MECHANICS OF MATERIALS

Size: px
Start display at page:

Download "MECHANICS OF MATERIALS"

Transcription

1 00 The McGraw-Hill Companies, Inc. All rights reserved. Third E CHAPTER 7 Transformations MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Teas Tech Universit of Stress and Strain

2 Transformations of Stress and Strain Introduction Transformation of Plane Stress Principal Stresses Maimum Shearing Stress Eample 7.01 Sample Problem 7.1 Mohr s Circle for Plane Stress Eample 7.0 Sample Problem 7. General State of Stress Application of Mohr s Circle to the Three- Dimensional Analsis of Stress Yield Criteria for Ductile Materials Under Plane Stress Fracture Criteria for Brittle Materials Under Plane Stress Stresses in Thin-Walled Pressure Vessels 00 The McGraw-Hill Companies, Inc. All rights reserved. 7 -

3 Introduction The most general state of stress at a point ma be represented b 6 components,,,, z z, z normal stresses shearing stresses (Note:, z z, z Same state of stress is represented b a different set of components if aes are rotated. The first part of the chapter is concerned with how the components of stress are transformed under a rotation of the coordinate aes. The second part of the chapter is devoted to a similar analsis of the transformation of the components of strain. z ) 00 The McGraw-Hill Companies, Inc. All rights reserved. 7-3

4 Introduction Plane Stress - state of stress in which two faces of the cubic element are free of stress. For the illustrated eample, the state of stress is defined b,, 0. and z z z State of plane stress occurs in a thin plate subjected to forces acting in the midplane of the plate. State of plane stress also occurs on the free surface of a structural element or machine component, i.e., at an point of the surface not subjected to an eternal force. 00 The McGraw-Hill Companies, Inc. All rights reserved. 7-4

5 Transformation of Plane Stress Consider the cons for equilibrium of a prismatic element with faces perpendicular to the,, and aes. 00 The McGraw-Hill Companies, Inc. All rights reserved. 7-5

6 Transformation of Plane Stress The equations ma be rewritten to ield 00 The McGraw-Hill Companies, Inc. All rights reserved. 7-6

7 Principal Stresses 00 The McGraw-Hill Companies, Inc. All rights reserved. 7-7

8 Principal Stresses The previous equations are combined to ield parametric equations for a circle, where ave R ave R Principal stresses occur on the principal planes of stress with zero shearing stresses. ma,min tan p Note : defines two angles separated b 90 o 00 The McGraw-Hill Companies, Inc. All rights reserved. 7-8

9 Maimum Shearing Stress Maimum shearing stress occurs for ave ma R tan s Note :defines two angles separated b 90 offset from ave p b 45 o o and 00 The McGraw-Hill Companies, Inc. All rights reserved. 7-9

10 Eample 7.01 For the state of plane stress shown, determine (a) the principal panes, (b) the principal stresses, (c) the maimum shearing stress and the corresponding normal stress. SOLUTION: Find the element orientation for the principal stresses from tan p Determine the principal stresses from ma,min Calculate the maimum shearing stress with ma 00 The McGraw-Hill Companies, Inc. All rights reserved. 7-10

11 Eample MPa 10MPa 40MPa SOLUTION: Find the element orientation for the principal stresses from 40 tan p p p 53.1, , Determine the principal stresses from ma,min ma min 70MPa 30MPa 00 The McGraw-Hill Companies, Inc. All rights reserved. 7-11

12 Eample 7.01 Calculate the maimum shearing stress with ma MPa 10MPa 40MPa ma 50MPa s 45 s p 18.4, The corresponding normal stress is ave MPa 00 The McGraw-Hill Companies, Inc. All rights reserved. 7-1

13 Sample Problem 7.1 A single horizontal force P of 150 lb magnitude is applied to end D of lever ABD. Determine (a) the normal and shearing stresses on an element at point H having sides parallel to the and aes, (b) the principal planes and principal stresses at the point H. SOLUTION: Determine an equivalent force-couple sstem at the center of the transverse section passing through H. Evaluate the normal and shearing stresses at H. Determine the principal planes and calculate the principal stresses. 00 The McGraw-Hill Companies, Inc. All rights reserved. 7-13

14 Sample Problem 7.1 SOLUTION: Determine an equivalent force-couple sstem at the center of the transverse section passing through H. T M P 150lb 150lb18in.7 kip 150lb10in 1.5kip in Evaluate the normal and shearing stresses at H. Mc I Tc J in 1.5kip in 0.6in in 4.7 kip in 0.6in 1 0.6in ksi 7.96ksi 00 The McGraw-Hill Companies, Inc. All rights reserved. 7-14

15 Sample Problem 7.1 Determine the principal planes and calculate the principal stresses. tan p p p 61.0, , ma,min ma min ksi 4.68ksi The McGraw-Hill Companies, Inc. All rights reserved. 7-15

16 Mohr s Circle for Plane Stress With the phsical significance of Mohr s circle for plane stress established, it ma be applied with simple geometric considerations. Critical values are estimated graphicall or calculated. For a known state of plane stress,, plot the points X and Y and construct the circle centered at C. ave R The principal stresses are obtained at A and B. ma,min tan p ave R The direction of rotation of O to Oa is the same as CX to CA. 00 The McGraw-Hill Companies, Inc. All rights reserved. 7-16

17 Mohr s Circle for Plane Stress With Mohr s circle uniquel defined, the state of stress at other aes orientations ma be depicted. For the state of stress at an angle with respect to the aes, construct a new diameter X Y at an angle with respect to XY. Normal and shear stresses are obtained from the coordinates X Y. 00 The McGraw-Hill Companies, Inc. All rights reserved. 7-17

18 Mohr s Circle for Plane Stress Mohr s circle for centric aial loading: P, 0 A P A Mohr s circle for torsional loading: Tc Tc 0 0 J J 00 The McGraw-Hill Companies, Inc. All rights reserved. 7-18

19 Eample 7.0 For the state of plane stress shown, (a) construct Mohr s circle, determine (b) the principal planes, (c) the principal stresses, (d) the maimum shearing stress and the corresponding normal stress. 00 The McGraw-Hill Companies, Inc. All rights reserved. SOLUTION: Construction of Mohr s circle ave CF MPa R CX FX 40MPa MPa 0MPa 7-19

20 Eample 7.0 Principal planes and stresses ma OA OC CA 0 50 ma 70MPa OB OC BC 0 50 min min 30MPa tan p p p FX CP The McGraw-Hill Companies, Inc. All rights reserved. 7-0

21 Eample 7.0 Maimum shear stress s p 45 ma R ave s ma 50 MPa 0 MPa 00 The McGraw-Hill Companies, Inc. All rights reserved. 7-1

22 Sample Problem 7. For the state of stress shown, determine (a) the principal planes and the principal stresses, (b) the stress components eerted on the element obtained b rotating the given element counterclockwise through 30 degrees. SOLUTION: Construct Mohr s circle 100 ave R 60 80MPa CF FX MPa 00 The McGraw-Hill Companies, Inc. All rights reserved. 7 -

23 Sample Problem 7. Principal planes and stresses tan p p p XF CF clockwise ma OA OC CA 80 5 ma 13MPa ma OA OC 80 5 min 8 MPa BC 00 The McGraw-Hill Companies, Inc. All rights reserved. 7-3

24 Sample Problem 7. Stress components after rotation b 30 o Points X and Y on Mohr s circle that correspond to stress components on the rotated element are obtained b rotating XY counterclockwise through The McGraw-Hill Companies, Inc. All rights reserved OK OC KC 80 5cos5.6 OL OC CL 80 5cos5.6 KX 5sin MPa 111.6MPa 41.3MPa 7-4

25 Stresses in Thin-Walled Pressure Vessels 00 The McGraw-Hill Companies, Inc. All rights reserved. 7-5

26 Stresses in Thin-Walled Pressure Vessels 00 The McGraw-Hill Companies, Inc. All rights reserved. 7-6

27 Stresses in Thin-Walled Pressure Vessels Clindrical vessel with principal stresses 1 = hoop stress = longitudinal stress Hoop stress: F z pr t 0 pr t t p r 1 Longitudinal stress: F rt p r 00 The McGraw-Hill Companies, Inc. All rights reserved. 7-7

28 Stresses in Thin-Walled Pressure Vessels Spherical pressure vessel: 1 pr t Mohr s circle for in-plane transformations reduces to a point 1 ma(in -plane) constant 0 Maimum out-of-plane shearing stress ma 1 1 pr 4t 00 The McGraw-Hill Companies, Inc. All rights reserved. 7-8

PROBLEM Solve Probs. 7.5 and 7.9, using Mohr s circle.

PROBLEM Solve Probs. 7.5 and 7.9, using Mohr s circle. PROBLEM 7.1 Solve Probs. 7.5 and 7.9, using Mohr s circle. PROBLEM 7.5 through 7.8 For the given state of stress, determine (a) the principal planes, (b) the principal stresses. PROBLEM 7.9 through 7.12

More information

Argand diagrams 2E. circle centre (0, 0), radius 6 equation: circle centre (0, 0), radius equation: circle centre (3, 0), radius 2

Argand diagrams 2E. circle centre (0, 0), radius 6 equation: circle centre (0, 0), radius equation: circle centre (3, 0), radius 2 Argand diagrams E 1 a z 6 circle centre (0, 0), radius 6 equation: y y 6 6 b z 10 circle centre (0, 0), radius 10 equation: y 10 y 100 c z circle centre (, 0), radius equation: ( ) y ( ) y d z i z ( i)

More information

AC : APPLICATIONS OF SOLIDWORKS IN TEACHING COURSES OF STATICS AND STRENGTH OF MATERIALS

AC : APPLICATIONS OF SOLIDWORKS IN TEACHING COURSES OF STATICS AND STRENGTH OF MATERIALS AC 2012-3232: APPLICATIONS OF SOLIDWORKS IN TEACHING COURSES OF STATICS AND STRENGTH OF MATERIALS Dr. Xiaobin Le P.E., Wentworth Institute of Technology Xiaobin Le is Assistant Professor, Ph.D., P.Eng.,

More information

4. Two Dimensional Transformations

4. Two Dimensional Transformations 4. Two Dimensional Transformations CS362 Introduction to Computer Graphics Helena Wong, 2 In man applications, changes in orientations, sizes, and shapes are accomplished with geometric transformations

More information

Two Dimensional Viewing

Two Dimensional Viewing Two Dimensional Viewing Dr. S.M. Malaek Assistant: M. Younesi Two Dimensional Viewing Basic Interactive Programming Basic Interactive Programming User controls contents, structure, and appearance of objects

More information

ES 230 Strengths Intro to Finite Element Modeling & Analysis Homework Assignment 5

ES 230 Strengths Intro to Finite Element Modeling & Analysis Homework Assignment 5 ES 230 Strengths Intro to Finite Element Modeling & Analysis Homework Assignment 5 The GREAT Combined Load Problem Moving on to Principal Stresses and von Mises Failure Criteria Open up your ANSYS model

More information

Ambar Mitra. Concept Map Manual

Ambar Mitra. Concept Map Manual Ambar Mitra Concept Map Manual Purpose: This manual contains the instructions for using the Concept Map software. We will show the features by solving three problems: (i) rosette and maximum, shear strain

More information

OP-029. INTERPRETATION OF CIU TEST

OP-029. INTERPRETATION OF CIU TEST INTERPRETATION OF CIU TEST Page 1 of 7 WORK INSTRUCTIONS FOR ENGINEERS KYW Compiled by : Checked by LCH : TYC Approved by : OP-09. INTERPRETATION OF CIU TEST INTERPRETATION OF CIU TEST Page of 7 9. INTERPRETATION

More information

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below:

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below: Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

On the Kinematics of Undulator Girder Motion

On the Kinematics of Undulator Girder Motion LCLS-TN-09-02 On the Kinematics of Undulator Girder Motion J. Welch March 23, 2010 The theor of rigid bod kinematics is used to derive equations that govern the control and measurement of the position

More information

Modeling with CMU Mini-FEA Program

Modeling with CMU Mini-FEA Program Modeling with CMU Mini-FEA Program Introduction Finite element analsis (FEA) allows ou analze the stresses and displacements in a bod when forces are applied. FEA determines the stresses and displacements

More information

MAE 323: Lab 7. Instructions. Pressure Vessel Alex Grishin MAE 323 Lab Instructions 1

MAE 323: Lab 7. Instructions. Pressure Vessel Alex Grishin MAE 323 Lab Instructions 1 Instructions MAE 323 Lab Instructions 1 Problem Definition Determine how different element types perform for modeling a cylindrical pressure vessel over a wide range of r/t ratios, and how the hoop stress

More information

Jim Lambers MAT 169 Fall Semester Lecture 33 Notes

Jim Lambers MAT 169 Fall Semester Lecture 33 Notes Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 33 Notes These notes correspond to Section 9.3 in the text. Polar Coordinates Throughout this course, we have denoted a point in the plane by an ordered

More information

[3] Rigid Body Analysis

[3] Rigid Body Analysis [3] Rigid Body Analysis Page 1 of 53 [3] Rigid Body Analysis [3.1] Equilibrium of a Rigid Body [3.2] Equations of Equilibrium [3.3] Equilibrium in 3-D [3.4] Simple Trusses [3.5] The Method of Joints [3.6]

More information

KINEMATICS STUDY AND WORKING SIMULATION OF THE SELF- ERECTION MECHANISM OF A SELF-ERECTING TOWER CRANE, USING NUMERICAL AND ANALYTICAL METHODS

KINEMATICS STUDY AND WORKING SIMULATION OF THE SELF- ERECTION MECHANISM OF A SELF-ERECTING TOWER CRANE, USING NUMERICAL AND ANALYTICAL METHODS The rd International Conference on Computational Mechanics and Virtual Engineering COMEC 9 9 OCTOBER 9, Brasov, Romania KINEMATICS STUY AN WORKING SIMULATION OF THE SELF- ERECTION MECHANISM OF A SELF-ERECTING

More information

is a plane curve and the equations are parametric equations for the curve, with parameter t.

is a plane curve and the equations are parametric equations for the curve, with parameter t. MATH 2412 Sections 6.3, 6.4, and 6.5 Parametric Equations and Polar Coordinates. Plane Curves and Parametric Equations Suppose t is contained in some interval I of the real numbers, and = f( t), = gt (

More information

8.6 Three-Dimensional Cartesian Coordinate System

8.6 Three-Dimensional Cartesian Coordinate System SECTION 8.6 Three-Dimensional Cartesian Coordinate Sstem 69 What ou ll learn about Three-Dimensional Cartesian Coordinates Distance and Midpoint Formulas Equation of a Sphere Planes and Other Surfaces

More information

Lesson 5: Perpendicular Lines

Lesson 5: Perpendicular Lines : Perpendicular Lines Learning Target I can generalize the criterion for perpendicularity of two segments that meet at a point I can determine if two segments are perpendicular and write the equation of

More information

CS F-07 Objects in 2D 1

CS F-07 Objects in 2D 1 CS420-2010F-07 Objects in 2D 1 07-0: Representing Polgons We want to represent a simple polgon Triangle, rectangle, square, etc Assume for the moment our game onl uses these simple shapes No curves for

More information

[ ] [ ] Orthogonal Transformation of Cartesian Coordinates in 2D & 3D. φ = cos 1 1/ φ = tan 1 [ 2 /1]

[ ] [ ] Orthogonal Transformation of Cartesian Coordinates in 2D & 3D. φ = cos 1 1/ φ = tan 1 [ 2 /1] Orthogonal Transformation of Cartesian Coordinates in 2D & 3D A vector is specified b its coordinates, so it is defined relative to a reference frame. The same vector will have different coordinates in

More information

ANSYS Workbench Guide

ANSYS Workbench Guide ANSYS Workbench Guide Introduction This document serves as a step-by-step guide for conducting a Finite Element Analysis (FEA) using ANSYS Workbench. It will cover the use of the simulation package through

More information

Guidelines for proper use of Plate elements

Guidelines for proper use of Plate elements Guidelines for proper use of Plate elements In structural analysis using finite element method, the analysis model is created by dividing the entire structure into finite elements. This procedure is known

More information

Section 13.5: Equations of Lines and Planes. 1 Objectives. 2 Assignments. 3 Lecture Notes

Section 13.5: Equations of Lines and Planes. 1 Objectives. 2 Assignments. 3 Lecture Notes Section 13.5: Equations of Lines and Planes 1 Objectives 1. Find vector, symmetric, or parametric equations for a line in space given two points on the line, given a point on the line and a vector parallel

More information

D DAVID PUBLISHING. Finite Element Analysis of Polygon Shaped Shell Roof. 1. Introduction. Attia Mousa 1 and Hesham El Naggar 2

D DAVID PUBLISHING. Finite Element Analysis of Polygon Shaped Shell Roof. 1. Introduction. Attia Mousa 1 and Hesham El Naggar 2 Journal of Civil Engineering and Architecture 11 (17) 4-4 doi: 1.1765/194-759/17.5. D DAVID PUBLISHING Finite Element Analsis of Polgon Shaped Shell Roof Attia Mousa 1 and Hesham El Naggar 1. Professor

More information

Lecture 3.4 Differential Equation Based Schemes

Lecture 3.4 Differential Equation Based Schemes Lecture 3.4 Differential Equation Based Schemes 1 Differential Equation Based Schemes As stated in the previous lecture, another important and most widel used method of structured mesh generation is based

More information

Pre-Calculus Guided Notes: Chapter 10 Conics. A circle is

Pre-Calculus Guided Notes: Chapter 10 Conics. A circle is Name: Pre-Calculus Guided Notes: Chapter 10 Conics Section Circles A circle is _ Example 1 Write an equation for the circle with center (3, ) and radius 5. To do this, we ll need the x1 y y1 distance formula:

More information

16 SW Simulation design resources

16 SW Simulation design resources 16 SW Simulation design resources 16.1 Introduction This is simply a restatement of the SW Simulation online design scenarios tutorial with a little more visual detail supplied on the various menu picks

More information

Focusing properties of spherical and parabolic mirrors

Focusing properties of spherical and parabolic mirrors Physics 5B Winter 008 Focusing properties of spherical and parabolic mirrors 1 General considerations Consider a curved mirror surface that is constructed as follows Start with a curve, denoted by y()

More information

Quarter Symmetry Tank Stress (Draft 4 Oct 24 06)

Quarter Symmetry Tank Stress (Draft 4 Oct 24 06) Quarter Symmetry Tank Stress (Draft 4 Oct 24 06) Introduction You need to carry out the stress analysis of an outdoor water tank. Since it has quarter symmetry you start by building only one-fourth of

More information

: LEARNING THE VIRTUAL WORK METHOD IN STATICS: WHAT IS A COMPATIBLE VIRTUAL DISPLACEMENT?

: LEARNING THE VIRTUAL WORK METHOD IN STATICS: WHAT IS A COMPATIBLE VIRTUAL DISPLACEMENT? 2006-823: LERNING THE VIRTUL WORK METHOD IN STTICS: WHT IS COMPTIBLE VIRTUL DISPLCEMENT? Ing-Chang Jong, Universit of rkansas Ing-Chang Jong serves as Professor of Mechanical Engineering at the Universit

More information

Structural performance simulation using finite element and regression analyses

Structural performance simulation using finite element and regression analyses Structural performance simulation using finite element and regression analyses M. El-Sayed 1, M. Edghill 1 & J. Housner 2 1 Department of Mechanical Engineering, Kettering University, USA 2 NASA Langley

More information

Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering. Introduction

Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering. Introduction Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering Introduction A SolidWorks simulation tutorial is just intended to illustrate where to

More information

Computer Graphics. Geometric Transformations

Computer Graphics. Geometric Transformations Contents coordinate sstems scalar values, points, vectors, matrices right-handed and left-handed coordinate sstems mathematical foundations transformations mathematical descriptions of geometric changes,

More information

Section 9.3: Functions and their Graphs

Section 9.3: Functions and their Graphs Section 9.: Functions and their Graphs Graphs provide a wa of displaing, interpreting, and analzing data in a visual format. In man problems, we will consider two variables. Therefore, we will need to

More information

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6 Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

Computer Graphics. Geometric Transformations

Computer Graphics. Geometric Transformations Computer Graphics Geometric Transformations Contents coordinate sstems scalar values, points, vectors, matrices right-handed and left-handed coordinate sstems mathematical foundations transformations mathematical

More information

AUTOPIPE NOZZLE. LOCAL STRESS ANALYSIS V8i Release Tutorial with Examples

AUTOPIPE NOZZLE. LOCAL STRESS ANALYSIS V8i Release Tutorial with Examples AUTOPIPE NOZZLE LOCAL STRESS ANALYSIS V8i Release 8.11 Tutorial with Examples 1 Table of Contents List of Examples... 2 Example 1: The basic operating procedures of AutoPIPE Nozzle... 3 Starting AutoPIPE

More information

Theoretical and experimental study on the hydroforming of bifurcation tube

Theoretical and experimental study on the hydroforming of bifurcation tube Journal of Materials Processing Technology 142 (2003) 367 373 Theoretical and experimental study on the hydroforming of bifurcation tube Quang-Cherng Hsu Department of Mechanical Engineering, National

More information

Math 265 Exam 3 Solutions

Math 265 Exam 3 Solutions C Roettger, Fall 16 Math 265 Exam 3 Solutions Problem 1 Let D be the region inside the circle r 5 sin θ but outside the cardioid r 2 + sin θ. Find the area of D. Note that r and θ denote polar coordinates.

More information

Shallow Spherical Shell Rectangular Finite Element for Analysis of Cross Shaped Shell Roof

Shallow Spherical Shell Rectangular Finite Element for Analysis of Cross Shaped Shell Roof Electronic Journal of Structural Engineering, 7(7) Shallow Spherical Shell Rectangular Finite Element for Analsis of Cross Shaped Shell Roof A.I. Mousa Associated Professor of Civil Engineering, The Universit

More information

Pre-Calc Unit 14: Polar Assignment Sheet April 27 th to May 7 th 2015

Pre-Calc Unit 14: Polar Assignment Sheet April 27 th to May 7 th 2015 Pre-Calc Unit 14: Polar Assignment Sheet April 27 th to May 7 th 2015 Date Objective/ Topic Assignment Did it Monday Polar Discovery Activity pp. 4-5 April 27 th Tuesday April 28 th Converting between

More information

Attendance Problems. 1. Sketch a right angle and its angle bisector.

Attendance Problems. 1. Sketch a right angle and its angle bisector. Page 1 of 10 ttendance Problems. 1. Sketch a right angle and its angle bisector. 2. Draw three different squares with (3, 2) as one verte. 3. Find the values of and y if (3, 2) = ( + 1, y 3) Vocabulary

More information

ROTATIONAL DEPENDENCE OF THE SUPERCONVERGENT PATCH RECOVERY AND ITS REMEDY FOR 4-NODE ISOPARAMETRIC QUADRILATERAL ELEMENTS

ROTATIONAL DEPENDENCE OF THE SUPERCONVERGENT PATCH RECOVERY AND ITS REMEDY FOR 4-NODE ISOPARAMETRIC QUADRILATERAL ELEMENTS COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING Commun. Numer. Meth. Engng, 15, 493±499 (1999) ROTATIONAL DEPENDENCE OF THE SUPERCONVERGENT PATCH RECOVERY AND ITS REMEDY FOR 4-NODE ISOPARAMETRIC QUADRILATERAL

More information

Tutorial 1: Welded Frame - Problem Description

Tutorial 1: Welded Frame - Problem Description Tutorial 1: Welded Frame - Problem Description Introduction In this first tutorial, we will analyse a simple frame: firstly as a welded frame, and secondly as a pin jointed truss. In each case, we will

More information

ASME Verification and Validation Symposium May 13-15, 2015 Las Vegas, Nevada. Phillip E. Prueter, P.E.

ASME Verification and Validation Symposium May 13-15, 2015 Las Vegas, Nevada. Phillip E. Prueter, P.E. VVS2015-8015: Comparing Closed-Form Solutions to Computational Methods for Predicting and Validating Stresses at Nozzle-to-Shell Junctions on Pressure Vessels Subjected to Piping Loads ASME Verification

More information

INSTRUCTIONAL PLAN L( 3 ) T ( ) P ( ) Instruction Plan Details: DELHI COLLEGE OF TECHNOLOGY & MANAGEMENT(DCTM), PALWAL

INSTRUCTIONAL PLAN L( 3 ) T ( ) P ( ) Instruction Plan Details: DELHI COLLEGE OF TECHNOLOGY & MANAGEMENT(DCTM), PALWAL DELHI COLLEGE OF TECHNOLOGY & MANAGEMENT(DCTM), PALWAL INSTRUCTIONAL PLAN RECORD NO.: QF/ACD/009 Revision No.: 00 Name of Faculty: Course Title: Theory of elasticity L( 3 ) T ( ) P ( ) Department: Mechanical

More information

17. SEISMIC ANALYSIS MODELING TO SATISFY BUILDING CODES

17. SEISMIC ANALYSIS MODELING TO SATISFY BUILDING CODES 17. SEISMIC ANALYSIS MODELING TO SATISFY BUILDING CODES The Current Building Codes Use the Terminology: Principal Direction without a Unique Definition 17.1 INTRODUCTION { XE "Building Codes" }Currently

More information

Robotics - Projective Geometry and Camera model. Marcello Restelli

Robotics - Projective Geometry and Camera model. Marcello Restelli Robotics - Projective Geometr and Camera model Marcello Restelli marcello.restelli@polimi.it Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano Ma 2013 Inspired from Matteo

More information

Engineering Effects of Boundary Conditions (Fixtures and Temperatures) J.E. Akin, Rice University, Mechanical Engineering

Engineering Effects of Boundary Conditions (Fixtures and Temperatures) J.E. Akin, Rice University, Mechanical Engineering Engineering Effects of Boundary Conditions (Fixtures and Temperatures) J.E. Akin, Rice University, Mechanical Engineering Here SolidWorks stress simulation tutorials will be re-visited to show how they

More information

On the Kinematics of Undulator Girder Motion

On the Kinematics of Undulator Girder Motion LCLS-TN-09-02 On the Kinematics of Undulator Girder Motion J. Welch March 23, 2009 The theory of rigid body kinematics is used to derive equations that govern the control and measurement of the position

More information

Digging deeper using GeoGebra: An exploration of quadratics and more.

Digging deeper using GeoGebra: An exploration of quadratics and more. Digging deeper using GeoGebra: An exploration of quadratics and more. Abstract Using GeoGebra students can explore in far more depth topics that have until recently been given a standard treatment. One

More information

Finite Element Analysis of Ellipsoidal Head Pressure Vessel

Finite Element Analysis of Ellipsoidal Head Pressure Vessel Finite Element Analysis of Ellipsoidal Head Pressure Vessel Vikram V. Mane*, Vinayak H.Khatawate.**Ashok Patole*** * (Faculty; Mechanical Engineering Department, Vidyavardhini s college of Engineering.

More information

1 Points and Distances

1 Points and Distances Ale Zorn 1 Points and Distances 1. Draw a number line, and plot and label these numbers: 0, 1, 6, 2 2. Plot the following points: (A) (3,1) (B) (2,5) (C) (-1,1) (D) (2,-4) (E) (-3,-3) (F) (0,4) (G) (-2,0)

More information

The Three Dimensional Coordinate System

The Three Dimensional Coordinate System The Three-Dimensional Coordinate System The Three Dimensional Coordinate System You can construct a three-dimensional coordinate system by passing a z-axis perpendicular to both the x- and y-axes at the

More information

6.7. POLAR COORDINATES

6.7. POLAR COORDINATES 6.7. POLAR COORDINATES What You Should Learn Plot points on the polar coordinate system. Convert points from rectangular to polar form and vice versa. Convert equations from rectangular to polar form and

More information

Thermal Deformation Analysis Using Modelica

Thermal Deformation Analysis Using Modelica Thermal Deformation Analsis Using Modelica Eunkeong Kim 1 Tatsurou Yashiki 1 Fumiuki Suzuki 2 Yukinori Katagiri 1 Takua Yoshida 1 1 Hitachi, Ltd., Research & Development Group, Japan, {eunkeong.kim.mn,

More information

Application of Shell elements to buckling-analyses of thin-walled composite laminates

Application of Shell elements to buckling-analyses of thin-walled composite laminates Application of Shell elements to buckling-analyses of thin-walled composite laminates B.A. Gӧttgens MT 12.02 Internship report Coach: Dr. R. E. Erkmen University of Technology Sydney Department of Civil

More information

A rotation is a transformation that turns a figure around a point, called the.

A rotation is a transformation that turns a figure around a point, called the. Name: # Geometr: Period Ms. Pierre Date: Rotations Toda s Objective KWBAT represent a rotation as a function of coordinate pairs and rotate a figure in the plane following a rule described in words or

More information

turn counterclockwise from the positive x-axis. However, we could equally well get to this point by a 3 4 turn clockwise, giving (r, θ) = (1, 3π 2

turn counterclockwise from the positive x-axis. However, we could equally well get to this point by a 3 4 turn clockwise, giving (r, θ) = (1, 3π 2 Math 133 Polar Coordinates Stewart 10.3/I,II Points in polar coordinates. The first and greatest achievement of modern mathematics was Descartes description of geometric objects b numbers, using a sstem

More information

Appendix D Trigonometry

Appendix D Trigonometry Math 151 c Lynch 1 of 8 Appendix D Trigonometry Definition. Angles can be measure in either degree or radians with one complete revolution 360 or 2 rad. Then Example 1. rad = 180 (a) Convert 3 4 into degrees.

More information

3D Finite Element Software for Cracks. Version 3.2. Benchmarks and Validation

3D Finite Element Software for Cracks. Version 3.2. Benchmarks and Validation 3D Finite Element Software for Cracks Version 3.2 Benchmarks and Validation October 217 1965 57 th Court North, Suite 1 Boulder, CO 831 Main: (33) 415-1475 www.questintegrity.com http://www.questintegrity.com/software-products/feacrack

More information

I can identify reflections, rotations, and translations. I can graph transformations in the coordinate plane.

I can identify reflections, rotations, and translations. I can graph transformations in the coordinate plane. Page! 1 of! 14 Attendance Problems. 1. Sketch a right angle and its angle bisector. 2. Draw three different squares with (3, 2) as one vertex. 3. Find the values of x and y if (3, 2) = (x + 1, y 3) Vocabulary

More information

Position and Displacement Analysis

Position and Displacement Analysis Position and Displacement Analysis Introduction: In this chapter we introduce the tools to identifying the position of the different points and links in a given mechanism. Recall that for linkages with

More information

HFAN Rev.1; 04/08

HFAN Rev.1; 04/08 pplication Note: HFN-0.0. Rev.; 04/08 Laser Diode to Single-Mode Fiber Coupling Efficienc: Part - Butt Coupling VILBLE Laser Diode to Single-Mode Fiber Coupling Efficienc: Part - Butt Coupling Introduction

More information

3.4 Warm Up. Substitute the given values of m, x, and y into the equation y = mx + b and solve for b. 2. m = 2, x = 3, and y = 0

3.4 Warm Up. Substitute the given values of m, x, and y into the equation y = mx + b and solve for b. 2. m = 2, x = 3, and y = 0 3.4 Warm Up 1. Find the values of x and y. Substitute the given values of m, x, and y into the equation y = mx + b and solve for b. 2. m = 2, x = 3, and y = 0 3. m = -1, x = 5, and y = -4 3.3 Proofs with

More information

PTC Newsletter January 14th, 2002

PTC  Newsletter January 14th, 2002 PTC Email Newsletter January 14th, 2002 PTC Product Focus: Pro/MECHANICA (Structure) Tip of the Week: Creating and using Rigid Connections Upcoming Events and Training Class Schedules PTC Product Focus:

More information

Finite Element Simulation Models for Mechanics of Materials

Finite Element Simulation Models for Mechanics of Materials Paper ID #18627 Finite Element Simulation Models for Mechanics of Materials Dr. Shahnam Navaee, Georgia Southern University Dr. Navaee is currently a Full Professor in the Civil Engineering and Construction

More information

To sketch the graph we need to evaluate the parameter t within the given interval to create our x and y values.

To sketch the graph we need to evaluate the parameter t within the given interval to create our x and y values. Module 10 lesson 6 Parametric Equations. When modeling the path of an object, it is useful to use equations called Parametric equations. Instead of using one equation with two variables, we will use two

More information

Mixed Mode Fracture of Through Cracks In Nuclear Reactor Steam Generator Helical Coil Tube

Mixed Mode Fracture of Through Cracks In Nuclear Reactor Steam Generator Helical Coil Tube Journal of Materials Science & Surface Engineering Vol. 3 (4), 2015, pp 298-302 Contents lists available at http://www.jmsse.org/ Journal of Materials Science & Surface Engineering Mixed Mode Fracture

More information

Lagrange multipliers 14.8

Lagrange multipliers 14.8 Lagrange multipliers 14.8 14 October 2013 Example: Optimization with constraint. Example: Find the extreme values of f (x, y) = x + 2y on the ellipse 3x 2 + 4y 2 = 3. 3/2 Maximum? 1 1 Minimum? 3/2 Idea:

More information

Lagrange multipliers October 2013

Lagrange multipliers October 2013 Lagrange multipliers 14.8 14 October 2013 Example: Optimization with constraint. Example: Find the extreme values of f (x, y) = x + 2y on the ellipse 3x 2 + 4y 2 = 3. 3/2 1 1 3/2 Example: Optimization

More information

Math : Differentiation

Math : Differentiation EP-Program - Strisuksa School - Roi-et Math : Differentiation Dr.Wattana Toutip - Department of Mathematics Khon Kaen University 00 :Wattana Toutip wattou@kku.ac.th http://home.kku.ac.th/wattou. Differentiation

More information

MATHEMATICS FOR ENGINEERING TRIGONOMETRY

MATHEMATICS FOR ENGINEERING TRIGONOMETRY MATHEMATICS FOR ENGINEERING TRIGONOMETRY TUTORIAL SOME MORE RULES OF TRIGONOMETRY This is the one of a series of basic tutorials in mathematics aimed at beginners or anyone wanting to refresh themselves

More information

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is 1. Let f(x, y) = 5 + 3x 2 + 3y 2 + 2y 3 + x 3. (a) Final all critical points of f. (b) Use the second derivatives test to classify the critical points you found in (a) as a local maximum, local minimum,

More information

9 CARTESIAN SYSTEM OF COORDINATES You must have searched for our seat in a cinema hall, a stadium, or a train. For eample, seat H-4 means the fourth seat in the H th row. In other words, H and 4 are the

More information

Isometry: When the preimage and image are congruent. It is a motion that preserves the size and shape of the image as it is transformed.

Isometry: When the preimage and image are congruent. It is a motion that preserves the size and shape of the image as it is transformed. Chapter Notes Notes #36: Translations and Smmetr (Sections.1,.) Transformation: A transformation of a geometric figure is a change in its position, shape or size. Preimage: The original figure. Image:

More information

CHAPTER 4 INCREASING SPUR GEAR TOOTH STRENGTH BY PROFILE MODIFICATION

CHAPTER 4 INCREASING SPUR GEAR TOOTH STRENGTH BY PROFILE MODIFICATION 68 CHAPTER 4 INCREASING SPUR GEAR TOOTH STRENGTH BY PROFILE MODIFICATION 4.1 INTRODUCTION There is a demand for the gears with higher load carrying capacity and increased fatigue life. Researchers in the

More information

16.6. Parametric Surfaces. Parametric Surfaces. Parametric Surfaces. Vector Calculus. Parametric Surfaces and Their Areas

16.6. Parametric Surfaces. Parametric Surfaces. Parametric Surfaces. Vector Calculus. Parametric Surfaces and Their Areas 16 Vector Calculus 16.6 and Their Areas Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. and Their Areas Here we use vector functions to describe more general

More information

NEW WAVE OF CAD SYSTEMS AND ITS APPLICATION IN DESIGN

NEW WAVE OF CAD SYSTEMS AND ITS APPLICATION IN DESIGN Vol 4 No 3 NEW WAVE OF CAD SYSTEMS AND ITS APPLICATION IN DESIGN Ass Lecturer Mahmoud A Hassan Al-Qadisiyah University College of Engineering hasaaneng@yahoocom ABSTRACT This paper provides some lighting

More information

0618geo. Geometry CCSS Regents Exam

0618geo. Geometry CCSS Regents Exam 0618geo 1 After a counterclockwise rotation about point X, scalene triangle ABC maps onto RST, as shown in the diagram below. 3 In the diagram below, line m is parallel to line n. Figure 2 is the image

More information

Understanding Rotations

Understanding Rotations Lesson 19 Understanding Rotations 8.G.1.a, 8.G.1.b, 8.G.1.c, 8.G., 8.G.3 1 Getting the idea A rotation is a tpe of transformation in which ou turn a figure about a fied point. The image formed b a rotation

More information

11 cm. A rectangular container is 12 cm long, 11 cm wide and 10 cm high. The container is filled with water to a depth of 8 cm.

11 cm. A rectangular container is 12 cm long, 11 cm wide and 10 cm high. The container is filled with water to a depth of 8 cm. Diagram NOT accurately drawn 10 cm 11 cm 12 cm 3.5 cm A rectangular container is 12 cm long, 11 cm wide and 10 cm high. The container is filled with water to a depth of 8 cm. A metal sphere of radius 3.5

More information

Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves

Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves Block #1: Vector-Valued Functions Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves 1 The Calculus of Moving Objects Problem.

More information

MATH-G Transversal l cuts lines a, b, c, and d. Which two lines are parallel? A a and c B a and d C b and c D b and d

MATH-G Transversal l cuts lines a, b, c, and d. Which two lines are parallel? A a and c B a and d C b and c D b and d MATH-G 2007 [Exam ID:PZRMS1] Scan Number:3697 1 Transversal l cuts lines a, b, c, and d. Which two lines are parallel? A a and c B a and d C b and c D b and d 2 In the figure above, 2 and 6 are a pair

More information

Polar Functions Polar coordinates

Polar Functions Polar coordinates 548 Chapter 1 Parametric, Vector, and Polar Functions 1. What ou ll learn about Polar Coordinates Polar Curves Slopes of Polar Curves Areas Enclosed b Polar Curves A Small Polar Galler... and wh Polar

More information

Simulation of Flow Development in a Pipe

Simulation of Flow Development in a Pipe Tutorial 4. Simulation of Flow Development in a Pipe Introduction The purpose of this tutorial is to illustrate the setup and solution of a 3D turbulent fluid flow in a pipe. The pipe networks are common

More information

Contents Metal Forming and Machining Processes Review of Stress, Linear Strain and Elastic Stress-Strain Relations 3 Classical Theory of Plasticity

Contents Metal Forming and Machining Processes Review of Stress, Linear Strain and Elastic Stress-Strain Relations 3 Classical Theory of Plasticity Contents 1 Metal Forming and Machining Processes... 1 1.1 Introduction.. 1 1.2 Metal Forming...... 2 1.2.1 Bulk Metal Forming.... 2 1.2.2 Sheet Metal Forming Processes... 17 1.3 Machining.. 23 1.3.1 Turning......

More information

Bell Crank. Problem: Joseph Shigley and Charles Mischke. Mechanical Engineering Design 5th ed (New York: McGraw Hill, May 2002) page 87.

Bell Crank. Problem: Joseph Shigley and Charles Mischke. Mechanical Engineering Design 5th ed (New York: McGraw Hill, May 2002) page 87. Problem: A cast-iron bell-crank lever, depicted in the figure below is acted upon by forces F 1 of 250 lb and F 2 of 333 lb. The section A-A at the central pivot has a curved inner surface with a radius

More information

Mathematical Analysis of Spherical Rectangle by H.C. Rajpoot

Mathematical Analysis of Spherical Rectangle by H.C. Rajpoot From the SelectedWorks of Harish Chandra Rajpoot H.C. Rajpoot Winter February 9, 2015 Mathematical Analysis of Spherical Rectangle by H.C. Rajpoot Harish Chandra Rajpoot Rajpoot, HCR Available at: https://works.bepress.com/harishchandrarajpoot_hcrajpoot/30/

More information

Math (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines

Math (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines Math 18.02 (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines February 12 Reading Material: From Simmons: 17.1 and 17.2. Last time: Square Systems. Word problem. How many solutions?

More information

Application nr. 2 (Global Analysis) Effects of deformed geometry of the structures. Structural stability of frames. Sway frames and non-sway frames.

Application nr. 2 (Global Analysis) Effects of deformed geometry of the structures. Structural stability of frames. Sway frames and non-sway frames. Application nr. 2 (Global Analysis) Effects of deformed geometry of the structures. Structural stability of frames. Sway frames and non-sway frames. Object of study: multistorey structure (SAP 2000 Nonlinear)

More information

Find the volume of a solid with regular cross sections whose base is the region between two functions

Find the volume of a solid with regular cross sections whose base is the region between two functions Area Volume Big Ideas Find the intersection point(s) of the graphs of two functions Find the area between the graph of a function and the x-axis Find the area between the graphs of two functions Find the

More information

Think About. Unit 5 Lesson 3. Investigation. This Situation. Name: a Where do you think the origin of a coordinate system was placed in creating this

Think About. Unit 5 Lesson 3. Investigation. This Situation. Name: a Where do you think the origin of a coordinate system was placed in creating this Think About This Situation Unit 5 Lesson 3 Investigation 1 Name: Eamine how the sequence of images changes from frame to frame. a Where do ou think the origin of a coordinate sstem was placed in creating

More information

PLAXIS 2D - SUBMERGED CONSTRUCTION OF AN EXCAVATION

PLAXIS 2D - SUBMERGED CONSTRUCTION OF AN EXCAVATION PLAXIS 2D - SUBMERGED CONSTRUCTION OF AN EXCAVATION 3 SUBMERGED CONSTRUCTION OF AN EXCAVATION This tutorial illustrates the use of PLAXIS for the analysis of submerged construction of an excavation. Most

More information

USE OF PMAC S CIRCULAR INTERPOLATION FOR ELLIPSES, SPIRALS AND HELICES:

USE OF PMAC S CIRCULAR INTERPOLATION FOR ELLIPSES, SPIRALS AND HELICES: USE OF PMAC S CIRCULAR INTERPOLATION FOR ELLIPSES, SPIRALS AND HELICES: PMAC allows circular interpolation on the X, Y, and Z aes in a coordinate sstem. As with linear blended moves, TA and TS control

More information

Honors Pre-Calculus. 6.1: Vector Word Problems

Honors Pre-Calculus. 6.1: Vector Word Problems Honors Pre-Calculus 6.1: Vector Word Problems 1. A sled on an inclined plane weighs 00 lb, and the plane makes an angle of 0 degrees with the horizontal. What force, perpendicular to the plane, is exerted

More information

PARAMETERIZATIONS OF PLANE CURVES

PARAMETERIZATIONS OF PLANE CURVES PARAMETERIZATIONS OF PLANE CURVES Suppose we want to plot the path of a particle moving in a plane. This path looks like a curve, but we cannot plot it like we would plot any other type of curve in the

More information

Learning Module 8 Shape Optimization

Learning Module 8 Shape Optimization Learning Module 8 Shape Optimization What is a Learning Module? Title Page Guide A Learning Module (LM) is a structured, concise, and self-sufficient learning resource. An LM provides the learner with

More information

MATHEMATICS FOR ENGINEERING TUTORIAL 5 COORDINATE SYSTEMS

MATHEMATICS FOR ENGINEERING TUTORIAL 5 COORDINATE SYSTEMS MATHEMATICS FOR ENGINEERING TUTORIAL 5 COORDINATE SYSTEMS This tutorial is essential pre-requisite material for anyone studying mechanical engineering. This tutorial uses the principle of learning by example.

More information

September 23,

September 23, 1. In many ruler and compass constructions it is important to know that the perpendicular bisector of a secant to a circle is a diameter of that circle. In particular, as a limiting case, this obtains

More information