Shading. Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller/Fuhrmann

Size: px
Start display at page:

Download "Shading. Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller/Fuhrmann"

Transcription

1 Shading Introduction to Computer Graphics Torsten Möller Machiraju/Zhang/Möller/Fuhrmann

2 Reading Chapter Angel Chapter Hughes, van Dam, et al Machiraju/Zhang/Möller/Fuhrmann 2

3 Shading Illumination Model: determine the color of a surface (data) point by simulating some light attributes. Local IM: deals only with isolated surface (data) point and direct light sources. Global IM: takes into account the relationships between all surfaces (points) in the environment. Shading Model: applies the illumination models at a set of points and colors the whole scene. Machiraju/Zhang/Möller/Fuhrmann 3

4 Shading of surfaces We can shade a point on a surface using a local IM How about surfaces? Flat (planar) polygons are computationally attractive Normals, intersections, visibility, projections, etc., are all easy to compute hardware acceleration available Curved surfaces are often tessellated into many small flat polygons in graphics polygonal meshes Machiraju/Zhang/Möller/Fuhrmann 4

5 Polygonal meshes Composed of a set of polygons (often quadrilaterals or triangles) pasted along their edges The dominant surface model for 3D shapes (esp. free-form shapes), e.g., in games 5

6 Shading of surfaces How should polygons be rendered? Machiraju/Zhang/Möller/Fuhrmann 6

7 Shading of flat polygons Flat (constant, faceted) shading compute illumination once per polygon and apply it to whole polygon Interpolated/smooth/Gouraud shading compute illumination at borders (e.g. vertices) and interpolate Accurate shading e.g., Phong shading compute illumination at every point of the polygon Machiraju/Zhang/Möller/Fuhrmann 7

8 Flat shading A single color across the polygon efficient Intensity discontinuity across edges Flat shading would be correct if Light source is at infinity, i.e., light vector l is constant, so n l is constant across polygon, and viewer is at infinity, so r v is constant across polygon, and polygons represent actual surface, not an approximation Also, if there are a very large number of very small polygons, the faceting effects is less obvious spatial integration of our eyes N 1 Machiraju/Zhang/Möller/Fuhrmann 8 N 2

9 Results of flat shading Machiraju/Zhang/Möller/Fuhrmann 9

10 Mach Banding Creates discontinuities in colour easily visible hence we can see the distinct surface patches easily Machbands! caused by lateral inhibition of the receptors in the eye Machiraju/Zhang/Möller/Fuhrmann 10

11 Mach Banding (2) Problems - Machbands! Machiraju/Zhang/Möller/Fuhrmann 11

12 Gouraud shading This shading model is interpolative: Given colors of the polygon vertices, interior points are colored through bilinear interpolation How to compute the normal at a mesh vertex? use prior surface information or take the (normalized) average of the normals of adjacent faces better: area weighted normals Machiraju/Zhang/Möller/Fuhrmann 12

13 Color interpolation Interpolate colors along edges and scanlines Can be done incrementally, i.e., via scanlines Machiraju/Zhang/Möller/Fuhrmann 13

14 Flat Shading vs. Gouraud vs. Phong No Highlight No Highlight Highlight! Gouraud shading does not properly handle specular highlights because only color is interpolated Phong shading accurate shading Interpolates normals at each point instead of colors Apply LIM at each point according to approximated normal Machiraju/Zhang/Möller/Fuhrmann

15 Flat Shading vs. Gouraud vs. Phong Machiraju/Zhang/Möller/Fuhrmann

16 Phong vs. Gouraud shading Phong shading: Handles specular highlights much better Does a better job in handling Mach bands But much more expensive than Gouraud shading Machiraju/Zhang/Möller/Fuhrmann 18

17 Further problems with shading models so far (1) Polygonal silhouette we are quite sensitive in picking these up Solution: subdivide further Exercise: How to determine whether an edge in a mesh is a silhouette edge? Machiraju/Zhang/Möller/Fuhrmann 19

18 Further problems with shading models so far (2) Orientation dependence Note first that interpolation is done along horizontal scanlines When the orientation of the same polygon changes, the same point p may be colored differently Solution: triangulate Machiraju/Zhang/Möller/Fuhrmann 20

19 Further problems with shading models so far (3) Unrepresentative normals As shown, all vertex and interpolated normals are the same Solution: subdivide further Machiraju/Zhang/Möller/Fuhrmann 21

20 Non-Photorealistic Painterly Shading Aims to emulate hand-drawn or painted effects:

21 Recap: An Illumination Model: describes how light interacts with a surface element (e.g. reflection etc.) A Shading Model applies the illumination to a surface, generally to a tessellated representation of a smooth surface Exercise: which OpenGL shader implements what? Machiraju/Zhang/Möller/Fuhrmann 23

How do we draw a picture?

How do we draw a picture? 1 How do we draw a picture? Define geometry. Now what? We can draw the edges of the faces. Wireframe. We can only draw the edges of faces that are visible. We can fill in the faces. Giving each object

More information

Mach band effect. The Mach band effect increases the visual unpleasant representation of curved surface using flat shading.

Mach band effect. The Mach band effect increases the visual unpleasant representation of curved surface using flat shading. Mach band effect The Mach band effect increases the visual unpleasant representation of curved surface using flat shading. A B 320322: Graphics and Visualization 456 Mach band effect The Mach band effect

More information

Interpolation using scanline algorithm

Interpolation using scanline algorithm Interpolation using scanline algorithm Idea: Exploit knowledge about already computed color values. Traverse projected triangle top-down using scanline. Compute start and end color value of each pixel

More information

Illumination Models & Shading

Illumination Models & Shading Illumination Models & Shading Lighting vs. Shading Lighting Interaction between materials and light sources Physics Shading Determining the color of a pixel Computer Graphics ZBuffer(Scene) PutColor(x,y,Col(P));

More information

CS5620 Intro to Computer Graphics

CS5620 Intro to Computer Graphics So Far wireframe hidden surfaces Next step 1 2 Light! Need to understand: How lighting works Types of lights Types of surfaces How shading works Shading algorithms What s Missing? Lighting vs. Shading

More information

Computer Graphics. Illumination and Shading

Computer Graphics. Illumination and Shading Rendering Pipeline modelling of geometry transformation into world coordinates placement of cameras and light sources transformation into camera coordinates backface culling projection clipping w.r.t.

More information

Graphics and Interaction Surface rendering and shading

Graphics and Interaction Surface rendering and shading 433-324 Graphics and Interaction Surface rendering and shading Department of Computer Science and Software Engineering The Lecture outline Introduction Surface rendering and shading Gouraud shading Phong

More information

Lecture outline Graphics and Interaction Surface rendering and shading. Shading techniques. Introduction. Surface rendering and shading

Lecture outline Graphics and Interaction Surface rendering and shading. Shading techniques. Introduction. Surface rendering and shading Lecture outline 433-324 Graphics and Interaction Surface rendering and shading Department of Computer Science and Software Engineering The Introduction Surface rendering and shading Gouraud shading Phong

More information

9. Illumination and Shading

9. Illumination and Shading 9. Illumination and Shading Approaches for visual realism: - Remove hidden surfaces - Shade visible surfaces and reproduce shadows - Reproduce surface properties Texture Degree of transparency Roughness,

More information

CS Illumination and Shading. Slide 1

CS Illumination and Shading. Slide 1 CS 112 - Illumination and Shading Slide 1 Illumination/Lighting Interaction between light and surfaces Physics of optics and thermal radiation Very complex: Light bounces off several surface before reaching

More information

Illumination and Shading

Illumination and Shading Illumination and Shading Illumination (Lighting)! Model the interaction of light with surface points to determine their final color and brightness! The illumination can be computed either at vertices or

More information

CS 325 Computer Graphics

CS 325 Computer Graphics CS 325 Computer Graphics 04 / 02 / 2012 Instructor: Michael Eckmann Today s Topics Questions? Comments? Illumination modelling Ambient, Diffuse, Specular Reflection Surface Rendering / Shading models Flat

More information

University of Victoria CSC 305 Shading. Brian Wyvill 2016

University of Victoria CSC 305 Shading. Brian Wyvill 2016 University of Victoria CSC 305 Shading Brian Wyvill 2016 The illuminating Hemisphere Energy and Intensity Energy is the intensity integrated over the solid angle through which it acts. Intensity is not

More information

CPSC / Illumination and Shading

CPSC / Illumination and Shading CPSC 599.64 / 601.64 Rendering Pipeline usually in one step modelling of geometry transformation into world coordinate system placement of cameras and light sources transformation into camera coordinate

More information

Shading Techniques Denbigh Starkey

Shading Techniques Denbigh Starkey Shading Techniques Denbigh Starkey 1. Summary of shading techniques 2 2. Lambert (flat) shading 3 3. Smooth shading and vertex normals 4 4. Gouraud shading 6 5. Phong shading 8 6. Why do Gouraud and Phong

More information

Rendering. Illumination Model. Wireframe rendering simple, ambiguous Color filling flat without any 3D information

Rendering. Illumination Model. Wireframe rendering simple, ambiguous Color filling flat without any 3D information llumination Model Wireframe rendering simple, ambiguous Color filling flat without any 3D information Requires modeling interaction of light with the object/surface to have a different color (shade in

More information

Lecture 17: Shading in OpenGL. CITS3003 Graphics & Animation

Lecture 17: Shading in OpenGL. CITS3003 Graphics & Animation Lecture 17: Shading in OpenGL CITS3003 Graphics & Animation E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012 Objectives Introduce the OpenGL shading methods - per vertex shading

More information

3D Rasterization II COS 426

3D Rasterization II COS 426 3D Rasterization II COS 426 3D Rendering Pipeline (for direct illumination) 3D Primitives Modeling Transformation Lighting Viewing Transformation Projection Transformation Clipping Viewport Transformation

More information

Visualisatie BMT. Rendering. Arjan Kok

Visualisatie BMT. Rendering. Arjan Kok Visualisatie BMT Rendering Arjan Kok a.j.f.kok@tue.nl 1 Lecture overview Color Rendering Illumination 2 Visualization pipeline Raw Data Data Enrichment/Enhancement Derived Data Visualization Mapping Abstract

More information

Illumination and Shading

Illumination and Shading Illumination and Shading Light sources emit intensity: assigns intensity to each wavelength of light Humans perceive as a colour - navy blue, light green, etc. Exeriments show that there are distinct I

More information

Level of Details in Computer Rendering

Level of Details in Computer Rendering Level of Details in Computer Rendering Ariel Shamir Overview 1. Photo realism vs. Non photo realism (NPR) 2. Objects representations 3. Level of details Photo Realism Vs. Non Pixar Demonstrations Sketching,

More information

CEng 477 Introduction to Computer Graphics Fall

CEng 477 Introduction to Computer Graphics Fall Illumination Models and Surface-Rendering Methods CEng 477 Introduction to Computer Graphics Fall 2007 2008 Illumination Models and Surface Rendering Methods In order to achieve realism in computer generated

More information

Rendering. Converting a 3D scene to a 2D image. Camera. Light. Rendering. View Plane

Rendering. Converting a 3D scene to a 2D image. Camera. Light. Rendering. View Plane Rendering Pipeline Rendering Converting a 3D scene to a 2D image Rendering Light Camera 3D Model View Plane Rendering Converting a 3D scene to a 2D image Basic rendering tasks: Modeling: creating the world

More information

Objectives Shading in OpenGL. Front and Back Faces. OpenGL shading. Introduce the OpenGL shading methods. Discuss polygonal shading

Objectives Shading in OpenGL. Front and Back Faces. OpenGL shading. Introduce the OpenGL shading methods. Discuss polygonal shading Objectives Shading in OpenGL Introduce the OpenGL shading methods - per vertex shading vs per fragment shading - Where to carry out Discuss polygonal shading - Flat - Smooth - Gouraud CITS3003 Graphics

More information

Computer Graphics 1. Chapter 7 (June 17th, 2010, 2-4pm): Shading and rendering. LMU München Medieninformatik Andreas Butz Computergraphik 1 SS2010

Computer Graphics 1. Chapter 7 (June 17th, 2010, 2-4pm): Shading and rendering. LMU München Medieninformatik Andreas Butz Computergraphik 1 SS2010 Computer Graphics 1 Chapter 7 (June 17th, 2010, 2-4pm): Shading and rendering 1 The 3D rendering pipeline (our version for this class) 3D models in model coordinates 3D models in world coordinates 2D Polygons

More information

Rasterizing triangles

Rasterizing triangles Rasterizing triangles We know how to project the vertices of a triangle in our model onto pixel centers. To draw the complete triangle, we have to decide which pixels to turn on. For now, let s assume

More information

Introduction to Computer Graphics. Farhana Bandukwala, PhD Lecture 14: Light Interacting with Surfaces

Introduction to Computer Graphics. Farhana Bandukwala, PhD Lecture 14: Light Interacting with Surfaces Introduction to Computer Graphics Farhana Bandukwala, PhD Lecture 14: Light Interacting with Surfaces Outline Computational tools Reflection models Polygon shading Computation tools Surface normals Vector

More information

CPSC 314 LIGHTING AND SHADING

CPSC 314 LIGHTING AND SHADING CPSC 314 LIGHTING AND SHADING UGRAD.CS.UBC.CA/~CS314 slide credits: Mikhail Bessmeltsev et al 1 THE RENDERING PIPELINE Vertices and attributes Vertex Shader Modelview transform Per-vertex attributes Vertex

More information

Surface Graphics. 200 polys 1,000 polys 15,000 polys. an empty foot. - a mesh of spline patches:

Surface Graphics. 200 polys 1,000 polys 15,000 polys. an empty foot. - a mesh of spline patches: Surface Graphics Objects are explicitely defined by a surface or boundary representation (explicit inside vs outside) This boundary representation can be given by: - a mesh of polygons: 200 polys 1,000

More information

Illumination and Shading

Illumination and Shading Illumination and Shading Illumination and Shading z Illumination Models y Ambient y Diffuse y Attenuation y Specular Reflection z Interpolated Shading Models y Flat, Gouraud, Phong y Problems CS4451: Fall

More information

ECS 175 COMPUTER GRAPHICS. Ken Joy.! Winter 2014

ECS 175 COMPUTER GRAPHICS. Ken Joy.! Winter 2014 ECS 175 COMPUTER GRAPHICS Ken Joy Winter 2014 Shading To be able to model shading, we simplify Uniform Media no scattering of light Opaque Objects No Interreflection Point Light Sources RGB Color (eliminating

More information

CS770/870 Spring 2017 Color and Shading

CS770/870 Spring 2017 Color and Shading Preview CS770/870 Spring 2017 Color and Shading Related material Cunningham: Ch 5 Hill and Kelley: Ch. 8 Angel 5e: 6.1-6.8 Angel 6e: 5.1-5.5 Making the scene more realistic Color models representing the

More information

surface: reflectance transparency, opacity, translucency orientation illumination: location intensity wavelength point-source, diffuse source

surface: reflectance transparency, opacity, translucency orientation illumination: location intensity wavelength point-source, diffuse source walters@buffalo.edu CSE 480/580 Lecture 18 Slide 1 Illumination and Shading Light reflected from nonluminous objects depends on: surface: reflectance transparency, opacity, translucency orientation illumination:

More information

Module Contact: Dr Stephen Laycock, CMP Copyright of the University of East Anglia Version 1

Module Contact: Dr Stephen Laycock, CMP Copyright of the University of East Anglia Version 1 UNIVERSITY OF EAST ANGLIA School of Computing Sciences Main Series PG Examination 2013-14 COMPUTER GAMES DEVELOPMENT CMPSME27 Time allowed: 2 hours Answer any THREE questions. (40 marks each) Notes are

More information

Chapter 7 - Light, Materials, Appearance

Chapter 7 - Light, Materials, Appearance Chapter 7 - Light, Materials, Appearance Types of light in nature and in CG Shadows Using lights in CG Illumination models Textures and maps Procedural surface descriptions Literature: E. Angel/D. Shreiner,

More information

Pipeline Operations. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 11

Pipeline Operations. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 11 Pipeline Operations CS 4620 Lecture 11 1 Pipeline you are here APPLICATION COMMAND STREAM 3D transformations; shading VERTEX PROCESSING TRANSFORMED GEOMETRY conversion of primitives to pixels RASTERIZATION

More information

Computer Graphics (CS 543) Lecture 8a: Per-Vertex lighting, Shading and Per-Fragment lighting

Computer Graphics (CS 543) Lecture 8a: Per-Vertex lighting, Shading and Per-Fragment lighting Computer Graphics (CS 543) Lecture 8a: Per-Vertex lighting, Shading and Per-Fragment lighting Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) Computation of Vectors To calculate

More information

Computer Graphics. Shading. Based on slides by Dianna Xu, Bryn Mawr College

Computer Graphics. Shading. Based on slides by Dianna Xu, Bryn Mawr College Computer Graphics Shading Based on slides by Dianna Xu, Bryn Mawr College Image Synthesis and Shading Perception of 3D Objects Displays almost always 2 dimensional. Depth cues needed to restore the third

More information

Computer Graphics: 3-Local Illumination Models

Computer Graphics: 3-Local Illumination Models Computer Graphics: 3-Local Illumination Models Prof. Dr. Charles A. Wüthrich, Fakultät Medien, Medieninformatik Bauhaus-Universität Weimar caw AT medien.uni-weimar.de Introduction After having illustrated

More information

Pipeline Operations. CS 4620 Lecture 14

Pipeline Operations. CS 4620 Lecture 14 Pipeline Operations CS 4620 Lecture 14 2014 Steve Marschner 1 Pipeline you are here APPLICATION COMMAND STREAM 3D transformations; shading VERTEX PROCESSING TRANSFORMED GEOMETRY conversion of primitives

More information

Shading Algorithms. Ron Goldman Department of Computer Science Rice University

Shading Algorithms. Ron Goldman Department of Computer Science Rice University Shading Algorithms Ron Goldman Department of Computer Science Rice University Illumination and Shading Standard Assumptions Curved surfaces are approximated by planar polygons. All light sources are point

More information

Lighting/Shading III. Week 7, Wed Mar 3

Lighting/Shading III. Week 7, Wed Mar 3 University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2010 Tamara Munzner Lighting/Shading III Week 7, Wed Mar 3 http://www.ugrad.cs.ubc.ca/~cs314/vjan2010 reminders News don't need to tell

More information

A Tool for Demonstrating the Interaction among Lighting/Material. Parameters and Potential Problems in Polygon-Based Rendering

A Tool for Demonstrating the Interaction among Lighting/Material. Parameters and Potential Problems in Polygon-Based Rendering A Tool for Demonstrating the Interaction among Lighting/Material Parameters and Potential Problems in Polygon-Based Rendering Tin-Tin Yu, John Lowther and Ching-Kuang Shene 1 Department of Computer Science

More information

w Foley, Section16.1 Reading

w Foley, Section16.1 Reading Shading w Foley, Section16.1 Reading Introduction So far, we ve talked exclusively about geometry. w What is the shape of an object? w How do I place it in a virtual 3D space? w How do I know which pixels

More information

CSE 690: GPGPU. Lecture 2: Understanding the Fabric - Intro to Graphics. Klaus Mueller Stony Brook University Computer Science Department

CSE 690: GPGPU. Lecture 2: Understanding the Fabric - Intro to Graphics. Klaus Mueller Stony Brook University Computer Science Department CSE 690: GPGPU Lecture 2: Understanding the Fabric - Intro to Graphics Klaus Mueller Stony Brook University Computer Science Department Klaus Mueller, Stony Brook 2005 1 Surface Graphics Objects are explicitely

More information

Reflection and Shading

Reflection and Shading Reflection and Shading R. J. Renka Department of Computer Science & Engineering University of North Texas 10/19/2015 Light Sources Realistic rendering requires that we model the interaction between light

More information

Lets assume each object has a defined colour. Hence our illumination model is looks unrealistic.

Lets assume each object has a defined colour. Hence our illumination model is looks unrealistic. Shading Models There are two main types of rendering that we cover, polygon rendering ray tracing Polygon rendering is used to apply illumination models to polygons, whereas ray tracing applies to arbitrary

More information

Recollection. Models Pixels. Model transformation Viewport transformation Clipping Rasterization Texturing + Lights & shadows

Recollection. Models Pixels. Model transformation Viewport transformation Clipping Rasterization Texturing + Lights & shadows Recollection Models Pixels Model transformation Viewport transformation Clipping Rasterization Texturing + Lights & shadows Can be computed in different stages 1 So far we came to Geometry model 3 Surface

More information

Introduction Rasterization Z-buffering Shading. Graphics 2012/2013, 4th quarter. Lecture 09: graphics pipeline (rasterization and shading)

Introduction Rasterization Z-buffering Shading. Graphics 2012/2013, 4th quarter. Lecture 09: graphics pipeline (rasterization and shading) Lecture 9 Graphics pipeline (rasterization and shading) Graphics pipeline - part 1 (recap) Perspective projection by matrix multiplication: x pixel y pixel z canonical 1 x = M vpm per M cam y z 1 This

More information

Reading. Shading. An abundance of photons. Introduction. Required: Angel , 6.5, Optional: Angel 6.4 OpenGL red book, chapter 5.

Reading. Shading. An abundance of photons. Introduction. Required: Angel , 6.5, Optional: Angel 6.4 OpenGL red book, chapter 5. Reading Required: Angel 6.1-6.3, 6.5, 6.7-6.8 Optional: Shading Angel 6.4 OpenGL red book, chapter 5. 1 2 Introduction An abundance of photons So far, we ve talked exclusively about geometry. Properly

More information

Pipeline Operations. CS 4620 Lecture 10

Pipeline Operations. CS 4620 Lecture 10 Pipeline Operations CS 4620 Lecture 10 2008 Steve Marschner 1 Hidden surface elimination Goal is to figure out which color to make the pixels based on what s in front of what. Hidden surface elimination

More information

- Rasterization. Geometry. Scan Conversion. Rasterization

- Rasterization. Geometry. Scan Conversion. Rasterization Computer Graphics - The graphics pipeline - Geometry Modelview Geometry Processing Lighting Perspective Clipping Scan Conversion Texturing Fragment Tests Blending Framebuffer Fragment Processing - So far,

More information

Homework #2. Shading, Ray Tracing, and Texture Mapping

Homework #2. Shading, Ray Tracing, and Texture Mapping Computer Graphics Prof. Brian Curless CSE 457 Spring 2000 Homework #2 Shading, Ray Tracing, and Texture Mapping Prepared by: Doug Johnson, Maya Widyasari, and Brian Curless Assigned: Monday, May 8, 2000

More information

Computer Graphics (CS 4731) Lecture 18: Lighting, Shading and Materials (Part 3)

Computer Graphics (CS 4731) Lecture 18: Lighting, Shading and Materials (Part 3) Computer Graphics (CS 4731) Lecture 18: Lighting, Shading and Materials (Part 3) Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) Recall: Flat Shading compute lighting once

More information

Lecture 21: Shading. put your trust in my shadow. Judges 9:15

Lecture 21: Shading. put your trust in my shadow. Judges 9:15 Lecture 21: Shading put your trust in my shadow. Judges 9:15 1. Polygonal Models Polygonal models are one of the most common representations for geometry in Computer Graphics. Polygonal models are popular

More information

Today. Global illumination. Shading. Interactive applications. Rendering pipeline. Computergrafik. Shading Introduction Local shading models

Today. Global illumination. Shading. Interactive applications. Rendering pipeline. Computergrafik. Shading Introduction Local shading models Computergrafik Thomas Buchberger, Matthias Zwicker Universität Bern Herbst 2008 Today Introduction Local shading models Light sources strategies Compute interaction of light with surfaces Requires simulation

More information

6.837 Introduction to Computer Graphics Assignment 5: OpenGL and Solid Textures Due Wednesday October 22, 2003 at 11:59pm

6.837 Introduction to Computer Graphics Assignment 5: OpenGL and Solid Textures Due Wednesday October 22, 2003 at 11:59pm 6.837 Introduction to Computer Graphics Assignment 5: OpenGL and Solid Textures Due Wednesday October 22, 2003 at 11:59pm In this assignment, you will add an interactive preview of the scene and solid

More information

Illumination and Shading

Illumination and Shading CT4510: Computer Graphics Illumination and Shading BOCHANG MOON Photorealism The ultimate goal of rendering is to produce photo realistic images. i.e., rendered images should be indistinguishable from

More information

Local Illumination. CMPT 361 Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller

Local Illumination. CMPT 361 Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller Local Illumination CMPT 361 Introduction to Computer Graphics Torsten Möller Graphics Pipeline Hardware Modelling Transform Visibility Illumination + Shading Perception, Interaction Color Texture/ Realism

More information

Curves & Surfaces. Last Time? Progressive Meshes. Selective Refinement. Adjacency Data Structures. Mesh Simplification. Mesh Simplification

Curves & Surfaces. Last Time? Progressive Meshes. Selective Refinement. Adjacency Data Structures. Mesh Simplification. Mesh Simplification Last Time? Adjacency Data Structures Curves & Surfaces Geometric & topologic information Dynamic allocation Efficiency of access Mesh Simplification edge collapse/vertex split geomorphs progressive transmission

More information

Objectives. Introduce Phong model Introduce modified Phong model Consider computation of required vectors Discuss polygonal shading.

Objectives. Introduce Phong model Introduce modified Phong model Consider computation of required vectors Discuss polygonal shading. Shading II 1 Objectives Introduce Phong model Introduce modified Phong model Consider computation of required vectors Discuss polygonal shading Flat Smooth Gouraud 2 Phong Lighting Model A simple model

More information

CSE 167: Introduction to Computer Graphics Lecture #6: Lights. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2014

CSE 167: Introduction to Computer Graphics Lecture #6: Lights. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2014 CSE 167: Introduction to Computer Graphics Lecture #6: Lights Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2014 Announcements Project 2 due Friday, Oct. 24 th Midterm Exam

More information

Real-Time Shadows. André Offringa Timo Laman

Real-Time Shadows. André Offringa Timo Laman Real-Time Shadows André Offringa Timo Laman Real-Time rendering Radiosity/Raytracing not feasible in real-time applications Scene rendered using projection & scan conversion of polygons Advantage: significant

More information

From Graphics to Visualization

From Graphics to Visualization From Graphics to Visualization Introduction Light Sources Surface Lighting Effects Basic (Local ) Illumination Models Polgon-Rendering Methods Texture Mapping Transparenc and Blending Visualization Pipeline

More information

Dithering and Rendering. CS116B Chris Pollett Apr 18, 2004.

Dithering and Rendering. CS116B Chris Pollett Apr 18, 2004. Dithering and Rendering CS116B Chris Pollett Apr 18, 2004. Outline Dithering Techniques Constant-Intensity Surface Rendering Gouraud Surface Rendering Phong Surface Rendering Fast Phong Surface Rendering

More information

Today. Global illumination. Shading. Interactive applications. Rendering pipeline. Computergrafik. Shading Introduction Local shading models

Today. Global illumination. Shading. Interactive applications. Rendering pipeline. Computergrafik. Shading Introduction Local shading models Computergrafik Matthias Zwicker Universität Bern Herbst 2009 Today Introduction Local shading models Light sources strategies Compute interaction of light with surfaces Requires simulation of physics Global

More information

Objectives. Introduce the OpenGL shading Methods 1) Light and material functions on MV.js 2) per vertex vs per fragment shading 3) Where to carry out

Objectives. Introduce the OpenGL shading Methods 1) Light and material functions on MV.js 2) per vertex vs per fragment shading 3) Where to carry out Objectives Introduce the OpenGL shading Methods 1) Light and material functions on MV.js 2) per vertex vs per fragment shading 3) Where to carry out 1 Steps in OpenGL shading Enable shading and select

More information

Illumination & Shading: Part 1

Illumination & Shading: Part 1 Illumination & Shading: Part 1 Light Sources Empirical Illumination Shading Local vs Global Illumination Lecture 10 Comp 236 Spring 2005 Computer Graphics Jargon: Illumination Models Illumination - the

More information

Topic 9: Lighting & Reflection models 9/10/2016. Spot the differences. Terminology. Two Components of Illumination. Ambient Light Source

Topic 9: Lighting & Reflection models 9/10/2016. Spot the differences. Terminology. Two Components of Illumination. Ambient Light Source Topic 9: Lighting & Reflection models Lighting & reflection The Phong reflection model diffuse component ambient component specular component Spot the differences Terminology Illumination The transport

More information

3D Object Representation

3D Object Representation 3D Object Representation Object Representation So far we have used the notion of expressing 3D data as points(or vertices) in a Cartesian or Homogeneous coordinate system. We have simplified the representation

More information

Topic 9: Lighting & Reflection models. Lighting & reflection The Phong reflection model diffuse component ambient component specular component

Topic 9: Lighting & Reflection models. Lighting & reflection The Phong reflection model diffuse component ambient component specular component Topic 9: Lighting & Reflection models Lighting & reflection The Phong reflection model diffuse component ambient component specular component Spot the differences Terminology Illumination The transport

More information

AMCS / CS 247 Scientific Visualization Lecture 10: (GPU) Texture Mapping. Markus Hadwiger, KAUST

AMCS / CS 247 Scientific Visualization Lecture 10: (GPU) Texture Mapping. Markus Hadwiger, KAUST AMCS / CS 247 Scientific Visualization Lecture 10: (GPU) Texture Mapping Markus Hadwiger, KAUST Reading Assignment #5 (until Oct. 8) Read (required): Real-Time Volume Graphics, Chapter 2 (GPU Programming)

More information

Shading 1: basics Christian Miller CS Fall 2011

Shading 1: basics Christian Miller CS Fall 2011 Shading 1: basics Christian Miller CS 354 - Fall 2011 Picking colors Shading is finding the right color for a pixel This color depends on several factors: The material of the surface itself The color and

More information

Orthogonal Projection Matrices. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015

Orthogonal Projection Matrices. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015 Orthogonal Projection Matrices 1 Objectives Derive the projection matrices used for standard orthogonal projections Introduce oblique projections Introduce projection normalization 2 Normalization Rather

More information

Computer Graphics. Illumination Models and Surface-Rendering Methods. Somsak Walairacht, Computer Engineering, KMITL

Computer Graphics. Illumination Models and Surface-Rendering Methods. Somsak Walairacht, Computer Engineering, KMITL Computer Graphics Chapter 10 llumination Models and Surface-Rendering Methods Somsak Walairacht, Computer Engineering, KMTL Outline Light Sources Surface Lighting Effects Basic llumination Models Polygon

More information

Illumination and Shading

Illumination and Shading Illumination and Shading Computer Graphics COMP 770 (236) Spring 2007 Instructor: Brandon Lloyd 2/14/07 1 From last time Texture mapping overview notation wrapping Perspective-correct interpolation Texture

More information

Fast Phong Shading by Gary Bishop

Fast Phong Shading by Gary Bishop Fast Phong Shading by Gary Bishop Back Fast Phong Shading. p 103-105 Gary Bishop Room 4E-626 David M Weimer Room 4F-637 AT&T Bell Laboratories Crawfords Corner Road Holmdel, NJ 07733 Fast Phong Shading

More information

Reading. 18. Projections and Z-buffers. Required: Watt, Section , 6.3, 6.6 (esp. intro and subsections 1, 4, and 8 10), Further reading:

Reading. 18. Projections and Z-buffers. Required: Watt, Section , 6.3, 6.6 (esp. intro and subsections 1, 4, and 8 10), Further reading: Reading Required: Watt, Section 5.2.2 5.2.4, 6.3, 6.6 (esp. intro and subsections 1, 4, and 8 10), Further reading: 18. Projections and Z-buffers Foley, et al, Chapter 5.6 and Chapter 6 David F. Rogers

More information

Computer Graphics. Instructor: Oren Kapah. Office Hours: T.B.A.

Computer Graphics. Instructor: Oren Kapah. Office Hours: T.B.A. Computer Graphics Instructor: Oren Kapah (orenkapahbiu@gmail.com) Office Hours: T.B.A. The CG-IDC slides for this course were created by Toky & Hagit Hel-Or 1 CG-IDC 2 Exercise and Homework The exercise

More information

Computer Graphics I Lecture 11

Computer Graphics I Lecture 11 15-462 Computer Graphics I Lecture 11 Midterm Review Assignment 3 Movie Midterm Review Midterm Preview February 26, 2002 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/

More information

Graphics for VEs. Ruth Aylett

Graphics for VEs. Ruth Aylett Graphics for VEs Ruth Aylett Overview VE Software Graphics for VEs The graphics pipeline Projections Lighting Shading VR software Two main types of software used: off-line authoring or modelling packages

More information

Graphics for VEs. Ruth Aylett

Graphics for VEs. Ruth Aylett Graphics for VEs Ruth Aylett Overview VE Software Graphics for VEs The graphics pipeline Projections Lighting Shading Runtime VR systems Two major parts: initialisation and update loop. Initialisation

More information

Modeling the Virtual World

Modeling the Virtual World Modeling the Virtual World Joaquim Madeira November, 2013 RVA - 2013/2014 1 A VR system architecture Modeling the Virtual World Geometry Physics Haptics VR Toolkits RVA - 2013/2014 2 VR object modeling

More information

Scan Conversion- Polygons

Scan Conversion- Polygons Scan Conversion- olgons Flood Fill Algorithm Chapter 9 Scan Conversion (part ) Drawing olgons on Raster Displa Input polgon with rasterized edges = (x,) point inside Goal: Fill interior with specified

More information

CS 130 Exam I. Fall 2015

CS 130 Exam I. Fall 2015 S 3 Exam I Fall 25 Name Student ID Signature You may not ask any questions during the test. If you believe that there is something wrong with a question, write down what you think the question is trying

More information

CSE 167: Introduction to Computer Graphics Lecture #7: Lights. Jürgen P. Schulze, Ph.D. University of California, San Diego Spring Quarter 2015

CSE 167: Introduction to Computer Graphics Lecture #7: Lights. Jürgen P. Schulze, Ph.D. University of California, San Diego Spring Quarter 2015 CSE 167: Introduction to Computer Graphics Lecture #7: Lights Jürgen P. Schulze, Ph.D. University of California, San Diego Spring Quarter 2015 Announcements Thursday in-class: Midterm Can include material

More information

Graphics Hardware and Display Devices

Graphics Hardware and Display Devices Graphics Hardware and Display Devices CSE328 Lectures Graphics/Visualization Hardware Many graphics/visualization algorithms can be implemented efficiently and inexpensively in hardware Facilitates interactive

More information

Lecture 15: Shading-I. CITS3003 Graphics & Animation

Lecture 15: Shading-I. CITS3003 Graphics & Animation Lecture 15: Shading-I CITS3003 Graphics & Animation E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012 Objectives Learn that with appropriate shading so objects appear as threedimensional

More information

CSE528 Computer Graphics: Theory, Algorithms, and Applications

CSE528 Computer Graphics: Theory, Algorithms, and Applications CSE528 Computer Graphics: Theory, Algorithms, and Applications Hong Qin State University of New York at Stony Brook (Stony Brook University) Stony Brook, New York 11794--4400 Tel: (631)632-8450; Fax: (631)632-8334

More information

3/1/2010. Acceleration Techniques V1.2. Goals. Overview. Based on slides from Celine Loscos (v1.0)

3/1/2010. Acceleration Techniques V1.2. Goals. Overview. Based on slides from Celine Loscos (v1.0) Acceleration Techniques V1.2 Anthony Steed Based on slides from Celine Loscos (v1.0) Goals Although processor can now deal with many polygons (millions), the size of the models for application keeps on

More information

Illumination Modelling

Illumination Modelling Illumination Modelling 1 Specular term 2 Local shading analysis: interaction between one light source, the viewer and a single point on the object surface. how do we model specular term? a = angle between

More information

Computer Graphics. Lecture 14 Bump-mapping, Global Illumination (1)

Computer Graphics. Lecture 14 Bump-mapping, Global Illumination (1) Computer Graphics Lecture 14 Bump-mapping, Global Illumination (1) Today - Bump mapping - Displacement mapping - Global Illumination Radiosity Bump Mapping - A method to increase the realism of 3D objects

More information

Illumination Model. The governing principles for computing the. Apply the lighting model at a set of points across the entire surface.

Illumination Model. The governing principles for computing the. Apply the lighting model at a set of points across the entire surface. Illumination and Shading Illumination (Lighting) Model the interaction of light with surface points to determine their final color and brightness OpenGL computes illumination at vertices illumination Shading

More information

CSE 167: Introduction to Computer Graphics Lecture #8: Textures. Jürgen P. Schulze, Ph.D. University of California, San Diego Spring Quarter 2016

CSE 167: Introduction to Computer Graphics Lecture #8: Textures. Jürgen P. Schulze, Ph.D. University of California, San Diego Spring Quarter 2016 CSE 167: Introduction to Computer Graphics Lecture #8: Textures Jürgen P. Schulze, Ph.D. University of California, San Diego Spring Quarter 2016 Announcements Project 2 due this Friday Midterm next Tuesday

More information

Computer Graphics (CS 4731) Lecture 16: Lighting, Shading and Materials (Part 1)

Computer Graphics (CS 4731) Lecture 16: Lighting, Shading and Materials (Part 1) Computer Graphics (CS 4731) Lecture 16: Lighting, Shading and Materials (Part 1) Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) Why do we need Lighting & shading? Sphere

More information

Shading and Illumination

Shading and Illumination Shading and Illumination OpenGL Shading Without Shading With Shading Physics Bidirectional Reflectance Distribution Function (BRDF) f r (ω i,ω ) = dl(ω ) L(ω i )cosθ i dω i = dl(ω ) L(ω i )( ω i n)dω

More information

Curved PN Triangles. Alex Vlachos Jörg Peters

Curved PN Triangles. Alex Vlachos Jörg Peters 1 Curved PN Triangles Alex Vlachos AVlachos@ati.com Jörg Peters jorg@cise.ufl.edu Outline 2 Motivation Constraints Surface Properties Performance Demo Quick Demo 3 Constraints 4 Software Developers Must

More information

Lighting/Shading II. Week 7, Mon Mar 1

Lighting/Shading II. Week 7, Mon Mar 1 University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2010 Tamara Munzner Lighting/Shading II Week 7, Mon Mar 1 http://www.ugrad.cs.ubc.ca/~cs314/vjan2010 News Homework 3 out today Homework

More information

Lighting and Shading

Lighting and Shading Lighting and Shading Today: Local Illumination Solving the rendering equation is too expensive First do local illumination Then hack in reflections and shadows Local Shading: Notation light intensity in,

More information

SEOUL NATIONAL UNIVERSITY

SEOUL NATIONAL UNIVERSITY Fashion Technology 5. 3D Garment CAD-1 Sungmin Kim SEOUL NATIONAL UNIVERSITY Overview Design Process Concept Design Scalable vector graphics Feature-based design Pattern Design 2D Parametric design 3D

More information