A two-fluid solver for hydraulic applications

Size: px
Start display at page:

Download "A two-fluid solver for hydraulic applications"

Transcription

1 A two-fluid solver for hydraulic applications L. Qian, D. M. Causon, D. M. Ingram&C. G. Mingham Department of Computing and Mathematics, I%e Manchester Metropolitan University, Manchester Ml 5 GD, United Kingdom Abstract A two-fluid solver for hydraulic applications including the prediction of violent overtopping of waves at seawalls has been developed. The scheme is based on the solution of the incompressible Navier-Stokes equations for a variable density fluid system using the artificial compressibility method. The computational domain encompasses both water and air regions and the interface between the two fluids is treated as a contact discontinuity in the density field which is captured automatically as part of the solution. A time+accurate solution has been achieved by using an implicit dual-time iteration technique. Several classical test cases includhg the low amplitude sloshing tank and the broken dam problems, as well as a collapsing water column hitting a downstream obstacle have been calculated using the present approach and the results compare very well with other theoretical and experimental results. 1 Introduction Traditional approaches to flow problems with free surfaces separating a liquid and a gas such as water and air are surface-fitting methods and surfacetracking methods. Surface-fitting methods solve the flow in the liquid region only and the free surface is treated as a moving boundary of the computational domain. This method is very efficient for simple free surface problems but its validlty is limited by the skewness of the resulting grid, thus precluding it from being applied to, for example, wave breaking problems. The surface-tracking method, however, solves both fluid regions on a fixed grid system and the free surface is identified by a marker function such as the

2 volume fraction function in the widely used VOF method. The shape of the free surface can then be reconstructed from the distribution of the marker function. This method can define very sharp interfaces and is robust. However, the tracking and the reconstruction of the free surfaces remain complicated and difficult, especially in three dimensions. More recently, another approach, referred to as the surface-capturing method, has been developed by Kelecy and Pletcher[l], which views a free surface as a contact discontinuity in the density field. Similar to the shock-capturing method in the compressible flow, in this approach, the interface is automatically captured as part of the solution along with other flow variables such as pressure and velocity by the enforcement of a conservation law, thereby eliminating the need for complex surface tracking and reconstruction procedures. The robustness and simplicity of the method represents a new development in the field and is the basis of the present study in developing numerical methods for hydraulic applications. More specifically, the mathematical model of the tw~fluid (water and air) system can be formulated as a set of partial differential equations which govern the motion of an inviscid, incompressible, variable density fluid. These equations consist of mass conservation (density) equation, momentum equation and an incompressibility y constraint (continuity equation) that are solved simultaneously using the finite volume method. The formulation is based on the artificial compressibility method in which the pressure, density and velocity fields are directly coupled to produce a hyperbolic system of equations. To achieve a time-accurate solution for unsteady flow problems, an implicit dual-time iteration technique has been used, in which the solution at each real time step is obtained by solving a steady-state problem in the pseudotime domain. To evaluate the inviscid fluxes, Roe s flux function is adopted locally at each cell edge, assuming a 1-D Riemann problem in the direction normal to the cell edge. To achieve a second-order accurate solution in space, a piece-wise linear model for the cell variables is constructed in conjunction with a slope limiter to prevent over-shooting or under-shooting of the interpolated variable values before the two Riemann states at each cell edge are computed. For the pseudotime iteration, however, a first order upwind scheme can be used to calculate the inviscid fluxes and the resultant linear equations are solved using an approximate LU factorization scheme[2]. At every real time step, once the flow variables including density have been calculated, the position of the interface can be defined as the contour with the average density value of water and air. In the following sections, the mathematical formulation of the method is reviewed, followed by a detailed description of the numerical implementation. The results for three typical test cases including the classical low amplitute sloshing tank problem, the dam-breaking problem and a collapsing water column hitting a downstream obstacle are presented using this approach. Finally, some conclusions are drawn from the study and a brief dkicussion of future work is given.

3 2 Numerical method 2.1 Governing equations and boundary conditions The integral form of the 2D incompressible Euler equations for a fluid system with variable density field can be written m wqdo+hf nds=./lbdo (1) where fl is the domain of interest, S is the boundary surrounding 0, n is the unit normal to S in the outward direction, Q is the vector of conserved variables, F is the vector of flux function through S and B is the source term for body forces. By using the artificial compressibility method and assuming the only body force is the gravity, Q, F and B are given as Q = k, PU,PV,P/P]T, 1?= j~n. + grnv and B,= [0,0, pg, O], where j I = [F, W2 + P, PJV, U]T, 9 = [PV,puv, pv + P,v], u and v are the velocity components, p is the density, p is the pressure, B is the coefficient of artificial compressibility and g is the gravitational acceleration. Introducing a fictitious time derivative of pressure into the continuity equation produces a system of hyperbolic equations which can then be solved by any of the recently developed upwind finite volume techniques, such as the characteristics-based Godunov-type schemes. Clearly, from the above formulation, any meaningful solution can only be achieved when a divergenc~free velocity field is recoverd, i.e. dp/8t -) O. For a steady-state calculation, this should not be a problem. For unsteady flow problems, however, a divergence-free velocity should be attained at every time step, which can be done by using the dual-time stepping technique and subiterating the equations in the pseudotime domain to achieve a steady-state solution for each physical time step. For the current problem, the velocity boundary conditions consist of the following two parts: at the body surface, we have a no-penetration condition for inviscid flows U.n =() (2) and at infinity, we have freestream conditions U=um (3) The boundary conditions for pressure and density can also be specified accordingly. 2.2 Numerical solution In the present study, a cell centred finite volume approach has been adopted to discretize the governing equations on Cartesian grids. For each control

4 volume, Eq. (1)can be written as ~Qivi = _ l% / aci F nds + Bw = R(Qi) (4) where Qi are the average quantities at cell i stored at the cell centre, and 8Ci and Vi denote the boundary of the cell and area of cell i, respectively. The surface integration on the right hand side of Eq. (4) is evaluated by summing the flux vectors over each edge of a cell and the discrete form of the integral is! F.nds = ~ Fi,jAlj (5) ac; j=k(i) where k(i) is a list of the neighboring cells to cell i, Fi,j is the numerical flux through the interface of cells i and j, and Alj is the length of edge j. In present study, k(i) is a list of four cells. In order to evaluate the inviscid numerical fluxes F~j, Roe s flux function is adopted locally at each cell edge, assuming a ID Riemann problem in the direction normal to the cell edge, as follows: F:j = ;[F (Q:J + F1(Q;j) \Al(Q:j) - Q;j)], IA[ = RIAIL, (6) where Q~j and Q;j are the reconstructed right and left states at the cell face between cell i and cell j, A is the flux Jacobian evaluated by Roe s average state, which is the average of Q+ and Q. The quantities R, L and A are the right and left eigenvectors of A and the eigenvalues of A[1][2]. To achieve second-order accuracy, a piecewise linear model for the cell variables must first be reconstructed from the solution before the two Riemann states at each cell edge are computed. For a given cell with centre point A for example, this requires the construction of the cell variables in the form Q(x, y) = QA + AQ~ r (7) where r is the vector from the cell centre A to any point (z, y) within the cell, QA is the cell centre value of the cell, and AQA is the gradient of cell A evaluated using the neighboring cell centre values. To prevent spurious over- or under-shoots, a slope limiter function such as the van Leer limiter should be applied before calculating the gradient. By discretising Eq. (4) in time, the first-order Euler implicit difference scheme for example can be used: (QV) +l - (QV) At R(Q +l), (8)

5 t Iidnmlic /)7/owf(tliotI,\/CI}IC[cycImeHt 331 where V is the cell area. To achieve a time-accurate solution for each time step for unsteady flow problems, Eq. (8) must be further modified to obtain a divergence free velocity field. This is accomplished by introducing a pseudotime derivative into the system of equation, as (QV) +l~+i (QV)n+l,m + ~~~(QV)n+ m+i- (Qv)n AT At = _~(Q~+l>~+l), (9) where T is the pseudotime and It. = diag[l, 1, 1, O]. The right-hand side (R.HS) of Eq. (9) can be linearized using Newton s method at the m + 1 pseudotime level to yield [l v + 19R(Qn+11m) m i3q ](Q~+l,m+l _ fy+l,m) = _pta (Qn+ m- Qn)v At +~(Qn+lIm)l> where Im = diag[l/at + l/at, l/ar + l/at, l/ar + I/At, l/at]. When A(Q +l)~ = Qn+l,m+l _ Q +l m is iterated to zero, the density and momentum equations are satisfied and the divergence of the velocity at time level n + 1 is zero. The system of the equation can be written in matrix form as (D+ L + U)AQ = RHS, (lo) where D is a block diagonal matrix, L is a block lower triangular matrix, and U is a block upper triangular matrix. Each of the elements in D, L and U is a 4 x 4 matrix. An approximate LU factorization(alu) scheme as proposed by Pan and Lomax[2] can be adopted to form the inverse of Eq. (10) in the form (D+ L) D-l(D + U)AQ8 = RHS, (11) Within each time step of the implicit integration the subiteration is terminated when the L2 norm of the iteration process is less than a specified limit. N L2 = [~(Qs+l Qs)2]/N, (12) i 1/2 3 Results Three test cases including the classical low amplitude sloshing tank problem, the collapse of a water column and the collapse of a water column with

6 an obstacle, have been calculated to validate the numerical scheme. Cartesian uniform grids have been used throughout due to the simplicity of the geometry and the time step At used for advancing the solution is within the range of 5 x 10 6 to 5 x The density ratio between water and air is taken as 1000:1 and viscous effects have been ignored in all calculations. 3.1 Low amplitude sloshing tank The sloshing of a liquid wave with a amplitude under the influence of gravity is a classical test case for free surface flow problems and more recently for evaluating interface tracking methodology[3]. The initial condition of the flow is shown in Fig.(1) for t = 0.0, where the water has an average depth of 0.05m, and its surface is defined by one half of a cosine wave with an amplitude of 0.005m. The computational domain used has a base length and a height of O.lm. For the results presented, the domain is discretised with 50 x 50 cells. Several snapshots of the results for the first period are also shown in Fig.(1), where both the location of the water surface and the velocity vectors are plotted. After a quarter of a period the potential energy of the system has been transferred to kinetic energy and the velocities reach their maxima. After a half period all the kinetic energy has been transferred back into potential energy with the velocity almost back to zero. Fig. (2) shows plots of the position of the interface at the left boundary against time for the first five periods where the theoretical solution for the first mode of the problem with period of sloshing P = s is also shown. As analysed by Tadjibaksh and Keller( 1960), the second mode with half the above period is also important for the problem which causes a slight difference between the predicted and the analytical values. 3.2 Collapse of a water column The initial condition for this problem is shown in Fig(3). A water column with a height of 0.3m and a width of O.15m is initially confined to the left in a container of size 0.6m x 0.6m which is discretised by 100 x 100 cells. The confinement is then suddenly withdrawn at time t = 0.0s. The time evolution of the collapsing column is shown in Fig(3) along with the velocity vectors, which compare well with the images from a video camera (not shown here) taken by Koshizuka(1995) [5]. The non-dimensional height at the left wall and leading-edge positions of the collapsing water column versus the non-dimensional time are shown in Fig.(4) respectively and both are in good agreement with the experimental data presented by Mai-tin and Moyce (1952 )[4].

7 //1 (/) (111//< Il?f;ll llldti[vl.ilm(lgeml nt 333,..A Figure 1: Plots of the wave position and velocity vectors for the first period of the sloshing of an inviscid liquid under the influence of gravity o 04 L-_... J S2 r,me(=l Figure 2: Position of the interface at the left boundary plotted against time

8 r-~ 05,=OOs 1:.:,,,. 6,.06s,=0?6 ::, :,,. 03 }::: ::,,.,,,.!,,,,!!,,,,! ~2::j,!,,!,,\\,,. I Figure 3: Plots of the interface position and velocity vectors for the collapsing water column problem

9 calculated \,.. per. m,. c. \ \... T calculated-.xm?r, m.nt. 0.4 k ~.. > 0.3..>,.., ~.] ~ t.sqrt [g/a). 0.5 /: /,... /: / J Figure 4: The height of the collapsing water column of the leading edge (right) versus time (left) and the position 03 02, O;+ Figure 5: Numerical results of a collapsing water column hitting an obstacle

10 3.3 Collapsing water column hitting an obstacle The initial position and size of the water column are the same as in the previous case, but a small obstacle is placed on the bottom of the tank to the right of the cylinder. The size of the obstacle is 0.024rn x 0.048m. The predicted positions of the interface for times t = 0.2s and 0.4s are shown in Fig(5), in which the corresponding photographs taken by Koshizuka(1995) [5] are also included for comparison. The general agreement between the numerical and experimental results is satisfactory. 4 Conclusions A two-fluid solver has been developed for hydraulic applications by solving a set of conservation equations for an inviscid variable density fluid system. The interface between two fluids can be captured automatically as part of the solution along with other flow variables. The results for several test cases have shown that the method is accurate, robust and simple. Future work will include the incorporation of the Cartesian cut cell method[6,7] to represent complex geometries arising from the real flow problems. References [1] Kelecy F.J. & Pletcher R. H., The development of a free surface capturing approach for multidimensional free surface flows in closed containers, J of Comput. Phys., 139, ,1997. [2] Pan D. & Lomax H., A new approximate LU factorization scheme for the Navier-Stokes equations, AIAA Journal, 26, , [3] Ubbink 0., Numerical prediction of two fluid systems with sharp interface, Ph.D Thesis, Imperial College, 1997, unpublished. [4] Martin,.J.C. & Moyce, W. J., An experimental study of the collapse of liquid column on a rigid horizontal plane. Phdos. Thans. Roy. Sot. London, A244, ,1952. [5] Koshizuka, S. et al, A particle method for incompressible viscous flows with fluid fragmentation, Computational Fluid Dynamics Journal, 113, , [6] Causon D.M. et al, A Cartesian cut cell method for shallow water flows with moving boundaries, Advances in Water Resources, 24, , [7] Qian L., Causon D.M. et al, A Cartesian cut cell method for incompressible viscous flows, Proc. of ECCOMAS CFD 2001, Southend-on Sea, UK, 2001.

Faculty of Mechanical and Manufacturing Engineering, University Tun Hussein Onn Malaysia (UTHM), Parit Raja, Batu Pahat, Johor, Malaysia

Faculty of Mechanical and Manufacturing Engineering, University Tun Hussein Onn Malaysia (UTHM), Parit Raja, Batu Pahat, Johor, Malaysia Applied Mechanics and Materials Vol. 393 (2013) pp 305-310 (2013) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amm.393.305 The Implementation of Cell-Centred Finite Volume Method

More information

Experimental Validation of the Computation Method for Strongly Nonlinear Wave-Body Interactions

Experimental Validation of the Computation Method for Strongly Nonlinear Wave-Body Interactions Experimental Validation of the Computation Method for Strongly Nonlinear Wave-Body Interactions by Changhong HU and Masashi KASHIWAGI Research Institute for Applied Mechanics, Kyushu University Kasuga

More information

CFD MODELING FOR PNEUMATIC CONVEYING

CFD MODELING FOR PNEUMATIC CONVEYING CFD MODELING FOR PNEUMATIC CONVEYING Arvind Kumar 1, D.R. Kaushal 2, Navneet Kumar 3 1 Associate Professor YMCAUST, Faridabad 2 Associate Professor, IIT, Delhi 3 Research Scholar IIT, Delhi e-mail: arvindeem@yahoo.co.in

More information

NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011

NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011 NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011 First-Order Hyperbolic System Method If you have a CFD book for hyperbolic problems, you have a CFD book for all problems.

More information

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering Debojyoti Ghosh Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering To study the Dynamic Stalling of rotor blade cross-sections Unsteady Aerodynamics: Time varying

More information

1.2 Numerical Solutions of Flow Problems

1.2 Numerical Solutions of Flow Problems 1.2 Numerical Solutions of Flow Problems DIFFERENTIAL EQUATIONS OF MOTION FOR A SIMPLIFIED FLOW PROBLEM Continuity equation for incompressible flow: 0 Momentum (Navier-Stokes) equations for a Newtonian

More information

The Development of a Navier-Stokes Flow Solver with Preconditioning Method on Unstructured Grids

The Development of a Navier-Stokes Flow Solver with Preconditioning Method on Unstructured Grids Proceedings of the International MultiConference of Engineers and Computer Scientists 213 Vol II, IMECS 213, March 13-15, 213, Hong Kong The Development of a Navier-Stokes Flow Solver with Preconditioning

More information

EXPERIMENTAL VALIDATION OF STAR-CCM+ FOR LIQUID CONTAINER SLOSH DYNAMICS

EXPERIMENTAL VALIDATION OF STAR-CCM+ FOR LIQUID CONTAINER SLOSH DYNAMICS EXPERIMENTAL VALIDATION OF STAR-CCM+ FOR LIQUID CONTAINER SLOSH DYNAMICS Brandon Marsell a.i. solutions, Launch Services Program, Kennedy Space Center, FL 1 Agenda Introduction Problem Background Experiment

More information

Solving Partial Differential Equations on Overlapping Grids

Solving Partial Differential Equations on Overlapping Grids **FULL TITLE** ASP Conference Series, Vol. **VOLUME**, **YEAR OF PUBLICATION** **NAMES OF EDITORS** Solving Partial Differential Equations on Overlapping Grids William D. Henshaw Centre for Applied Scientific

More information

FEMLAB Exercise 1 for ChE366

FEMLAB Exercise 1 for ChE366 FEMLAB Exercise 1 for ChE366 Problem statement Consider a spherical particle of radius r s moving with constant velocity U in an infinitely long cylinder of radius R that contains a Newtonian fluid. Let

More information

Driven Cavity Example

Driven Cavity Example BMAppendixI.qxd 11/14/12 6:55 PM Page I-1 I CFD Driven Cavity Example I.1 Problem One of the classic benchmarks in CFD is the driven cavity problem. Consider steady, incompressible, viscous flow in a square

More information

Axisymmetric Viscous Flow Modeling for Meridional Flow Calculation in Aerodynamic Design of Half-Ducted Blade Rows

Axisymmetric Viscous Flow Modeling for Meridional Flow Calculation in Aerodynamic Design of Half-Ducted Blade Rows Memoirs of the Faculty of Engineering, Kyushu University, Vol.67, No.4, December 2007 Axisymmetric Viscous Flow Modeling for Meridional Flow alculation in Aerodynamic Design of Half-Ducted Blade Rows by

More information

Modeling & Simulation of Supersonic Flow Using McCormack s Technique

Modeling & Simulation of Supersonic Flow Using McCormack s Technique Modeling & Simulation of Supersonic Flow Using McCormack s Technique M. Saif Ullah Khalid*, Afzaal M. Malik** Abstract In this work, two-dimensional inviscid supersonic flow around a wedge has been investigated

More information

Parallelization study of a VOF/Navier-Stokes model for 3D unstructured staggered meshes

Parallelization study of a VOF/Navier-Stokes model for 3D unstructured staggered meshes Parallelization study of a VOF/Navier-Stokes model for 3D unstructured staggered meshes L. Jofre, O. Lehmkuhl, R. Borrell, J. Castro and A. Oliva Corresponding author: cttc@cttc.upc.edu Centre Tecnològic

More information

2-D Tank Sloshing Using the Coupled Eulerian- LaGrangian (CEL) Capability of Abaqus/Explicit

2-D Tank Sloshing Using the Coupled Eulerian- LaGrangian (CEL) Capability of Abaqus/Explicit 2-D Tank Sloshing Using the Coupled Eulerian- LaGrangian (CEL) Capability of Abaqus/Explicit Jeff D. Tippmann, Sharat C. Prasad 2, and Parthiv N. Shah ATA Engineering, Inc. San Diego, CA 923 2 Dassault

More information

Realistic Animation of Fluids

Realistic Animation of Fluids 1 Realistic Animation of Fluids Nick Foster and Dimitris Metaxas Presented by Alex Liberman April 19, 2005 2 Previous Work Used non physics-based methods (mostly in 2D) Hard to simulate effects that rely

More information

Realtime Water Simulation on GPU. Nuttapong Chentanez NVIDIA Research

Realtime Water Simulation on GPU. Nuttapong Chentanez NVIDIA Research 1 Realtime Water Simulation on GPU Nuttapong Chentanez NVIDIA Research 2 3 Overview Approaches to realtime water simulation Hybrid shallow water solver + particles Hybrid 3D tall cell water solver + particles

More information

Numerical and theoretical analysis of shock waves interaction and reflection

Numerical and theoretical analysis of shock waves interaction and reflection Fluid Structure Interaction and Moving Boundary Problems IV 299 Numerical and theoretical analysis of shock waves interaction and reflection K. Alhussan Space Research Institute, King Abdulaziz City for

More information

MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP

MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP Vol. 12, Issue 1/2016, 63-68 DOI: 10.1515/cee-2016-0009 MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP Juraj MUŽÍK 1,* 1 Department of Geotechnics, Faculty of Civil Engineering, University

More information

Nonlinear Potential Flow Solver Development in OpenFOAM

Nonlinear Potential Flow Solver Development in OpenFOAM Nonlinear Potential Flow Solver Development in OpenFOAM A. Mehmood Plymouth University, UK April 19,2016 A. Mehmood Table of Contents 1 Motivation 2 Solution Methodology Mathematical Formulation Sequence

More information

CHAPTER 3. Elementary Fluid Dynamics

CHAPTER 3. Elementary Fluid Dynamics CHAPTER 3. Elementary Fluid Dynamics - Understanding the physics of fluid in motion - Derivation of the Bernoulli equation from Newton s second law Basic Assumptions of fluid stream, unless a specific

More information

Navier-Stokes & Flow Simulation

Navier-Stokes & Flow Simulation Last Time? Navier-Stokes & Flow Simulation Pop Worksheet! Teams of 2. Hand in to Jeramey after we discuss. Sketch the first few frames of a 2D explicit Euler mass-spring simulation for a 2x3 cloth network

More information

Development of the Compliant Mooring Line Model for FLOW-3D

Development of the Compliant Mooring Line Model for FLOW-3D Flow Science Report 08-15 Development of the Compliant Mooring Line Model for FLOW-3D Gengsheng Wei Flow Science, Inc. October 2015 1. Introduction Mooring systems are common in offshore structures, ship

More information

Simulation of Offshore Wave Impacts with a Volume of Fluid Method. Tim Bunnik Tim Bunnik MARIN

Simulation of Offshore Wave Impacts with a Volume of Fluid Method. Tim Bunnik Tim Bunnik MARIN Simulation of Offshore Wave Impacts with a Volume of Fluid Method Tim Bunnik Tim Bunnik MARIN Outline Part I: Numerical method -Overview Part II: Applications - Dambreak - Wave run-up - Sloshing loads

More information

Mid-Year Report. Discontinuous Galerkin Euler Equation Solver. Friday, December 14, Andrey Andreyev. Advisor: Dr.

Mid-Year Report. Discontinuous Galerkin Euler Equation Solver. Friday, December 14, Andrey Andreyev. Advisor: Dr. Mid-Year Report Discontinuous Galerkin Euler Equation Solver Friday, December 14, 2012 Andrey Andreyev Advisor: Dr. James Baeder Abstract: The focus of this effort is to produce a two dimensional inviscid,

More information

A higher-order finite volume method with collocated grid arrangement for incompressible flows

A higher-order finite volume method with collocated grid arrangement for incompressible flows Computational Methods and Experimental Measurements XVII 109 A higher-order finite volume method with collocated grid arrangement for incompressible flows L. Ramirez 1, X. Nogueira 1, S. Khelladi 2, J.

More information

Realistic Animation of Fluids

Realistic Animation of Fluids Realistic Animation of Fluids p. 1/2 Realistic Animation of Fluids Nick Foster and Dimitri Metaxas Realistic Animation of Fluids p. 2/2 Overview Problem Statement Previous Work Navier-Stokes Equations

More information

2D numerical simulation of ocean waves

2D numerical simulation of ocean waves 2D numerical simulation of ocean waves Qingjie. Du,*, Y.C. Dennis. Leung Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China * Corresponding author. Tel: +852 51743593,

More information

Numerical Analysis of Shock Tube Problem by using TVD and ACM Schemes

Numerical Analysis of Shock Tube Problem by using TVD and ACM Schemes Numerical Analysis of Shock Tube Problem by using TVD and Schemes Dr. Mukkarum Husain, Dr. M. Nauman Qureshi, Syed Zaid Hasany IST Karachi, Email: mrmukkarum@yahoo.com Abstract Computational Fluid Dynamics

More information

Investigation of cross flow over a circular cylinder at low Re using the Immersed Boundary Method (IBM)

Investigation of cross flow over a circular cylinder at low Re using the Immersed Boundary Method (IBM) Computational Methods and Experimental Measurements XVII 235 Investigation of cross flow over a circular cylinder at low Re using the Immersed Boundary Method (IBM) K. Rehman Department of Mechanical Engineering,

More information

The gas-kinetic methods have become popular for the simulation of compressible fluid flows in the last

The gas-kinetic methods have become popular for the simulation of compressible fluid flows in the last Parallel Implementation of Gas-Kinetic BGK Scheme on Unstructured Hybrid Grids Murat Ilgaz Defense Industries Research and Development Institute, Ankara, 626, Turkey and Ismail H. Tuncer Middle East Technical

More information

Use 6DOF solver to calculate motion of the moving body. Create TIFF files for graphic visualization of the solution.

Use 6DOF solver to calculate motion of the moving body. Create TIFF files for graphic visualization of the solution. Introduction The purpose of this tutorial is to provide guidelines and recommendations for setting up and solving a moving deforming mesh (MDM) case along with the six degree of freedom (6DOF) solver and

More information

Navier-Stokes & Flow Simulation

Navier-Stokes & Flow Simulation Last Time? Navier-Stokes & Flow Simulation Implicit Surfaces Marching Cubes/Tetras Collision Detection & Response Conservative Bounding Regions backtracking fixing Today Flow Simulations in Graphics Flow

More information

Implicit versus Explicit Finite Volume Schemes for Extreme, Free Surface Water Flow Modelling

Implicit versus Explicit Finite Volume Schemes for Extreme, Free Surface Water Flow Modelling Archives of Hydro-Engineering and Environmental Mechanics Vol. 51 (2004), No. 3, pp. 287 303 Implicit versus Explicit Finite Volume Schemes for Extreme, Free Surface Water Flow Modelling Michał Szydłowski

More information

Introduction to C omputational F luid Dynamics. D. Murrin

Introduction to C omputational F luid Dynamics. D. Murrin Introduction to C omputational F luid Dynamics D. Murrin Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat transfer, mass transfer, chemical reactions, and related phenomena

More information

Express Introductory Training in ANSYS Fluent Workshop 07 Tank Flushing

Express Introductory Training in ANSYS Fluent Workshop 07 Tank Flushing Express Introductory Training in ANSYS Fluent Workshop 07 Tank Flushing Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 - Industry Oriented HPC Simulations,

More information

Free Surface Flow Simulations

Free Surface Flow Simulations Free Surface Flow Simulations Hrvoje Jasak h.jasak@wikki.co.uk Wikki Ltd. United Kingdom 11/Jan/2005 Free Surface Flow Simulations p.1/26 Outline Objective Present two numerical modelling approaches for

More information

Navier-Stokes & Flow Simulation

Navier-Stokes & Flow Simulation Last Time? Navier-Stokes & Flow Simulation Optional Reading for Last Time: Spring-Mass Systems Numerical Integration (Euler, Midpoint, Runge-Kutta) Modeling string, hair, & cloth HW2: Cloth & Fluid Simulation

More information

Aurélien Thinat Stéphane Cordier 1, François Cany

Aurélien Thinat Stéphane Cordier 1, François Cany SimHydro 2012:New trends in simulation - Hydroinformatics and 3D modeling, 12-14 September 2012, Nice Aurélien Thinat, Stéphane Cordier, François Cany Application of OpenFOAM to the study of wave loads

More information

ALE Seamless Immersed Boundary Method with Overset Grid System for Multiple Moving Objects

ALE Seamless Immersed Boundary Method with Overset Grid System for Multiple Moving Objects Tenth International Conference on Computational Fluid Dynamics (ICCFD10), Barcelona,Spain, July 9-13, 2018 ICCFD10-047 ALE Seamless Immersed Boundary Method with Overset Grid System for Multiple Moving

More information

Final Report. Discontinuous Galerkin Compressible Euler Equation Solver. May 14, Andrey Andreyev. Adviser: Dr. James Baeder

Final Report. Discontinuous Galerkin Compressible Euler Equation Solver. May 14, Andrey Andreyev. Adviser: Dr. James Baeder Final Report Discontinuous Galerkin Compressible Euler Equation Solver May 14, 2013 Andrey Andreyev Adviser: Dr. James Baeder Abstract: In this work a Discontinuous Galerkin Method is developed for compressible

More information

A new multidimensional-type reconstruction and limiting procedure for unstructured (cell-centered) FVs solving hyperbolic conservation laws

A new multidimensional-type reconstruction and limiting procedure for unstructured (cell-centered) FVs solving hyperbolic conservation laws HYP 2012, Padova A new multidimensional-type reconstruction and limiting procedure for unstructured (cell-centered) FVs solving hyperbolic conservation laws Argiris I. Delis & Ioannis K. Nikolos (TUC)

More information

Numerical simulations of dam-break floods with MPM

Numerical simulations of dam-break floods with MPM Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 00 (206) 000 000 www.elsevier.com/locate/procedia st International Conference on the Material Point Method, MPM 207 Numerical

More information

3D Simulation of Dam-break effect on a Solid Wall using Smoothed Particle Hydrodynamic

3D Simulation of Dam-break effect on a Solid Wall using Smoothed Particle Hydrodynamic ISCS 2013 Selected Papers Dam-break effect on a Solid Wall 1 3D Simulation of Dam-break effect on a Solid Wall using Smoothed Particle Hydrodynamic Suprijadi a,b, F. Faizal b, C.F. Naa a and A.Trisnawan

More information

Coupling of STAR-CCM+ to Other Theoretical or Numerical Solutions. Milovan Perić

Coupling of STAR-CCM+ to Other Theoretical or Numerical Solutions. Milovan Perić Coupling of STAR-CCM+ to Other Theoretical or Numerical Solutions Milovan Perić Contents The need to couple STAR-CCM+ with other theoretical or numerical solutions Coupling approaches: surface and volume

More information

Multigrid Solvers in CFD. David Emerson. Scientific Computing Department STFC Daresbury Laboratory Daresbury, Warrington, WA4 4AD, UK

Multigrid Solvers in CFD. David Emerson. Scientific Computing Department STFC Daresbury Laboratory Daresbury, Warrington, WA4 4AD, UK Multigrid Solvers in CFD David Emerson Scientific Computing Department STFC Daresbury Laboratory Daresbury, Warrington, WA4 4AD, UK david.emerson@stfc.ac.uk 1 Outline Multigrid: general comments Incompressible

More information

Computational Fluid Dynamics for Engineers

Computational Fluid Dynamics for Engineers Tuncer Cebeci Jian P. Shao Fassi Kafyeke Eric Laurendeau Computational Fluid Dynamics for Engineers From Panel to Navier-Stokes Methods with Computer Programs With 152 Figures, 19 Tables, 84 Problems and

More information

Tutorial 17. Using the Mixture and Eulerian Multiphase Models

Tutorial 17. Using the Mixture and Eulerian Multiphase Models Tutorial 17. Using the Mixture and Eulerian Multiphase Models Introduction: This tutorial examines the flow of water and air in a tee junction. First you will solve the problem using the less computationally-intensive

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 3, 2012

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 3, 2012 INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 3, 2012 Copyright 2010 All rights reserved Integrated Publishing services Research article ISSN 0976 4399 Efficiency and performances

More information

A stable moving-particle semi-implicit method for free surface flows

A stable moving-particle semi-implicit method for free surface flows Fluid Dynamics Research 38 (2006) 241 256 A stable moving-particle semi-implicit method for free surface flows B. Ataie-Ashtiani, Leila Farhadi Department of Civil Engineering, Sharif University of Technology,

More information

Characteristic Aspects of SPH Solutions

Characteristic Aspects of SPH Solutions Characteristic Aspects of SPH Solutions for Free Surface Problems: Source and Possible Treatment of High Frequency Numerical Oscillations of Local Loads. A. Colagrossi*, D. Le Touzé & G.Colicchio* *INSEAN

More information

cuibm A GPU Accelerated Immersed Boundary Method

cuibm A GPU Accelerated Immersed Boundary Method cuibm A GPU Accelerated Immersed Boundary Method S. K. Layton, A. Krishnan and L. A. Barba Corresponding author: labarba@bu.edu Department of Mechanical Engineering, Boston University, Boston, MA, 225,

More information

IMPROVED WALL BOUNDARY CONDITIONS WITH IMPLICITLY DEFINED WALLS FOR PARTICLE BASED FLUID SIMULATION

IMPROVED WALL BOUNDARY CONDITIONS WITH IMPLICITLY DEFINED WALLS FOR PARTICLE BASED FLUID SIMULATION 6th European Conference on Computational Mechanics (ECCM 6) 7th European Conference on Computational Fluid Dynamics (ECFD 7) 1115 June 2018, Glasgow, UK IMPROVED WALL BOUNDARY CONDITIONS WITH IMPLICITLY

More information

WAVE PATTERNS, WAVE INDUCED FORCES AND MOMENTS FOR A GRAVITY BASED STRUCTURE PREDICTED USING CFD

WAVE PATTERNS, WAVE INDUCED FORCES AND MOMENTS FOR A GRAVITY BASED STRUCTURE PREDICTED USING CFD Proceedings of the ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering OMAE2011 June 19-24, 2011, Rotterdam, The Netherlands OMAE2011-49593 WAVE PATTERNS, WAVE INDUCED FORCES

More information

Support for Multi physics in Chrono

Support for Multi physics in Chrono Support for Multi physics in Chrono The Story Ahead Overview of multi physics strategy in Chrono Summary of handling rigid/flexible body dynamics using Lagrangian approach Summary of handling fluid, and

More information

Example 13 - Shock Tube

Example 13 - Shock Tube Example 13 - Shock Tube Summary This famous experiment is interesting for observing the shock-wave propagation. Moreover, this case uses the representation of perfect gas and compares the different formulations:

More information

Three dimensional meshless point generation technique for complex geometry

Three dimensional meshless point generation technique for complex geometry Three dimensional meshless point generation technique for complex geometry *Jae-Sang Rhee 1), Jinyoung Huh 2), Kyu Hong Kim 3), Suk Young Jung 4) 1),2) Department of Mechanical & Aerospace Engineering,

More information

CFD modelling of thickened tailings Final project report

CFD modelling of thickened tailings Final project report 26.11.2018 RESEM Remote sensing supporting surveillance and operation of mines CFD modelling of thickened tailings Final project report Lic.Sc.(Tech.) Reeta Tolonen and Docent Esa Muurinen University of

More information

Final drive lubrication modeling

Final drive lubrication modeling Final drive lubrication modeling E. Avdeev a,b 1, V. Ovchinnikov b a Samara University, b Laduga Automotive Engineering Abstract. In this paper we describe the method, which is the composition of finite

More information

Water. Notes. Free surface. Boundary conditions. This week: extend our 3D flow solver to full 3D water We need to add two things:

Water. Notes. Free surface. Boundary conditions. This week: extend our 3D flow solver to full 3D water We need to add two things: Notes Added a 2D cross-section viewer for assignment 6 Not great, but an alternative if the full 3d viewer isn t working for you Warning about the formulas in Fedkiw, Stam, and Jensen - maybe not right

More information

Hydrodynamic modeling of flow around bridge piers

Hydrodynamic modeling of flow around bridge piers Hydrodynamic modeling of flow around bridge piers E. D. Farsirotou*, J. V. Soulis^, V. D. Dermissis* *Aristotle University of Thessaloniki, Civil Engineering Department, Division of Hydraulics and Environmental

More information

Calculate a solution using the pressure-based coupled solver.

Calculate a solution using the pressure-based coupled solver. Tutorial 19. Modeling Cavitation Introduction This tutorial examines the pressure-driven cavitating flow of water through a sharpedged orifice. This is a typical configuration in fuel injectors, and brings

More information

A new Eulerian computational method for the propagation of short acoustic and electromagnetic pulses

A new Eulerian computational method for the propagation of short acoustic and electromagnetic pulses A new Eulerian computational method for the propagation of short acoustic and electromagnetic pulses J. Steinhoff, M. Fan & L. Wang. Abstract A new method is described to compute short acoustic or electromagnetic

More information

The Immersed Interface Method

The Immersed Interface Method The Immersed Interface Method Numerical Solutions of PDEs Involving Interfaces and Irregular Domains Zhiiin Li Kazufumi Ito North Carolina State University Raleigh, North Carolina Society for Industrial

More information

A Knowledge Based Approach to Mesh Optimization in CFD Domain: ID Euler Code Example

A Knowledge Based Approach to Mesh Optimization in CFD Domain: ID Euler Code Example A Knowledge Based Approach to Mesh Optimization in CFD Domain: ID Euler Code Example Tharini Santhanam, J.C. Browne, J. Kallinderis and D. Miranker Department of Computer Science The University of Texas

More information

Introduction to ANSYS CFX

Introduction to ANSYS CFX Workshop 03 Fluid flow around the NACA0012 Airfoil 16.0 Release Introduction to ANSYS CFX 2015 ANSYS, Inc. March 13, 2015 1 Release 16.0 Workshop Description: The flow simulated is an external aerodynamics

More information

Bubble Dynamics using Free Surfaces in a VOF framework

Bubble Dynamics using Free Surfaces in a VOF framework Bubble Dynamics using Free Surfaces in a VOF framework Sevilla Meeting: Numerical Challenges in two-phase flows 27 October 2014 Léon MALAN Supervisor: Prof. Stéphane ZALESKI 1 Contents Introduction: Simulation

More information

FAST ALGORITHMS FOR CALCULATIONS OF VISCOUS INCOMPRESSIBLE FLOWS USING THE ARTIFICIAL COMPRESSIBILITY METHOD

FAST ALGORITHMS FOR CALCULATIONS OF VISCOUS INCOMPRESSIBLE FLOWS USING THE ARTIFICIAL COMPRESSIBILITY METHOD TASK QUARTERLY 12 No 3, 273 287 FAST ALGORITHMS FOR CALCULATIONS OF VISCOUS INCOMPRESSIBLE FLOWS USING THE ARTIFICIAL COMPRESSIBILITY METHOD ZBIGNIEW KOSMA Institute of Applied Mechanics, Technical University

More information

NUMERICAL VISCOSITY. Convergent Science White Paper. COPYRIGHT 2017 CONVERGENT SCIENCE. All rights reserved.

NUMERICAL VISCOSITY. Convergent Science White Paper. COPYRIGHT 2017 CONVERGENT SCIENCE. All rights reserved. Convergent Science White Paper COPYRIGHT 2017 CONVERGENT SCIENCE. All rights reserved. This document contains information that is proprietary to Convergent Science. Public dissemination of this document

More information

Tsunami coastal impact The use of VOF-URANS methods with examples

Tsunami coastal impact The use of VOF-URANS methods with examples Tsunami coastal impact The use of VOF-URANS methods with examples Richard MARCER 2 Content Coastal impact : physics to simulate EOLE CFD : a 3D Navier-Stokes code Focus on the VOF free surface method Examples

More information

COMPUTATIONAL AND EXPERIMENTAL INTERFEROMETRIC ANALYSIS OF A CONE-CYLINDER-FLARE BODY. Abstract. I. Introduction

COMPUTATIONAL AND EXPERIMENTAL INTERFEROMETRIC ANALYSIS OF A CONE-CYLINDER-FLARE BODY. Abstract. I. Introduction COMPUTATIONAL AND EXPERIMENTAL INTERFEROMETRIC ANALYSIS OF A CONE-CYLINDER-FLARE BODY John R. Cipolla 709 West Homeway Loop, Citrus Springs FL 34434 Abstract A series of computational fluid dynamic (CFD)

More information

Numerical Methods for Hyperbolic and Kinetic Equations

Numerical Methods for Hyperbolic and Kinetic Equations Numerical Methods for Hyperbolic and Kinetic Equations Organizer: G. Puppo Phenomena characterized by conservation (or balance laws) of physical quantities are modelled by hyperbolic and kinetic equations.

More information

EXPLICIT AND IMPLICIT TVD AND ENO HIGH RESOLUTION ALGORITHMS APPLIED TO THE EULER AND NAVIER-STOKES EQUATIONS IN THREE-DIMENSIONS RESULTS

EXPLICIT AND IMPLICIT TVD AND ENO HIGH RESOLUTION ALGORITHMS APPLIED TO THE EULER AND NAVIER-STOKES EQUATIONS IN THREE-DIMENSIONS RESULTS EXPLICIT AND IMPLICIT TVD AND ENO HIGH RESOLUTION ALGORITHMS APPLIED TO THE EULER AND NAVIER-STOKES EQUATIONS IN THREE-DIMENSIONS RESULTS Edisson Sávio de Góes Maciel, edissonsavio@yahoo.com.br Mechanical

More information

Compressible Flow in a Nozzle

Compressible Flow in a Nozzle SPC 407 Supersonic & Hypersonic Fluid Dynamics Ansys Fluent Tutorial 1 Compressible Flow in a Nozzle Ahmed M Nagib Elmekawy, PhD, P.E. Problem Specification Consider air flowing at high-speed through a

More information

Homework 4A Due November 7th IN CLASS

Homework 4A Due November 7th IN CLASS CS207, Fall 2014 Systems Development for Computational Science Cris Cecka, Ray Jones Homework 4A Due November 7th IN CLASS Previously, we ve developed a quite robust Graph class to let us use Node and

More information

Numerical Modeling Study for Fish Screen at River Intake Channel ; PH (505) ; FAX (505) ;

Numerical Modeling Study for Fish Screen at River Intake Channel ; PH (505) ; FAX (505) ; Numerical Modeling Study for Fish Screen at River Intake Channel Jungseok Ho 1, Leslie Hanna 2, Brent Mefford 3, and Julie Coonrod 4 1 Department of Civil Engineering, University of New Mexico, Albuquerque,

More information

NUMERICAL MODELING STUDY FOR FLOW PATTERN CHANGES INDUCED BY SINGLE GROYNE

NUMERICAL MODELING STUDY FOR FLOW PATTERN CHANGES INDUCED BY SINGLE GROYNE NUMERICAL MODELING STUDY FOR FLOW PATTERN CHANGES INDUCED BY SINGLE GROYNE Jungseok Ho 1, Hong Koo Yeo 2, Julie Coonrod 3, and Won-Sik Ahn 4 1 Research Assistant Professor, Dept. of Civil Engineering,

More information

On the thickness of discontinuities computed by THINC and RK schemes

On the thickness of discontinuities computed by THINC and RK schemes The 9th Computational Fluid Dynamics Symposium B7- On the thickness of discontinuities computed by THINC and RK schemes Taku Nonomura, ISAS, JAXA, Sagamihara, Kanagawa, Japan, E-mail:nonomura@flab.isas.jaxa.jp

More information

SOLUTION OF THE 2D SHALLOW WATER EQUATIONS USING THE FINITE VOLUME METHOD ON UNSTRUCTURED TRIANGULAR MESHES

SOLUTION OF THE 2D SHALLOW WATER EQUATIONS USING THE FINITE VOLUME METHOD ON UNSTRUCTURED TRIANGULAR MESHES INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 24, 1225 1245 (1997) SOLUTION OF THE 2D SHALLOW WATER EQUATIONS USING THE FINITE VOLUME METHOD ON UNSTRUCTURED TRIANGULAR MESHES K. ANASTASIOU*

More information

Supersonic Flow Over a Wedge

Supersonic Flow Over a Wedge SPC 407 Supersonic & Hypersonic Fluid Dynamics Ansys Fluent Tutorial 2 Supersonic Flow Over a Wedge Ahmed M Nagib Elmekawy, PhD, P.E. Problem Specification A uniform supersonic stream encounters a wedge

More information

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE METERING SITUATIONS UNDER ABNORMAL CONFIGURATIONS

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE METERING SITUATIONS UNDER ABNORMAL CONFIGURATIONS COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE METERING SITUATIONS UNDER ABNORMAL CONFIGURATIONS Dr W. Malalasekera Version 3.0 August 2013 1 COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE

More information

Lab 9: FLUENT: Transient Natural Convection Between Concentric Cylinders

Lab 9: FLUENT: Transient Natural Convection Between Concentric Cylinders Lab 9: FLUENT: Transient Natural Convection Between Concentric Cylinders Objective: The objective of this laboratory is to introduce how to use FLUENT to solve both transient and natural convection problems.

More information

Optimization of under-relaxation factors. and Courant numbers for the simulation of. sloshing in the oil pan of an automobile

Optimization of under-relaxation factors. and Courant numbers for the simulation of. sloshing in the oil pan of an automobile Optimization of under-relaxation factors and Courant numbers for the simulation of sloshing in the oil pan of an automobile Swathi Satish*, Mani Prithiviraj and Sridhar Hari⁰ *National Institute of Technology,

More information

A COUPLED FINITE VOLUME SOLVER FOR THE SOLUTION OF LAMINAR TURBULENT INCOMPRESSIBLE AND COMPRESSIBLE FLOWS

A COUPLED FINITE VOLUME SOLVER FOR THE SOLUTION OF LAMINAR TURBULENT INCOMPRESSIBLE AND COMPRESSIBLE FLOWS A COUPLED FINITE VOLUME SOLVER FOR THE SOLUTION OF LAMINAR TURBULENT INCOMPRESSIBLE AND COMPRESSIBLE FLOWS L. Mangani Maschinentechnik CC Fluidmechanik und Hydromaschinen Hochschule Luzern Technik& Architektur

More information

High-Order Numerical Algorithms for Steady and Unsteady Simulation of Viscous Compressible Flow with Shocks (Grant FA )

High-Order Numerical Algorithms for Steady and Unsteady Simulation of Viscous Compressible Flow with Shocks (Grant FA ) High-Order Numerical Algorithms for Steady and Unsteady Simulation of Viscous Compressible Flow with Shocks (Grant FA9550-07-0195) Sachin Premasuthan, Kui Ou, Patrice Castonguay, Lala Li, Yves Allaneau,

More information

Three Dimensional Numerical Simulation of Turbulent Flow Over Spillways

Three Dimensional Numerical Simulation of Turbulent Flow Over Spillways Three Dimensional Numerical Simulation of Turbulent Flow Over Spillways Latif Bouhadji ASL-AQFlow Inc., Sidney, British Columbia, Canada Email: lbouhadji@aslenv.com ABSTRACT Turbulent flows over a spillway

More information

Nonoscillatory Central Schemes on Unstructured Triangulations for Hyperbolic Systems of Conservation Laws

Nonoscillatory Central Schemes on Unstructured Triangulations for Hyperbolic Systems of Conservation Laws Nonoscillatory Central Schemes on Unstructured Triangulations for Hyperbolic Systems of Conservation Laws Ivan Christov Bojan Popov Department of Mathematics, Texas A&M University, College Station, Texas

More information

Study on the Numerical Accuracy for the CFD

Study on the Numerical Accuracy for the CFD Study on the Numerical Accuracy for the CFD T.Yamanashi 1, H.Uchida, and M.Morita 1 Department of Mathematics, Master s Research Course of Faculty of Science, Tokyo University of Science,1-3 Kagurazaka,

More information

Numerical Simulations of Fluid-Structure Interaction Problems using MpCCI

Numerical Simulations of Fluid-Structure Interaction Problems using MpCCI Numerical Simulations of Fluid-Structure Interaction Problems using MpCCI François Thirifay and Philippe Geuzaine CENAERO, Avenue Jean Mermoz 30, B-6041 Gosselies, Belgium Abstract. This paper reports

More information

A STUDY ON THE UNSTEADY AERODYNAMICS OF PROJECTILES IN OVERTAKING BLAST FLOWFIELDS

A STUDY ON THE UNSTEADY AERODYNAMICS OF PROJECTILES IN OVERTAKING BLAST FLOWFIELDS HEFAT2012 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 2012 Malta A STUDY ON THE UNSTEADY AERODYNAMICS OF PROJECTILES IN OVERTAKING BLAST FLOWFIELDS Muthukumaran.C.K.

More information

CGT 581 G Fluids. Overview. Some terms. Some terms

CGT 581 G Fluids. Overview. Some terms. Some terms CGT 581 G Fluids Bedřich Beneš, Ph.D. Purdue University Department of Computer Graphics Technology Overview Some terms Incompressible Navier-Stokes Boundary conditions Lagrange vs. Euler Eulerian approaches

More information

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 13: The Lecture deals with:

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 13: The Lecture deals with: The Lecture deals with: Some more Suggestions for Improvement of Discretization Schemes Some Non-Trivial Problems with Discretized Equations file:///d /chitra/nptel_phase2/mechanical/cfd/lecture13/13_1.htm[6/20/2012

More information

Non-Newtonian Transitional Flow in an Eccentric Annulus

Non-Newtonian Transitional Flow in an Eccentric Annulus Tutorial 8. Non-Newtonian Transitional Flow in an Eccentric Annulus Introduction The purpose of this tutorial is to illustrate the setup and solution of a 3D, turbulent flow of a non-newtonian fluid. Turbulent

More information

Modeling Unsteady Compressible Flow

Modeling Unsteady Compressible Flow Tutorial 4. Modeling Unsteady Compressible Flow Introduction In this tutorial, FLUENT s density-based implicit solver is used to predict the timedependent flow through a two-dimensional nozzle. As an initial

More information

Modeling and simulation the incompressible flow through pipelines 3D solution for the Navier-Stokes equations

Modeling and simulation the incompressible flow through pipelines 3D solution for the Navier-Stokes equations Modeling and simulation the incompressible flow through pipelines 3D solution for the Navier-Stokes equations Daniela Tudorica 1 (1) Petroleum Gas University of Ploiesti, Department of Information Technology,

More information

The Study of Ship Motions in Regular Waves using a Mesh-Free Numerical Method

The Study of Ship Motions in Regular Waves using a Mesh-Free Numerical Method The Study of Ship Motions in Regular Waves using a Mesh-Free Numerical Method by Bruce Kenneth Cartwright, B. Eng., M. Sc. Submitted in fulfilment of the requirements for the Degree of Master of Philosophy

More information

Developments in Cartesian cut cell methods

Developments in Cartesian cut cell methods Mathematics and Computers in Simulation 61 (2003) 561 572 Developments in Cartesian cut cell methods D.M. Ingram, D.M. Causon, C.G. Mingham Centre for Mathematical Modelling and Flow Analysis, Manchester

More information

Stream Function-Vorticity CFD Solver MAE 6263

Stream Function-Vorticity CFD Solver MAE 6263 Stream Function-Vorticity CFD Solver MAE 66 Charles O Neill April, 00 Abstract A finite difference CFD solver was developed for transient, two-dimensional Cartesian viscous flows. Flow parameters are solved

More information

Coupled Simulation of Flow and Body Motion Using Overset Grids. Eberhard Schreck & Milovan Perić

Coupled Simulation of Flow and Body Motion Using Overset Grids. Eberhard Schreck & Milovan Perić Coupled Simulation of Flow and Body Motion Using Overset Grids Eberhard Schreck & Milovan Perić Contents Dynamic Fluid-Body Interaction (DFBI) model in STAR-CCM+ Overset grids method in STAR-CCM+ Advantages

More information

Ail implicit finite volume nodal point scheme for the solution of two-dimensional compressible Navier-Stokes equations

Ail implicit finite volume nodal point scheme for the solution of two-dimensional compressible Navier-Stokes equations Ail implicit finite volume nodal point scheme for the solution of two-dimensional compressible Navier-Stokes equations Vimala Dutta Computational and Theoretical Fluid Dynamics Division National Aerospace

More information