspot.com

Downloded from: CSITauthority.blogspot.com [Unit : Searching] (CSC 355) Central Department of Computer Science & Information Technology Tribhuvan University 1 Searching search problem Figure below contains a representation of a map. The nodes represent

More information

CS 331: Artificial Intelligence Informed Search. Informed Search

CS 331: Artificial Intelligence Informed Search. Informed Search CS 331: Artificial Intelligence Informed Search 1 Informed Search How can we make search smarter? Use problem-specific knowledge beyond the definition of the problem itself Specifically, incorporate knowledge

More information

Informed Search CS457 David Kauchak Fall 2011

Informed Search CS457 David Kauchak Fall 2011 Admin Informed Search CS57 David Kauchak Fall 011 Some material used from : Sara Owsley Sood and others Q3 mean: 6. median: 7 Final projects proposals looked pretty good start working plan out exactly

More information

CS 331: Artificial Intelligence Informed Search. Informed Search

CS 331: Artificial Intelligence Informed Search. Informed Search CS 331: Artificial Intelligence Informed Search 1 Informed Search How can we make search smarter? Use problem-specific knowledge beyond the definition of the problem itself Specifically, incorporate knowledge

More information

ITCS 6150 Intelligent Systems. Lecture 6 Informed Searches

ITCS 6150 Intelligent Systems. Lecture 6 Informed Searches ITCS 6150 Intelligent Systems Lecture 6 Informed Searches Compare two heuristics Compare these two heuristics h 2 is always better than h 1 for any node, n, h 2 (n) >= h 1 (n) h 2 dominates h 1 Recall

More information