Speaker Diarization System Based on GMM and BIC

Size: px
Start display at page:

Download "Speaker Diarization System Based on GMM and BIC"

Transcription

1 Speaer Diarization System Based on GMM and BIC Tantan Liu 1, Xiaoxing Liu 1, Yonghong Yan 1 1 ThinIT Speech Lab, Institute of Acoustics, Chinese Academy of Sciences Beijing {tliu, xliu,yyan}@hccl.ioa.ac.cn Abstract. This paper presents an approach for speaer diarization based on a novel combination of Gaussian mixture model (GMM) and standard Bayesian information criterion (BIC). Gaussian mixture model provides a good description of feature vector distribution and BIC enables a proper merging and stopping criterion. Our system combines the advantage of these two method and yields favorable performance. Experiments carried out on mandarin broadcast news data demonstrate the advantage of the proposed approach, which shows better performance than the approach only based on GMM clustering. Keywords: speaer diarization, clustering, GMM, BIC. 1 Introduction Speaer diarization is the process of detecting the turns in speech because of the changing of speaer and clustering the speech from the same speaer together, and thus provides useful information for the structuring and indexing of the audio document. By separating the input speech according to speaer identity, diarization system could produce speaer-homogeneous speech clusters for more accurate speaer model for speaer recognition tas in telephone conversations. In contrast to speech tracing tas, which has already got the information of speaers, there is no training data for speaers in speaer diarization, and the number of speaers in the input speech is unnown in advance neither. There are many approaches for speaer diarization which are mainly different in the choice of the inter-cluster distance and the stopping criteria. In [1], adapted Gaussian mixture model (GMM) is used to model speech segments and computes the inter-cluster distance based on the parameters of GMMs, and the distance threshold also acts as the stopping criterion. In [], Bayesian information criterion is used both for the inter-cluster distance and stopping criterion. The cross log-lielihood ratio is proposed in [3] and generalized lielihood ratio (GLR) is proposed in [4] as the intercluster distance. A set of anchor models are used in [5] to map segments into a vector set, and Euclidean distances and an ad hoc occupancy stopping criterion are applied. We propose an approach using a bottom-up clustering scheme integrating the adapted Gaussian mixture model and Bayesian information criterion, which could both have a good description of the feature vector distribution and provide a reliable stopping criterion. This system use a novel grouping criterion and stopping criterion

2 based on inter-distance derived from adapted Gaussian mixture model and Bayesian information criterion. We compared the performance of the proposed method with that of GMM parameter distance based approach. The remainder of this paper is organized as follows: Section describes the principle of adapted Gaussian mixture model. Section 3 describes the principle of Bayesian information criterion. Section 4 describes our system in detail and the approach of integrating the former approaches. The experimental results are presented in section 5 followed by some conclusions. Clustering based on adapted Gaussian models As in [1], input speech is chopped into small segments in the hope that each segment contains only one speaer. Initially, each segment is a cluster and is modeled by Gaussian mixture models. A universal bacground Gaussian mixture model (UBM) is trained using the whole input speech, and then cluster-dependent Gaussian mixture model which is adapted from the universal bacground Gaussian mixture model is obtained for each cluster..1 Inter-distance based on adapted Gaussian mixture models The probability density function of a K-component Gaussian mixture model for a random variable x is defined as: K P( x Λ) = ϖ b ( x m, S ) (1) = 1 Where b ( ) is Gaussian density function, and Λ = { ϖ, m, S ) is the set of parameters, ϖ is the weight of each Gaussian mixture model with the K constraint ϖ = 1. = 1 The universal bacground Gaussian mixture model is trained based on expectation maximum algorithm (EM), and the cluster-dependent Gaussian mixture model is adapted [6] from UBM model based on maximum a posteriori algorithm(map). For the use of computing inter-distance, only the mean m is adapted, and the weight ϖ i and variance σ i are left unchanged. The distance between two GMM models is: K D ( m, d m, d ) D( P, P) = ϖ σ = 1 d = 1, d i ()

3 . Clustering procedure During the clustering procedure, clusters with the minimum distance are grouped as a new cluster and a new Gaussian mixture model is estimated for the new cluster. When the minimum distance is above the threshold, the clustering procedure is stopped. 3 Bayesian information criterion At the beginning of clustering, the short duration segments may not be able to support the large set of parameters of Gaussian mixture model, and thus the clusters with the minimum inter-cluster distance may not really come from the same speaer. In addition, the optimal threshold varies from one input speech to another. To solve this problem, we use Bayesian information criterion [] as a merging and stopping criterion in the clustering step. 3.1 The principle of Bayesian information criterion Generally, let X = { xi, i = 1,... N} be the feature vectors of input speech; let M be the candidates of desired parametric models. The BIC criterion is defined as: # M BIC( M ) = ln L( X, M ) λ log N (3) Where L ( X, M ) is the lielihood of input speech given the model of M, and # M is the number of parameters in the model M, N is the sample size of input speech. 3. Merging criterion Assuming two segments are modeled by Gaussian model N ( μ 1, Σ1) and N ( μ, Σ ) separately, and the sample size of these two segments are N and 1 N. These two segments are modeled by a Gaussian model N ( μ, Σ) and the sample size is N 1 + N. The increasing of BIC value is: Δ BIC = ( N1 + N ) log Σ N1 log Σ1 N log Σ λp (4) Where λ is the penalty weight and the penalty P is: 1 1 P = ( d + d ( d + 1)) log( N ) (5) Where d is the feature vector dimension, and N = N 1 + N is referred as a local N BIC penalty, while in general the size of the whole set of cluster, N = = 1 N is

4 referred as a global BIC penalty. According to [3], the local BIC penalty seems to be a better merging criterion. If the increasing of BIC in the equation of (4) is negative, the two segments are from the same speaer and should be merged. 4 Clustering based on the combination of GMM and BIC Our system, shown in figure 1, is based on the combination of Gaussian model mixture and Bayesian information criterion. Input speech Chop into small segments gender classification Train a small GMM for each segment GMM reestimation Yes Merge clusters with the minimum distance and delta BIC above threshold Positive Delta BIC? No No Less clusters? Yes Train a large GMM for each cluster cluster recombination Re-classification Output diarization Fig. 1. Diarization system based on GMM and delta BIC

5 4.1 Segmentation The aim of this step is to detect the liely changing points in input speech [7]. A pair of sliding windows is applied to the audio feature vector stream extracted from input speech and the feature vectors within each window are modeled by two separate single Gaussian models. The distance of Gaussian models is calculated by Bhattachayya distance. The points with local maximum distance are detected as a liely changing point in the input speech. The input speech is segmented into small acoustically homogeneous segments by the liely changing points. 4. Gender classification Classification is done using maximum lielihood classification with GMMs for male, female, noise and music. The GMMs, each with 64 Gaussians, were trained on about 1 hour of acoustic data from CCTV broadcast News. 4.3 Clustering In the clustering process, each cluster is modeled by a GMM adapted from UBM as described in Section. At each iteration, the clusters with the minimum inter-cluster distance as well as the negative delta BIC are merged. Here the minimum inter-cluster distance is the smallest of inter-cluster distances with negative delta BIC as well, while the inter-cluster distances with positive delta BIC are not included. If the chosen minimum inter-cluster distance is above the threshold or all delta BIC values are positive, the clustering process is stopped. The threshold is determined on the development data and used on test set to mae sure the size of clusters.is large enough to support the large GMM model. 4.4 Re-clustering At the beginning of clustering process, GMM used to model clusters are trained by short duration segments with a limited set of parameter per cluster: a GMM with 3 diagonal components. With the increasing of clusters in the process, a more complex GMM is needed. Furthermore, the former clustering procedure tends to split a speaer s speech with different bacground conditions, thus cepstral mean normalization is used to mitigate the effects of bacground. Here we use a 18 GMM for each cluster, the clustering and stopping criterion are the same as in 4.3. While the stopping threshold is optimized on the development data and used on test set to determine the expected number of speaers in input speech. 4.5 Re-classification In the last step of this system, each speech segments is reclassified using maximum lielihood classification with the final Gaussian mixture models for each cluster.

6 5 Experimental Results The data for development and evaluation were drawn from mandarin broadcast news. Each set contains a total of six broadcasts corresponding to 1hour and 30 minutes of CCTV broadcast News and 1 hour of SiChuan Television (SCTV) broadcast News. 5.1 Error Measure Diarization performance is evaluated according to the performance measures defined by NIST for Rich Transcription 003 evaluation [8]. The output of a diarization system is a set of hypothesized speaers with the beginning and end times of the speaer s speech. An optimal mapping of the reference speaers to the hypothesis speaers is performed to maximize the overlap of the reference and mapped hypothesis speaers. 5. Results Table 1 shows the results of the two systems on the development set. The first column shows error rates based on adapted GMM distance, while the second column shows the error rates of our system. From the table, we can see that the combination of GMM and delta BIC yield significant improvements over the system only based on GMM: 7.% compared to 14.0%. Furthermore, the table also demonstrates that for the system only based on GMM, it is difficult to get a global threshold for all the input speech. As in the table, with the threshold we choose in the system, some speech has a low error rate, while some speech has a rather high error rate. With the combination of BIC criterion, the system could better determine to stop the agglomerative clustering properly. Table 1. Diarization error rates for each broadcasts on the development set achieved by the baseline system and proposed system CCTV1 CCTV CCTV3 SCTV1 SCTV SCTV3 All GMM GMM&BIC Table. Diarization error rates for each broadcasts on the evaluation set achieved by the baseline system and proposed system CCTV1 CCTV CCTV3 SCTV1 SCTV SCTV3 All GMM GMM&BIC Table shows the results of the two systems on the evaluation set. As on the development set, our system exhibits better performance than the system based on

7 GMM clustering: 1.0% compared to 19.8%. However, in the speech of CCTV, the GMM clustering performance shows better performance. This is because that the stopping criterion of our system is partly based on the minimum inter-cluster distance and the global threshold is also needed. Unfortunately, the global threshold we choose does not suit this speech well, causing the high error rate. 6 Conclusions We proposed an approach based on a novel combination of BIC criterion and adapted GMM clustering. This approach combines the advantage of these two methods with a stopping criterion applicable to general case and a low computational cost. The method was evaluated on a mandarin broadcast news corpus and the results show the advantage of the proposed algorithm. In the future, we will focus on integrating speech recognition information in our system to train more accurate model for speech segments, and try other inter-cluster distances, such as GLR and cross cluster distance, combined with the BIC criterion. Acnowledgments. This wor is (partly) supported by Chinese 973 program (004CB318106), National Natural Science Foundation of China ( , ), and Beijing Municipal Science & Technology Commission (Z ) References 1. Ben, M. and Betser, M. and Bimbot, F. and Gravier, G., "Speaer Diarization using Bottomup clustering based on Parameter-derived Distance between adapted GMMs", Proceedings of the International Conference on Spoen Language Processing, 004. S.S Chen and P.S. Gopalarishnan, Speaer, Environment and Channel Change Detection and Clustring via Bayesian Information Criterion, Proceedings of DARPA Broadcast News Transcription and Understanding Worshop Landsdowne, VA, Feb Barras, C., Zhu, X., Meignier, S., Gauvain, JL Claude Barras, Xuan Zhu, Sylvain Meignier, and Jean-Luc Gauvain. Improving Speaer Diarization Proc. DARPA RT04, H. Gish, M. Siu and R. Rohlice", Segregation of Speaers for Speech Recognition and Speaer Identification'', Proc. International Conference on Acoustics, Speech and Signal Processing, volume, pages , D. A. Reynolds and P. Torres-Carrasquillo, The MIT Lincoln Laboratory RT-04F Diarization Systems: Applications to Broadcast Audio and Telephone Conversations, RT- 04F Worshop, Nov D. Reynolds, T. Quatieri, and R. Dunn, Speaer verification using adapted Gaussian mixture models, Digital Signal Processing, vol. 10, no. 1 3, Ran Xu, Jielin Pan, Yonghong Yan, Audio Segmentation Method Via Metric-based Bayesian Information Criterion, the 8th National Conference on Man-Machine Speech Communication, NIST, Rich transcription spring 03 evaluation plan,

A ROBUST SPEAKER CLUSTERING ALGORITHM

A ROBUST SPEAKER CLUSTERING ALGORITHM A ROBUST SPEAKER CLUSTERING ALGORITHM J. Ajmera IDIAP P.O. Box 592 CH-1920 Martigny, Switzerland jitendra@idiap.ch C. Wooters ICSI 1947 Center St., Suite 600 Berkeley, CA 94704, USA wooters@icsi.berkeley.edu

More information

Client Dependent GMM-SVM Models for Speaker Verification

Client Dependent GMM-SVM Models for Speaker Verification Client Dependent GMM-SVM Models for Speaker Verification Quan Le, Samy Bengio IDIAP, P.O. Box 592, CH-1920 Martigny, Switzerland {quan,bengio}@idiap.ch Abstract. Generative Gaussian Mixture Models (GMMs)

More information

A Hybrid Approach to News Video Classification with Multi-modal Features

A Hybrid Approach to News Video Classification with Multi-modal Features A Hybrid Approach to News Video Classification with Multi-modal Features Peng Wang, Rui Cai and Shi-Qiang Yang Department of Computer Science and Technology, Tsinghua University, Beijing 00084, China Email:

More information

Speaker Verification with Adaptive Spectral Subband Centroids

Speaker Verification with Adaptive Spectral Subband Centroids Speaker Verification with Adaptive Spectral Subband Centroids Tomi Kinnunen 1, Bingjun Zhang 2, Jia Zhu 2, and Ye Wang 2 1 Speech and Dialogue Processing Lab Institution for Infocomm Research (I 2 R) 21

More information

Scott Shaobing Chen & P.S. Gopalakrishnan. IBM T.J. Watson Research Center. as follows:

Scott Shaobing Chen & P.S. Gopalakrishnan. IBM T.J. Watson Research Center.   as follows: SPEAKER, ENVIRONMENT AND CHANNEL CHANGE DETECTION AND CLUSTERING VIA THE BAYESIAN INFORMATION CRITERION Scott Shaobing Chen & P.S. Gopalakrishnan IBM T.J. Watson Research Center email: schen@watson.ibm.com

More information

GYROPHONE RECOGNIZING SPEECH FROM GYROSCOPE SIGNALS. Yan Michalevsky (1), Gabi Nakibly (2) and Dan Boneh (1)

GYROPHONE RECOGNIZING SPEECH FROM GYROSCOPE SIGNALS. Yan Michalevsky (1), Gabi Nakibly (2) and Dan Boneh (1) GYROPHONE RECOGNIZING SPEECH FROM GYROSCOPE SIGNALS Yan Michalevsky (1), Gabi Nakibly (2) and Dan Boneh (1) (1) Stanford University (2) National Research and Simulation Center, Rafael Ltd. 0 MICROPHONE

More information

The Approach of Mean Shift based Cosine Dissimilarity for Multi-Recording Speaker Clustering

The Approach of Mean Shift based Cosine Dissimilarity for Multi-Recording Speaker Clustering The Approach of Mean Shift based Cosine Dissimilarity for Multi-Recording Speaker Clustering 1 D. Jareena Begum, 2 K Rajendra Prasad, 3 M Suleman Basha 1 M.Tech in SE, RGMCET, Nandyal 2 Assoc Prof, Dept

More information

Detector. Flash. Detector

Detector. Flash. Detector CLIPS at TRECvid: Shot Boundary Detection and Feature Detection Georges M. Quénot, Daniel Moraru, and Laurent Besacier CLIPS-IMAG, BP53, 38041 Grenoble Cedex 9, France Georges.Quenot@imag.fr Abstract This

More information

Part I. Hierarchical clustering. Hierarchical Clustering. Hierarchical clustering. Produces a set of nested clusters organized as a

Part I. Hierarchical clustering. Hierarchical Clustering. Hierarchical clustering. Produces a set of nested clusters organized as a Week 9 Based in part on slides from textbook, slides of Susan Holmes Part I December 2, 2012 Hierarchical Clustering 1 / 1 Produces a set of nested clusters organized as a Hierarchical hierarchical clustering

More information

Note Set 4: Finite Mixture Models and the EM Algorithm

Note Set 4: Finite Mixture Models and the EM Algorithm Note Set 4: Finite Mixture Models and the EM Algorithm Padhraic Smyth, Department of Computer Science University of California, Irvine Finite Mixture Models A finite mixture model with K components, for

More information

Story Unit Segmentation with Friendly Acoustic Perception *

Story Unit Segmentation with Friendly Acoustic Perception * Story Unit Segmentation with Friendly Acoustic Perception * Longchuan Yan 1,3, Jun Du 2, Qingming Huang 3, and Shuqiang Jiang 1 1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing,

More information

Machine Learning. Unsupervised Learning. Manfred Huber

Machine Learning. Unsupervised Learning. Manfred Huber Machine Learning Unsupervised Learning Manfred Huber 2015 1 Unsupervised Learning In supervised learning the training data provides desired target output for learning In unsupervised learning the training

More information

Image Denoising AGAIN!?

Image Denoising AGAIN!? 1 Image Denoising AGAIN!? 2 A Typical Imaging Pipeline 2 Sources of Noise (1) Shot Noise - Result of random photon arrival - Poisson distributed - Serious in low-light condition - Not so bad under good

More information

Latent Topic Model Based on Gaussian-LDA for Audio Retrieval

Latent Topic Model Based on Gaussian-LDA for Audio Retrieval Latent Topic Model Based on Gaussian-LDA for Audio Retrieval Pengfei Hu, Wenju Liu, Wei Jiang, and Zhanlei Yang National Laboratory of Pattern Recognition (NLPR), Institute of Automation, Chinese Academy

More information

Graph Matching Iris Image Blocks with Local Binary Pattern

Graph Matching Iris Image Blocks with Local Binary Pattern Graph Matching Iris Image Blocs with Local Binary Pattern Zhenan Sun, Tieniu Tan, and Xianchao Qiu Center for Biometrics and Security Research, National Laboratory of Pattern Recognition, Institute of

More information

Multifactor Fusion for Audio-Visual Speaker Recognition

Multifactor Fusion for Audio-Visual Speaker Recognition Proceedings of the 7th WSEAS International Conference on Signal, Speech and Image Processing, Beijing, China, September 15-17, 2007 70 Multifactor Fusion for Audio-Visual Speaker Recognition GIRIJA CHETTY

More information

Clustering CS 550: Machine Learning

Clustering CS 550: Machine Learning Clustering CS 550: Machine Learning This slide set mainly uses the slides given in the following links: http://www-users.cs.umn.edu/~kumar/dmbook/ch8.pdf http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/chap8_basic_cluster_analysis.pdf

More information

EM Algorithm with Split and Merge in Trajectory Clustering for Automatic Speech Recognition

EM Algorithm with Split and Merge in Trajectory Clustering for Automatic Speech Recognition EM Algorithm with Split and Merge in Trajectory Clustering for Automatic Speech Recognition Yan Han and Lou Boves Department of Language and Speech, Radboud University Nijmegen, The Netherlands {Y.Han,

More information

COMP5318 Knowledge Management & Data Mining Assignment 1

COMP5318 Knowledge Management & Data Mining Assignment 1 COMP538 Knowledge Management & Data Mining Assignment Enoch Lau SID 20045765 7 May 2007 Abstract 5.5 Scalability............... 5 Clustering is a fundamental task in data mining that aims to place similar

More information

Motivation. Technical Background

Motivation. Technical Background Handling Outliers through Agglomerative Clustering with Full Model Maximum Likelihood Estimation, with Application to Flow Cytometry Mark Gordon, Justin Li, Kevin Matzen, Bryce Wiedenbeck Motivation Clustering

More information

Optimization of Observation Membership Function By Particle Swarm Method for Enhancing Performances of Speaker Identification

Optimization of Observation Membership Function By Particle Swarm Method for Enhancing Performances of Speaker Identification Proceedings of the 6th WSEAS International Conference on SIGNAL PROCESSING, Dallas, Texas, USA, March 22-24, 2007 52 Optimization of Observation Membership Function By Particle Swarm Method for Enhancing

More information

IMPROVED SPEAKER RECOGNITION USING DCT COEFFICIENTS AS FEATURES. Mitchell McLaren, Yun Lei

IMPROVED SPEAKER RECOGNITION USING DCT COEFFICIENTS AS FEATURES. Mitchell McLaren, Yun Lei IMPROVED SPEAKER RECOGNITION USING DCT COEFFICIENTS AS FEATURES Mitchell McLaren, Yun Lei Speech Technology and Research Laboratory, SRI International, California, USA {mitch,yunlei}@speech.sri.com ABSTRACT

More information

Improving Speaker Verification Performance in Presence of Spoofing Attacks Using Out-of-Domain Spoofed Data

Improving Speaker Verification Performance in Presence of Spoofing Attacks Using Out-of-Domain Spoofed Data INTERSPEECH 17 August 24, 17, Stockholm, Sweden Improving Speaker Verification Performance in Presence of Spoofing Attacks Using Out-of-Domain Spoofed Data Achintya Kr. Sarkar 1, Md. Sahidullah 2, Zheng-Hua

More information

10-701/15-781, Fall 2006, Final

10-701/15-781, Fall 2006, Final -7/-78, Fall 6, Final Dec, :pm-8:pm There are 9 questions in this exam ( pages including this cover sheet). If you need more room to work out your answer to a question, use the back of the page and clearly

More information

COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning

COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning Associate Instructor: Herke van Hoof (herke.vanhoof@mail.mcgill.ca) Slides mostly by: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp551

More information

Mixture Models and EM

Mixture Models and EM Table of Content Chapter 9 Mixture Models and EM -means Clustering Gaussian Mixture Models (GMM) Expectation Maximiation (EM) for Mixture Parameter Estimation Introduction Mixture models allows Complex

More information

Fall 09, Homework 5

Fall 09, Homework 5 5-38 Fall 09, Homework 5 Due: Wednesday, November 8th, beginning of the class You can work in a group of up to two people. This group does not need to be the same group as for the other homeworks. You

More information

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition Pattern Recognition Kjell Elenius Speech, Music and Hearing KTH March 29, 2007 Speech recognition 2007 1 Ch 4. Pattern Recognition 1(3) Bayes Decision Theory Minimum-Error-Rate Decision Rules Discriminant

More information

Confidence Measures: how much we can trust our speech recognizers

Confidence Measures: how much we can trust our speech recognizers Confidence Measures: how much we can trust our speech recognizers Prof. Hui Jiang Department of Computer Science York University, Toronto, Ontario, Canada Email: hj@cs.yorku.ca Outline Speech recognition

More information

Probabilistic Location Recognition using Reduced Feature Set

Probabilistic Location Recognition using Reduced Feature Set Probabilistic Location Recognition using Reduced Feature Set Fayin Li and Jana Košecá Department of Computer Science George Mason University, Fairfax, VA 3 Email: {fli,oseca}@cs.gmu.edu Abstract The localization

More information

Mixture Models and the EM Algorithm

Mixture Models and the EM Algorithm Mixture Models and the EM Algorithm Padhraic Smyth, Department of Computer Science University of California, Irvine c 2017 1 Finite Mixture Models Say we have a data set D = {x 1,..., x N } where x i is

More information

An Efficient Model Selection for Gaussian Mixture Model in a Bayesian Framework

An Efficient Model Selection for Gaussian Mixture Model in a Bayesian Framework IEEE SIGNAL PROCESSING LETTERS, VOL. XX, NO. XX, XXX 23 An Efficient Model Selection for Gaussian Mixture Model in a Bayesian Framework Ji Won Yoon arxiv:37.99v [cs.lg] 3 Jul 23 Abstract In order to cluster

More information

Comparative Evaluation of Feature Normalization Techniques for Speaker Verification

Comparative Evaluation of Feature Normalization Techniques for Speaker Verification Comparative Evaluation of Feature Normalization Techniques for Speaker Verification Md Jahangir Alam 1,2, Pierre Ouellet 1, Patrick Kenny 1, Douglas O Shaughnessy 2, 1 CRIM, Montreal, Canada {Janagir.Alam,

More information

A SCANNING WINDOW SCHEME BASED ON SVM TRAINING ERROR RATE FOR UNSUPERVISED AUDIO SEGMENTATION

A SCANNING WINDOW SCHEME BASED ON SVM TRAINING ERROR RATE FOR UNSUPERVISED AUDIO SEGMENTATION 18th European Signal Processing Conference (EUSIPCO-21) Aalborg, Denmark, August 23-27, 21 A SCANNING WINDOW SCHEME BASED ON SVM TRAINING ERROR RATE FOR UNSUPERVISED AUDIO SEGMENTATION Seyed Omid Sadjadi

More information

Unsupervised Learning: Clustering

Unsupervised Learning: Clustering Unsupervised Learning: Clustering Vibhav Gogate The University of Texas at Dallas Slides adapted from Carlos Guestrin, Dan Klein & Luke Zettlemoyer Machine Learning Supervised Learning Unsupervised Learning

More information

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin Clustering K-means Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, 2014 Carlos Guestrin 2005-2014 1 Clustering images Set of Images [Goldberger et al.] Carlos Guestrin 2005-2014

More information

A MODIFIED FUZZY C-REGRESSION MODEL CLUSTERING ALGORITHM FOR T-S FUZZY MODEL IDENTIFICATION

A MODIFIED FUZZY C-REGRESSION MODEL CLUSTERING ALGORITHM FOR T-S FUZZY MODEL IDENTIFICATION 20 8th International Multi-Conference on Systems, Signals & Devices A MODIFIED FUZZY C-REGRESSION MODEL CLUSTERING ALGORITHM FOR T-S FUZZY MODEL IDENTIFICATION Moêz. Soltani, Borhen. Aissaoui 2, Abdelader.

More information

ALTERNATIVE METHODS FOR CLUSTERING

ALTERNATIVE METHODS FOR CLUSTERING ALTERNATIVE METHODS FOR CLUSTERING K-Means Algorithm Termination conditions Several possibilities, e.g., A fixed number of iterations Objects partition unchanged Centroid positions don t change Convergence

More information

Automatic Shadow Removal by Illuminance in HSV Color Space

Automatic Shadow Removal by Illuminance in HSV Color Space Computer Science and Information Technology 3(3): 70-75, 2015 DOI: 10.13189/csit.2015.030303 http://www.hrpub.org Automatic Shadow Removal by Illuminance in HSV Color Space Wenbo Huang 1, KyoungYeon Kim

More information

Quickest Search Over Multiple Sequences with Mixed Observations

Quickest Search Over Multiple Sequences with Mixed Observations Quicest Search Over Multiple Sequences with Mixed Observations Jun Geng Worcester Polytechnic Institute Email: geng@wpi.edu Weiyu Xu Univ. of Iowa Email: weiyu-xu@uiowa.edu Lifeng Lai Worcester Polytechnic

More information

Learning the Three Factors of a Non-overlapping Multi-camera Network Topology

Learning the Three Factors of a Non-overlapping Multi-camera Network Topology Learning the Three Factors of a Non-overlapping Multi-camera Network Topology Xiaotang Chen, Kaiqi Huang, and Tieniu Tan National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy

More information

Decision trees with improved efficiency for fast speaker verification

Decision trees with improved efficiency for fast speaker verification Decision trees with improved efficiency for fast speaker verification Gilles Gonon, Rémi Gribonval, Frédéric Bimbot To cite this version: Gilles Gonon, Rémi Gribonval, Frédéric Bimbot. Decision trees with

More information

[2008] IEEE. Reprinted, with permission, from [Yan Chen, Qiang Wu, Xiangjian He, Wenjing Jia,Tom Hintz, A Modified Mahalanobis Distance for Human

[2008] IEEE. Reprinted, with permission, from [Yan Chen, Qiang Wu, Xiangjian He, Wenjing Jia,Tom Hintz, A Modified Mahalanobis Distance for Human [8] IEEE. Reprinted, with permission, from [Yan Chen, Qiang Wu, Xiangian He, Wening Jia,Tom Hintz, A Modified Mahalanobis Distance for Human Detection in Out-door Environments, U-Media 8: 8 The First IEEE

More information

Finding and Detection of Outlier Regions in Satellite Image

Finding and Detection of Outlier Regions in Satellite Image 20 International Conference on Networ and Electronics Engineering IPCSIT vol. (20) (20) IACSIT Press, Singapore Finding and Detection of Outlier Regions in Satellite Image Kitti Koonsanit and Chuleerat

More information

Comparison of Clustering Methods: a Case Study of Text-Independent Speaker Modeling

Comparison of Clustering Methods: a Case Study of Text-Independent Speaker Modeling Comparison of Clustering Methods: a Case Study of Text-Independent Speaker Modeling Tomi Kinnunen, Ilja Sidoroff, Marko Tuononen, Pasi Fränti Speech and Image Processing Unit, School of Computing, University

More information

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask Machine Learning and Data Mining Clustering (1): Basics Kalev Kask Unsupervised learning Supervised learning Predict target value ( y ) given features ( x ) Unsupervised learning Understand patterns of

More information

An Introduction to Pattern Recognition

An Introduction to Pattern Recognition An Introduction to Pattern Recognition Speaker : Wei lun Chao Advisor : Prof. Jian-jiun Ding DISP Lab Graduate Institute of Communication Engineering 1 Abstract Not a new research field Wide range included

More information

Clustering Lecture 5: Mixture Model

Clustering Lecture 5: Mixture Model Clustering Lecture 5: Mixture Model Jing Gao SUNY Buffalo 1 Outline Basics Motivation, definition, evaluation Methods Partitional Hierarchical Density-based Mixture model Spectral methods Advanced topics

More information

Person instance graphs for mono-, cross- and multi-modal person recognition in multimedia data: application to speaker identification in TV broadcast

Person instance graphs for mono-, cross- and multi-modal person recognition in multimedia data: application to speaker identification in TV broadcast Person instance graphs for mono-, cross- and multi-modal person recognition in multimedia data: application to speaker identification in TV broadcast Hervé Bredin, Anindya Roy, Viet-Bac Le, Claude Barras

More information

A Study on Clustering Method by Self-Organizing Map and Information Criteria

A Study on Clustering Method by Self-Organizing Map and Information Criteria A Study on Clustering Method by Self-Organizing Map and Information Criteria Satoru Kato, Tadashi Horiuchi,andYoshioItoh Matsue College of Technology, 4-4 Nishi-ikuma, Matsue, Shimane 90-88, JAPAN, kato@matsue-ct.ac.jp

More information

SYDE Winter 2011 Introduction to Pattern Recognition. Clustering

SYDE Winter 2011 Introduction to Pattern Recognition. Clustering SYDE 372 - Winter 2011 Introduction to Pattern Recognition Clustering Alexander Wong Department of Systems Design Engineering University of Waterloo Outline 1 2 3 4 5 All the approaches we have learned

More information

Methods for Intelligent Systems

Methods for Intelligent Systems Methods for Intelligent Systems Lecture Notes on Clustering (II) Davide Eynard eynard@elet.polimi.it Department of Electronics and Information Politecnico di Milano Davide Eynard - Lecture Notes on Clustering

More information

Najiya P Fathima, C. V. Vipin Kishnan; International Journal of Advance Research, Ideas and Innovations in Technology

Najiya P Fathima, C. V. Vipin Kishnan; International Journal of Advance Research, Ideas and Innovations in Technology ISSN: 2454-32X Impact factor: 4.295 (Volume 4, Issue 2) Available online at: www.ijariit.com Analysis of Different Classifier for the Detection of Double Compressed AMR Audio Fathima Najiya P najinasi2@gmail.com

More information

Probabilistic scoring using decision trees for fast and scalable speaker recognition

Probabilistic scoring using decision trees for fast and scalable speaker recognition Probabilistic scoring using decision trees for fast and scalable speaker recognition Gilles Gonon, Frédéric Bimbot, Rémi Gribonval To cite this version: Gilles Gonon, Frédéric Bimbot, Rémi Gribonval. Probabilistic

More information

Developing a Data Driven System for Computational Neuroscience

Developing a Data Driven System for Computational Neuroscience Developing a Data Driven System for Computational Neuroscience Ross Snider and Yongming Zhu Montana State University, Bozeman MT 59717, USA Abstract. A data driven system implies the need to integrate

More information

Probabilistic Facial Feature Extraction Using Joint Distribution of Location and Texture Information

Probabilistic Facial Feature Extraction Using Joint Distribution of Location and Texture Information Probabilistic Facial Feature Extraction Using Joint Distribution of Location and Texture Information Mustafa Berkay Yilmaz, Hakan Erdogan, Mustafa Unel Sabanci University, Faculty of Engineering and Natural

More information

Image Quality Assessment Techniques: An Overview

Image Quality Assessment Techniques: An Overview Image Quality Assessment Techniques: An Overview Shruti Sonawane A. M. Deshpande Department of E&TC Department of E&TC TSSM s BSCOER, Pune, TSSM s BSCOER, Pune, Pune University, Maharashtra, India Pune

More information

AN ALGORITHM FOR BLIND RESTORATION OF BLURRED AND NOISY IMAGES

AN ALGORITHM FOR BLIND RESTORATION OF BLURRED AND NOISY IMAGES AN ALGORITHM FOR BLIND RESTORATION OF BLURRED AND NOISY IMAGES Nader Moayeri and Konstantinos Konstantinides Hewlett-Packard Laboratories 1501 Page Mill Road Palo Alto, CA 94304-1120 moayeri,konstant@hpl.hp.com

More information

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin Clustering K-means Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, 2014 Carlos Guestrin 2005-2014 1 Clustering images Set of Images [Goldberger et al.] Carlos Guestrin 2005-2014

More information

A Robust Two Feature Points Based Depth Estimation Method 1)

A Robust Two Feature Points Based Depth Estimation Method 1) Vol.31, No.5 ACTA AUTOMATICA SINICA September, 2005 A Robust Two Feature Points Based Depth Estimation Method 1) ZHONG Zhi-Guang YI Jian-Qiang ZHAO Dong-Bin (Laboratory of Complex Systems and Intelligence

More information

FOUR WEIGHTINGS AND A FUSION: A CEPSTRAL-SVM SYSTEM FOR SPEAKER RECOGNITION. Sachin S. Kajarekar

FOUR WEIGHTINGS AND A FUSION: A CEPSTRAL-SVM SYSTEM FOR SPEAKER RECOGNITION. Sachin S. Kajarekar FOUR WEIGHTINGS AND A FUSION: A CEPSTRAL-SVM SYSTEM FOR SPEAKER RECOGNITION Sachin S. Kajarekar Speech Technology and Research Laboratory SRI International, Menlo Park, CA, USA sachin@speech.sri.com ABSTRACT

More information

Gender-dependent acoustic models fusion developed for automatic subtitling of Parliament meetings broadcasted by the Czech TV

Gender-dependent acoustic models fusion developed for automatic subtitling of Parliament meetings broadcasted by the Czech TV Gender-dependent acoustic models fusion developed for automatic subtitling of Parliament meetings broadcasted by the Czech TV Jan Vaněk and Josef V. Psutka Department of Cybernetics, West Bohemia University,

More information

Fuzzy and Markov Models for Keystroke Biometrics Authentication

Fuzzy and Markov Models for Keystroke Biometrics Authentication Proceedings of the 7th WSEAS International Conference on Simulation, Modelling and Optimization, Beijing, China, September 5-7, 27 89 Fuzzy and Markov Models for Keystroke Biometrics Authentication DAT

More information

Two-layer Distance Scheme in Matching Engine for Query by Humming System

Two-layer Distance Scheme in Matching Engine for Query by Humming System Two-layer Distance Scheme in Matching Engine for Query by Humming System Feng Zhang, Yan Song, Lirong Dai, Renhua Wang University of Science and Technology of China, iflytek Speech Lab, Hefei zhangf@ustc.edu,

More information

Moving Object Segmentation Method Based on Motion Information Classification by X-means and Spatial Region Segmentation

Moving Object Segmentation Method Based on Motion Information Classification by X-means and Spatial Region Segmentation IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.11, November 2013 1 Moving Object Segmentation Method Based on Motion Information Classification by X-means and Spatial

More information

Robust color segmentation algorithms in illumination variation conditions

Robust color segmentation algorithms in illumination variation conditions 286 CHINESE OPTICS LETTERS / Vol. 8, No. / March 10, 2010 Robust color segmentation algorithms in illumination variation conditions Jinhui Lan ( ) and Kai Shen ( Department of Measurement and Control Technologies,

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Learning without Class Labels (or correct outputs) Density Estimation Learn P(X) given training data for X Clustering Partition data into clusters Dimensionality Reduction Discover

More information

2 Proposed Methodology

2 Proposed Methodology 3rd International Conference on Multimedia Technology(ICMT 2013) Object Detection in Image with Complex Background Dong Li, Yali Li, Fei He, Shengjin Wang 1 State Key Laboratory of Intelligent Technology

More information

ABSTRACT 1. INTRODUCTION 2. METHODS

ABSTRACT 1. INTRODUCTION 2. METHODS Finding Seeds for Segmentation Using Statistical Fusion Fangxu Xing *a, Andrew J. Asman b, Jerry L. Prince a,c, Bennett A. Landman b,c,d a Department of Electrical and Computer Engineering, Johns Hopkins

More information

HIGH RESOLUTION REMOTE SENSING IMAGE SEGMENTATION BASED ON GRAPH THEORY AND FRACTAL NET EVOLUTION APPROACH

HIGH RESOLUTION REMOTE SENSING IMAGE SEGMENTATION BASED ON GRAPH THEORY AND FRACTAL NET EVOLUTION APPROACH HIGH RESOLUTION REMOTE SENSING IMAGE SEGMENTATION BASED ON GRAPH THEORY AND FRACTAL NET EVOLUTION APPROACH Yi Yang, Haitao Li, Yanshun Han, Haiyan Gu Key Laboratory of Geo-informatics of State Bureau of

More information

Background Subtraction in Video using Bayesian Learning with Motion Information Suman K. Mitra DA-IICT, Gandhinagar

Background Subtraction in Video using Bayesian Learning with Motion Information Suman K. Mitra DA-IICT, Gandhinagar Background Subtraction in Video using Bayesian Learning with Motion Information Suman K. Mitra DA-IICT, Gandhinagar suman_mitra@daiict.ac.in 1 Bayesian Learning Given a model and some observations, the

More information

TWO-STEP SEMI-SUPERVISED APPROACH FOR MUSIC STRUCTURAL CLASSIFICATION. Prateek Verma, Yang-Kai Lin, Li-Fan Yu. Stanford University

TWO-STEP SEMI-SUPERVISED APPROACH FOR MUSIC STRUCTURAL CLASSIFICATION. Prateek Verma, Yang-Kai Lin, Li-Fan Yu. Stanford University TWO-STEP SEMI-SUPERVISED APPROACH FOR MUSIC STRUCTURAL CLASSIFICATION Prateek Verma, Yang-Kai Lin, Li-Fan Yu Stanford University ABSTRACT Structural segmentation involves finding hoogeneous sections appearing

More information

Machine Learning (BSMC-GA 4439) Wenke Liu

Machine Learning (BSMC-GA 4439) Wenke Liu Machine Learning (BSMC-GA 4439) Wenke Liu 01-25-2018 Outline Background Defining proximity Clustering methods Determining number of clusters Other approaches Cluster analysis as unsupervised Learning Unsupervised

More information

Clustering and Dissimilarity Measures. Clustering. Dissimilarity Measures. Cluster Analysis. Perceptually-Inspired Measures

Clustering and Dissimilarity Measures. Clustering. Dissimilarity Measures. Cluster Analysis. Perceptually-Inspired Measures Clustering and Dissimilarity Measures Clustering APR Course, Delft, The Netherlands Marco Loog May 19, 2008 1 What salient structures exist in the data? How many clusters? May 19, 2008 2 Cluster Analysis

More information

Image Segmentation Using Iterated Graph Cuts Based on Multi-scale Smoothing

Image Segmentation Using Iterated Graph Cuts Based on Multi-scale Smoothing Image Segmentation Using Iterated Graph Cuts Based on Multi-scale Smoothing Tomoyuki Nagahashi 1, Hironobu Fujiyoshi 1, and Takeo Kanade 2 1 Dept. of Computer Science, Chubu University. Matsumoto 1200,

More information

Anomaly Intrusion Detection System Using Hierarchical Gaussian Mixture Model

Anomaly Intrusion Detection System Using Hierarchical Gaussian Mixture Model 264 IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008 Anomaly Intrusion Detection System Using Hierarchical Gaussian Mixture Model M. Bahrololum and M. Khaleghi

More information

Annotated multitree output

Annotated multitree output Annotated multitree output A simplified version of the two high-threshold (2HT) model, applied to two experimental conditions, is used as an example to illustrate the output provided by multitree (version

More information

Textural Features for Image Database Retrieval

Textural Features for Image Database Retrieval Textural Features for Image Database Retrieval Selim Aksoy and Robert M. Haralick Intelligent Systems Laboratory Department of Electrical Engineering University of Washington Seattle, WA 98195-2500 {aksoy,haralick}@@isl.ee.washington.edu

More information

Enhanced Image. Improved Dam point Labelling

Enhanced Image. Improved Dam point Labelling 3rd International Conference on Multimedia Technology(ICMT 2013) Video Text Extraction Based on Stroke Width and Color Xiaodong Huang, 1 Qin Wang, Kehua Liu, Lishang Zhu Abstract. Video text can be used

More information

Vulnerability of Voice Verification System with STC anti-spoofing detector to different methods of spoofing attacks

Vulnerability of Voice Verification System with STC anti-spoofing detector to different methods of spoofing attacks Vulnerability of Voice Verification System with STC anti-spoofing detector to different methods of spoofing attacks Vadim Shchemelinin 1,2, Alexandr Kozlov 2, Galina Lavrentyeva 2, Sergey Novoselov 1,2

More information

CS 229 Midterm Review

CS 229 Midterm Review CS 229 Midterm Review Course Staff Fall 2018 11/2/2018 Outline Today: SVMs Kernels Tree Ensembles EM Algorithm / Mixture Models [ Focus on building intuition, less so on solving specific problems. Ask

More information

Iterative MAP and ML Estimations for Image Segmentation

Iterative MAP and ML Estimations for Image Segmentation Iterative MAP and ML Estimations for Image Segmentation Shifeng Chen 1, Liangliang Cao 2, Jianzhuang Liu 1, and Xiaoou Tang 1,3 1 Dept. of IE, The Chinese University of Hong Kong {sfchen5, jzliu}@ie.cuhk.edu.hk

More information

Bus Detection and recognition for visually impaired people

Bus Detection and recognition for visually impaired people Bus Detection and recognition for visually impaired people Hangrong Pan, Chucai Yi, and Yingli Tian The City College of New York The Graduate Center The City University of New York MAP4VIP Outline Motivation

More information

MTTS1 Dimensionality Reduction and Visualization Spring 2014 Jaakko Peltonen

MTTS1 Dimensionality Reduction and Visualization Spring 2014 Jaakko Peltonen MTTS1 Dimensionality Reduction and Visualization Spring 2014 Jaakko Peltonen Lecture 2: Feature selection Feature Selection feature selection (also called variable selection): choosing k < d important

More information

Person Authentication from Video of Faces: A Behavioral and Physiological Approach Using Pseudo Hierarchical Hidden Markov Models

Person Authentication from Video of Faces: A Behavioral and Physiological Approach Using Pseudo Hierarchical Hidden Markov Models Person Authentication from Video of Faces: A Behavioral and Physiological Approach Using Pseudo Hierarchical Hidden Markov Models Manuele Bicego 1, Enrico Grosso 1, and Massimo Tistarelli 2 1 DEIR - University

More information

An indirect tire identification method based on a two-layered fuzzy scheme

An indirect tire identification method based on a two-layered fuzzy scheme Journal of Intelligent & Fuzzy Systems 29 (2015) 2795 2800 DOI:10.3233/IFS-151984 IOS Press 2795 An indirect tire identification method based on a two-layered fuzzy scheme Dailin Zhang, Dengming Zhang,

More information

COMBINING FEATURE SETS WITH SUPPORT VECTOR MACHINES: APPLICATION TO SPEAKER RECOGNITION

COMBINING FEATURE SETS WITH SUPPORT VECTOR MACHINES: APPLICATION TO SPEAKER RECOGNITION COMBINING FEATURE SETS WITH SUPPORT VECTOR MACHINES: APPLICATION TO SPEAKER RECOGNITION Andrew O. Hatch ;2, Andreas Stolcke ;3, and Barbara Peskin The International Computer Science Institute, Berkeley,

More information

DATA MINING LECTURE 7. Hierarchical Clustering, DBSCAN The EM Algorithm

DATA MINING LECTURE 7. Hierarchical Clustering, DBSCAN The EM Algorithm DATA MINING LECTURE 7 Hierarchical Clustering, DBSCAN The EM Algorithm CLUSTERING What is a Clustering? In general a grouping of objects such that the objects in a group (cluster) are similar (or related)

More information

Optimizing feature representation for speaker diarization using PCA and LDA

Optimizing feature representation for speaker diarization using PCA and LDA Optimizing feature representation for speaker diarization using PCA and LDA itsikv@netvision.net.il Jean-Francois Bonastre jean-francois.bonastre@univ-avignon.fr Outline Speaker Diarization what is it?

More information

Random projection for non-gaussian mixture models

Random projection for non-gaussian mixture models Random projection for non-gaussian mixture models Győző Gidófalvi Department of Computer Science and Engineering University of California, San Diego La Jolla, CA 92037 gyozo@cs.ucsd.edu Abstract Recently,

More information

A NEW CLASSIFICATION METHOD FOR HIGH SPATIAL RESOLUTION REMOTE SENSING IMAGE BASED ON MAPPING MECHANISM

A NEW CLASSIFICATION METHOD FOR HIGH SPATIAL RESOLUTION REMOTE SENSING IMAGE BASED ON MAPPING MECHANISM Proceedings of the 4th GEOBIA, May 7-9, 2012 - Rio de Janeiro - Brazil. p.186 A NEW CLASSIFICATION METHOD FOR HIGH SPATIAL RESOLUTION REMOTE SENSING IMAGE BASED ON MAPPING MECHANISM Guizhou Wang a,b,c,1,

More information

Clustering. Introduction to Data Science University of Colorado Boulder SLIDES ADAPTED FROM LAUREN HANNAH

Clustering. Introduction to Data Science University of Colorado Boulder SLIDES ADAPTED FROM LAUREN HANNAH Clustering Introduction to Data Science University of Colorado Boulder SLIDES ADAPTED FROM LAUREN HANNAH Introduction to Data Science Boulder Clustering 1 of 9 Clustering Lab Review of k-means Work through

More information

UNSUPERVISED MINING OF MULTIPLE AUDIOVISUALLY CONSISTENT CLUSTERS FOR VIDEO STRUCTURE ANALYSIS

UNSUPERVISED MINING OF MULTIPLE AUDIOVISUALLY CONSISTENT CLUSTERS FOR VIDEO STRUCTURE ANALYSIS Author manuscript, published in "Intl. Conf. on Multimedia and Exhibition, Australia (2012)" UNSUPERVISED MINING OF MULTIPLE AUDIOVISUALLY CONSISTENT CLUSTERS FOR VIDEO STRUCTURE ANALYSIS Anh-Phuong TA

More information

Chapter DM:II. II. Cluster Analysis

Chapter DM:II. II. Cluster Analysis Chapter DM:II II. Cluster Analysis Cluster Analysis Basics Hierarchical Cluster Analysis Iterative Cluster Analysis Density-Based Cluster Analysis Cluster Evaluation Constrained Cluster Analysis DM:II-1

More information

Data Mining Chapter 9: Descriptive Modeling Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 9: Descriptive Modeling Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Data Mining Chapter 9: Descriptive Modeling Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Descriptive model A descriptive model presents the main features of the data

More information

Supplementary Material: The Emergence of. Organizing Structure in Conceptual Representation

Supplementary Material: The Emergence of. Organizing Structure in Conceptual Representation Supplementary Material: The Emergence of Organizing Structure in Conceptual Representation Brenden M. Lake, 1,2 Neil D. Lawrence, 3 Joshua B. Tenenbaum, 4,5 1 Center for Data Science, New York University

More information

IMPROVED SIDE MATCHING FOR MATCHED-TEXTURE CODING

IMPROVED SIDE MATCHING FOR MATCHED-TEXTURE CODING IMPROVED SIDE MATCHING FOR MATCHED-TEXTURE CODING Guoxin Jin 1, Thrasyvoulos N. Pappas 1 and David L. Neuhoff 2 1 EECS Department, Northwestern University, Evanston, IL 60208 2 EECS Department, University

More information

Clustering: Classic Methods and Modern Views

Clustering: Classic Methods and Modern Views Clustering: Classic Methods and Modern Views Marina Meilă University of Washington mmp@stat.washington.edu June 22, 2015 Lorentz Center Workshop on Clusters, Games and Axioms Outline Paradigms for clustering

More information

A Feature Point Matching Based Approach for Video Objects Segmentation

A Feature Point Matching Based Approach for Video Objects Segmentation A Feature Point Matching Based Approach for Video Objects Segmentation Yan Zhang, Zhong Zhou, Wei Wu State Key Laboratory of Virtual Reality Technology and Systems, Beijing, P.R. China School of Computer

More information

A Robust and Efficient Motion Segmentation Based on Orthogonal Projection Matrix of Shape Space

A Robust and Efficient Motion Segmentation Based on Orthogonal Projection Matrix of Shape Space A Robust and Efficient Motion Segmentation Based on Orthogonal Projection Matrix of Shape Space Naoyuki ICHIMURA Electrotechnical Laboratory 1-1-4, Umezono, Tsukuba Ibaraki, 35-8568 Japan ichimura@etl.go.jp

More information