An Overview of Surge Protection for the Smart Grid IEEE PES/SPDC WG Matt Wakeham, Chair

Size: px
Start display at page:

Download "An Overview of Surge Protection for the Smart Grid IEEE PES/SPDC WG Matt Wakeham, Chair"

Transcription

1 An Overview of Surge Protection for the Smart Grid IEEE PES/SPDC WG Matt Wakeham, Chair The document content is of a general nature only and is not intended to address the specific circumstances of any particular individual or entity; nor be necessarily comprehensive, complete, accurate or up to date; nor represent professional or legal advice.

2 2 An Overview of Surge Protection for the Smart Grid IEEE PES/SPDC WG Matt Wakeham, Chair This paper presents a brief overview of surges which occur in ac power, control and communication circuits, and the use of surge protective devices to mitigate these effects within the Smart Grid. An overview of pertinent industry standards is provided. 1.0 INTRODUCTION AND PURPOSE The purpose of this paper is to outline how surge protective devices play an integral part in improving the operability and reliability of the North American Smart Grid and its components. Applications include connection to power equipment, as well as data and signaling circuits for control, monitoring and communication. The selection and application of surge protective devices based on transient exposure levels are discussed. 2.0 SMART GRID 2.1 Smart Grid Overview The IEEE definition of the Smart Grid is the integration of power, communications, and information technologies for an improved electric power infrastructure serving loads while providing for an ongoing evolution of end-use applications. The source for this definition is IEEE Std IEEE Guide for Smart Grid Interoperability of Energy Technology and Information Technology Operation with the Electric Power System (EPS), End-Use Applications, and Loads. Paramount is the two way flow of energy and information. The basic concept of Smart Grid is to provide interoperability of the national electrical delivery system by means of monitoring, information, control, and communication capabilities to the national electrical delivery system to maximize the reliability of the system while reducing the energy consumption. The intent of the Smart Grid is to allow utilities to transmit and distribute electricity throughout the system reliably through the deployment and use of intelligent electronic equipment in the sub-domains associated with the electric power and the public and private communications. This will allow homeowners, businesses and industrial facilities to use electricity more intelligently. The traditional power distribution arrangement is to have central power generation with radial distribution. If there is too much load for the available generation or transmission it will cause the generation to slow down or the transmission system to break apart in an effort to reduce the sag in the transmission lines. Most transmission systems have automatic frequency and undervoltage load shedding plans in place. Modeling the power system determines what are the maximum distributed energy resources that can be absorbed on the transmission facilities. One thing that can occur is that voltage and frequency regulation is going to be degraded any time the grid is put under too much stress. Intelligently interlinking distribution systems in a grid allows for the continued delivery of power during fault or excessive demand situations.

3 3 One of the aspects of the Smart Grid is the ability to monitor, control and coordinate alternative energy resources at various points in the grid. Problems exist when a radial distribution system has to accept two way flow of real and reactive power. To manage this problem there has to be a greater dependence on monitoring, information exchange and control (MIC) (IEEE Std ). It is imperative to understand how to protect all communication system elements from unnecessary upset or damage from lightning, both direct and indirect. It is also necessary to assure that surge protection and/or other technologies are in place to mitigate switching surges anywhere in the electrical delivery system causing upset or damage. Non-traditional sources like energy storage; flywheels, batteries and high energy capacitors and renewables such as; wind photovoltaic, require new standards to define the surge protection requirements. 2.2 Smart Grid and Communications Protection of the communication links from overvoltage disturbances are important in a Smart Grid since operation depends upon a reliable two-way communication between the electric utility and the customer for effective service. This may be as simple as providing information to the customer about the cost of the energy being used called Demand Response (DR) or Demand Side Management (DSM) ; or it can directly control equipment within the facility to manage peak power demand from the grid. Communications typically employ wireless, power line carrier, copper wire or fiber-optic services and in some cases microwave systems or a combination of these systems. The service needs to be interfaced to a network. Generally this interface is implemented by a device called a gateway, which is located where the communications service enters the structure. A prevalent myth is that if this gateway is served by a fiber optic or wireless connection, it is immune from damage by lightning. But damage can still occur, due to ground potential rise.

4 4 Antenna Photovoltaic system CATV Telecom NIU Modem (typical) Set-top box Existing wires [TWP, CAT 5, Coax] Surveillance AC Power Smart power meter (could also be wireless) Telephone Appliance Appliance Appliance Figure 1. A possible configuration of a home network including electronic equipment connected to a gateway via an Ethernet link 2.3 Importance of Surge Protection for Smart Grid Key aspects of Smart Grid point to an increased need for surge protection due to: 1. Addition of electronic based monitoring, analysis, control and communication equipment. Surge protection is required to protect this electronic equipment from damage due to voltage transients. 2. Proliferation of communications, control and monitoring devices and the addition of distributed and alternative power sources, increases the exposure of equipment to lightning and other surges. 3. Increase in residential, commercial and industrial use of energy management systems and distributed generation cause more switching of loads and generation sources within the premise; thereby increasing the need for point-of-use protection inside the premise. 4. The overall geographical reach of the Smart Grid poses an increased exposure to lightning damage or disruption. This risk is proportional to the lightning strike density and capture area of the grid. Manufacturers of electronic equipment and appliances might need to install surge protective devices to mitigate surges. Immunity levels are discussed in IEC Std series and IEEE Std1100.

5 5 Typically, electric utilities require equipment to meet IEEE C , C and C for electronic controls connected to the electric power system; and IEC and In particular, distributed generation systems found in the smart grid often use power inverters and electronic controls that are susceptible to damage from surges, and as such, should have surge protection on both the output (AC) and input (DC) to protect the sensitive internal electronics. In this application both utility equipment and customer equipment might need surge protection. In addition, it is important to assure that the earth conductors of both systems are bonded to the same earthing point. System reliability can be degraded due to the presence of surges, which can be internally or externally generated. This degradation can be prevented by a well-designed protection system. Whether incorporated in a surge panel, a surge strip or a distributed system including a panel, sub-panel and point of use device, surge protection provides valuable down line protection from damage due to surges on the power lines. 3.0 ELECTRICAL DISTURBANCES AND SURGES Temporary electrical events, such as lightning, can be coupled into power and ICT systems as surge voltages, currents or both. These surges can upset or damage electronic equipment within a facility, since they can reach amplitudes of tens of thousands of volts and thousands of amps. 3.1 Internally Generated Disturbances Surge disturbances can originate inside or outside a facility. It is estimated that 60 80% of surges are internally generated within the facility. Common sources of these internal surges are devices that switch power. This can be anything from a simple thermostat switch operating a heating element to a switch-mode power supply found in many electronic devices. Examples of switching surge sources include: Contactor, relay, and breaker operations.: These devices include inductance which stores energy that may be released as an arc across the contacts when switched. The waveform of these surges is often complex with amplitudes that may be several times greater than the nominal system voltage. Switching of capacitor banks: Capacitor banks are commonly used to manage power factor correction within the facility s electrical system. These capacitor banks are switched into and out of operation to regulate the reactive power. This switching action can create ringing, with voltage amplitudes that can be as high as four times the nominal system voltage Switching of inductive devices: Transformers, reactors and motor stored energy, which when switched, is released into the electrical system.

6 6 3.2 Lightning Disturbances Lightning protection systems (LPS) can improve the reliability of the electric power and the communication systems. The design of a LPS is based on statistical information related to the ground flash density (isokeraunic maps) and the location of the structure. The effectiveness of the LPS relies on correct grounding (earthing) and bonding methods. Not all facilities require or need to have the same degree of lightning protection. During a lightning discharge, the passage of the direct lightning current from the lightning receptors (or any other air terminal) at the top of the structure to ground via the LPS down conductors, can induce, harmful overvoltages into the internal wiring system due to electromagnetic coupling,. 3.3 Other line-side disturbances Many of the internally generated surges discussed earlier are similar to those present on the line side of any service entrance equipment of a facility. The difference is generally in the amplitude of the surge. The surges from the line side are typically much higher in amplitude from the surges generated on the load side. Line side surges are generally associated with equipment damage while load side surges are more commonly associated with equipment upset. The surge environment is well discussed in IEEE Std. C IEEE Guide on the Surge Environment in Low-Voltage (1000 V and Less) AC Power Circuits. This includes line-side and load-side surges. IEEE Std. C IEEE Recommended Practice on Characterization of Surges in Low-Voltage (1000 V and Less) AC Power Circuits presents recommendations on the selection of representative surge parameters to be considered in assessing equipment immunity and performance of SPDs. The contents of these two standards address the majority of surge issues that Smart Grid equipment is exposed to. However they do not cover special cases such as electromagnetic pulse (EMP) and geomagnetic disturbances. 4.0 SURGE PROTECTION 4.1 Overview of Surge Protection A Surge Protective Device (SPD) is a device that mitigates the effects of excessive voltage transients. This protection is accomplished by diverting surge current, thereby reducing the level of the voltage transients. These devices are employed to protect electrical and electronic loads or the facility s service equipment. When an overvoltage in excess of the SPD limiting voltage appears on the system, the SPD changes state from being very high impedance and drawing little to no current, to a low impedance state where excess current is diverted and the SPD limits the voltage. If correctly selected, coordinated and installed this SPD will protect the downstream equipment. A second

7 7 important function of an SPD is the ability to equalize or reduce voltage differences that occur across grounded and bonded components of the power and communications systems. Examples of components used in SPDs are: metal oxide varistors (MOV), thermally-protected MOVs, avalanche breakdown diodes (ABD), gas discharge tubes (GDT), passive filters and circuits including combination designs of these components. In addition, communication circuits might use Electronic Current Limiters (ECL) and/or Positive Temperature Coefficient (PTC) devices. Inductors and/or capacitors may also be included to provide filtering. 4.2 Assessment Process to Determine Proper Surge Protection for Different Facilities and Equipment The Institute of Electrical and Electronics Engineers (IEEE) developed the IEEE Recommended Practice on Characterization of Surges in Low-Voltage (1000 V and Less) AC Power Circuits (Std C ) as an electrical transient exposure level/surge severity categorization guideline. Figure 2 shows the concept. These severity levels enable manufacturers to test and users to specify the appropriate protection level based on one of three Categories. The categories include outdoor location, service entrance equipment and inside the facility. Service entrance Service equipment C C/B B B/A A Service equipment Outbuilding XF Service entrance Meter Subpanel Underground service Figure 2. The concept of location categories and transitions as simplification approach.

8 8 Table 1- Classification of location stress levels IEEE Location Stress Level Location Category C High Service equipment Service entrance near utility substation Service entrance on the electric supply system with other large industrial users C/B High-to-Medium Service entrance remotely located from utility power factor correction and electric supply system switching High-lightning area distribution panels feeding roof-top loads IEEE Category B Medium Large distribution panels Non-service entrance distribution switchboards Heavy equipment located near unprotected service entrance Panels feeding variable speed drives Non-service entrance motor control centers utilizing drives, PLCs, soft-start or electronic starters IEEE Category B/A Medium-to-Low Branch panels with heavy sensitive equipment loads Branch panels with combination of "dirty" and sensitive loads Branch panels without upstream protection Busway feeding sensitive loads Bus riser feeding multiple floors with critical or sensitive loads IEEE Category A Low Branch panels with upstream protection Branch panels with primarily sensitive electronic loading Branch panels deep within a facility

9 9 Refer to Table 1 of C for a summary of applicable standards and surge-testing waveforms for Location Categories A, B, and C. 5.0 EXISTING STANDARDS AND RESOURCES 5.1 Existing SPD Related Standards There are a number of industry standards that apply to surge protective devices (SPDs), whether they are connected to the electrical system through a plug-in connection or hard-wired connection to the facility wiring. These include: IEEE Std C (2002): Guide on the Surge Environment in Low-Voltage (1000V and less) AC Power Circuits - This guide provides comprehensive information on surges and the environment in which they occur. It describes the surge voltage, surge current, and temporary overvoltages (TOV) environment in low-voltage (up to 1000V root mean square [RMS]) AC power circuits. It is a reference for the second document, which describes the surge environment. IEEE Std C (2002): Recommended Practice on Characterization of Surges in Low- Voltage (1000 V and less) AC Power Circuits - This guide presents recommendations for selecting surge waveforms and the amplitudes of surge voltages and currents used to evaluate equipment immunity and performance of SPDs. Its recommendations are based on the location within a facility, power line impedance to the surge, total wire length, proximity, and type of electrical loads, wiring quality, and more. IEEE Std C62.45 : Recommended Practice on Surge Testing for Equipment Connected to Low- Voltage (1000V and Less) AC Power Circuits - This guide focuses on surge testing procedures using simplified waveform representations (described in IEEE C ) to obtain reliable measurements and enhance operator safety. This guide provides background information that helps determine whether equipment or a circuit can adequately withstand surges. IEEE Std C : Application of Surge Protectors Used in Low-Voltage (Equal to or Less than 1000 V, rms, or 1200 V, DC) Data, Communications, and Signaling Circuits IEEE Std C : IEEE Guide for the Application of Surge-Protective Devices for Low- Voltage (1000 V or Less) AC Power Circuits National Electrical Code (NEC) and National Fire Protection Association (NFPA) - Developed by the NFPA, the NEC was established to address electrical safety in the workplace. While the code is updated every three years, not all states and municipalities have adopted the same version of the NEC.

10 10 NEC Article 285 Includes requirements for connecting all SPDs rated 1000V or less to the electrical distribution system of a facility. The standard addresses surge protection to help electricians properly install hardwired SPDs. National Fire Protection Association (NFPA) 780 Lightning Protection Code NFPA 780 addresses the protection requirements for ordinary structures, miscellaneous structures, special occupancies, industrial operating environments, etc. It requires that devices suitable for protecting the structure be installed on electric and telephone service entrances, and on radio and television antenna lead-ins. IEC Ed. 2.0 b:2008 Low-voltage surge protective devices - Part 12: Surge protective devices connected to low-voltage power distribution systems Selection and Application principles IEC Ed. 1.0 b:2011, Low-voltage surge protective devices - Part 22: Surge protective devices connected to telecommunications and signaling networks - Selection and application principles ATIS Electric Coordination of Primary and Secondary Surge Protection for Use in Telecommunications Circuits. CEA/CEDIA-CEB29: Recommended Practice for the Installation of Smart Grid Devices. CIGRÉ TB 549 (2013) Lightning Parameters for Engineering Applications ANSI/UL 1449 Standard for Safety - Surge Protective Devices 5.2 SPD Related Standards and guides in development IEEE/PES/SPDC WG is developing an application guide for surge protection of the North American Smart Grid. This will serve to assist the industry at large with a guide for best practices in identifying locations where the application of surge protection needs to be considered and how to determine the specification and selection of these devices.

The following standards are the basis of design, manufacture, and test of SPD equipment: Guide for Surge Voltages in Low-Voltage AC Power Circuits

The following standards are the basis of design, manufacture, and test of SPD equipment: Guide for Surge Voltages in Low-Voltage AC Power Circuits ENGINEERING BULLETIN Manufacturing & Test Standards for SPDs APT SPD/TVSS are manufactured and tested in accordance with applicable industry standards. UL Marks are found on APT equipment. These are the

More information

TECH NOTE #: CPS-1 SUMMARY OF APPLICABLE UL AND IEEE STANDARDS

TECH NOTE #: CPS-1 SUMMARY OF APPLICABLE UL AND IEEE STANDARDS TECH NOTE #: CPS-1 SUMMARY OF APPLICABLE UL AND IEEE STANDARDS FOR SURGE PROTECTION DEVICES This Tech Note provides an overview of the key standards associated with surge suppressors and AC powerline filters.

More information

Lightning and Surge Protection for PV Systems

Lightning and Surge Protection for PV Systems Lightning and Surge Protection for PV Systems Application Note (AU) Phillip Tompson Introduction Like all electrical equipment photovoltaic systems can be damaged by both direct and indirect lightning

More information

ALLTEC PROTECTION PYRAMID TM FOR PHOTOVOLTAIC SOLAR FIELD

ALLTEC PROTECTION PYRAMID TM FOR PHOTOVOLTAIC SOLAR FIELD 64 Catalyst Drive Canton, North Carolina, 28716 USA +1.828.646.9290 +1.828.646.9527 (Fax) +1.800.203.2658 (Toll Free) www.alltecglobal.com ALLTEC PROTECTION PYRAMID TM FOR PHOTOVOLTAIC SOLAR FIELD Photovoltaic

More information

Quantum Chargers Enhanced AC Line Transient Immunity

Quantum Chargers Enhanced AC Line Transient Immunity Introduction Quantum Chargers Enhanced AC Line Transient Immunity By: Nasser Kutkut, PhD, DBA Advanced Charging Technologies Inc. This white paper outlines the most common AC power quality disturbances

More information

ENGR. MARITES R. PANGILINAN, P.E.E.

ENGR. MARITES R. PANGILINAN, P.E.E. ENGR. MARITES R. PANGILINAN, P.E.E. WHAT IS LOW VOLTAGE INSULATION COORDINATION AND WHY IT IS IMPORTANT WHERE DO SURGES COME FROM HOW DO SPDs WORK/TYPE OF SPDs SPD SPECIFICATIONS SPD COORDINATION /CASCADING

More information

Cirprotec Technical Article No. 5

Cirprotec Technical Article No. 5 Lightning and surge protection in waste water purification plants (WWTPs and DWTPs) Cirprotec Technical Article No. 5 2010 CIRPROTEC All rights reserved 2012 CIRPROTEC All rights reserved Cirprotec Technica

More information

TRI-SERVICE ELECTRICAL WORKING GROUP (TSEWG) 07/16/08 TSEWG TP-3: SURGE PROTECTOR PERFORMANCE AND EVALUATION CRITERIA

TRI-SERVICE ELECTRICAL WORKING GROUP (TSEWG) 07/16/08 TSEWG TP-3: SURGE PROTECTOR PERFORMANCE AND EVALUATION CRITERIA TSEWG TP-3: SURGE PROTECTOR PERFORMANCE AND EVALUATION CRITERIA SURGE PROTECTION DESIGN. Parallel Versus Series Protection. Surge protectors within the scope of this UFC should normally be of the parallel

More information

Data Sheet. Surge protection devices - A technical overview

Data Sheet. Surge protection devices - A technical overview Data Pack K Issued March 1997 232-5985 Data Sheet Surge protection devices - A technical overview Introduction This data sheet covers the following topics: Types of electrical disturbance. Sources of surges

More information

White Paper. AC Surge Protection. Evaluation of Series Element Surge Protective Device for Protection of Electronic Equipment and Systems

White Paper. AC Surge Protection. Evaluation of Series Element Surge Protective Device for Protection of Electronic Equipment and Systems White Paper AC Surge Protection Evaluation of Series Element Surge Protective Device for Protection of Electronic Equipment and Systems Richard Odenberg, Research & Advanced Applications, Founder of Transtector

More information

Surge Protector. Esma Khatun

Surge Protector. Esma Khatun Surge Protector Esma Khatun 1.04.17 Overall Size Electronic Usage Use of electronic equipment has increased Overall size of the equipment has decreased TIME Smaller more compact electronic devices have

More information

AC Line Voltage Transients and Their Suppression

AC Line Voltage Transients and Their Suppression AC Line Voltage Transients and Their Suppression Application Note January 1998 AN9308.2 [ /Title (AN93 08) /Subject (AC Line Voltage Transients and Their Suppression) /Autho r () /Keywords (TVS, Transient

More information

2 Principle of lightning protection

2 Principle of lightning protection 2 Principle of lightning protection The system for protecting a building against the effects of lightning must include: bprotection of structures against direct lightning strokes; bprotection of electrical

More information

glossary GE Digital Energy Power Quality Surge Protective Devices (SPDs)

glossary GE Digital Energy Power Quality Surge Protective Devices (SPDs) GE Digital Energy Power Quality Surge Protective Devices (SPDs) glossary Active Tracking A term used to describe the ability of a filter to reduce frequency disturbances at a constant level with respect

More information

2.1. SPD, Power Conditioning, PF Capacitors and Harmonic Filters. Contents Description. Introduction. Surge Protection and Power Conditioning

2.1. SPD, Power Conditioning, PF Capacitors and Harmonic Filters. Contents Description. Introduction. Surge Protection and Power Conditioning .1 Industrial and Commercial Surge Protection Introduction Industrial and Commercial Surge Protection SPD Series for Integration into Electrical Distribution Equipment SPD Series for Mounting External

More information

BS th Edition wiring regulations Furse overview

BS th Edition wiring regulations Furse overview BS 7671 18th Edition wiring regulations Furse overview Transient overvoltage protection TRANSIENT OVERVOLTAGE PROTECTION - RISK ASSESSMENT TO BS 7671 Furse electronic systems protection Enhanced solutions

More information

White Paper Surge Current Characteristics: 570 Hybrid Surge Protective Device

White Paper Surge Current Characteristics: 570 Hybrid Surge Protective Device White Paper Surge Current Characteristics: 57 Hybrid Surge Protective Device Surge Current Characteristics: 57 Hybrid Surge Protective Device This document describes the surge current mitigation characteristics

More information

Ethernet Protection A Whole Solution Han Zou, ProTek Devices

Ethernet Protection A Whole Solution Han Zou, ProTek Devices Ethernet Protection ------ A Whole Solution Han Zou, ProTek Devices Introduction: As Ethernet applications progress from 10BaseT to 10Gigabit and beyond, IC components are becoming more complicated with

More information

Point-of-Use Surge Protection

Point-of-Use Surge Protection Point-of-Use Surge Protection Point-of-use surge protection consists of a power strip with surge protection circuitry incorporated. Point-of-use surge protection should be used anywhere expensive and sensitive

More information

GENERAL UL th EDITION DESIGN-BUILD SPEC: SURGE PROTECTIVE DEVICES Prepared by THOR SYSTEMS, INC.

GENERAL UL th EDITION DESIGN-BUILD SPEC: SURGE PROTECTIVE DEVICES Prepared by THOR SYSTEMS, INC. [Refer to Engineering Notes at End of Spec] Section [16XXX] [264XXX] - SURGE PROTECTIVE DEVICES (SPDs) PART 1 - GENERAL 1.1 SCOPE A. This section includes Surge Protective Devices (SPDs) for low-voltage

More information

Technical Data Sheet Medium Current Power Surge Filters

Technical Data Sheet Medium Current Power Surge Filters Technologies Technical Data Sheet Medium Current Power Surge Filters Features High performance surge protector for an operating voltage of 0-220Vac Designed to withstand fault and over-voltage conditions

More information

LPI SST Surge Filters

LPI SST Surge Filters LPI SST Surge Filters Features High performance surge protector for an operating voltage of 200-240Vac Designed to withstand fault and over-voltage conditions of up to 85Vac, as per IEC664 Impulse discharge

More information

Overvoltage Protection

Overvoltage Protection Overvoltage Protection OVR Range FRSOX 0100 03 GB ABB Lightning Protection Group 1 Main causes of transient overvoltages The solution: ABB OVR Surge Protective Device Range Lightning strike A lightning

More information

GENERAL UL th EDITION BID SPEC: SURGE PROTECTIVE DEVICES Prepared by THOR SYSTEMS, INC.

GENERAL UL th EDITION BID SPEC: SURGE PROTECTIVE DEVICES Prepared by THOR SYSTEMS, INC. [Refer to Engineering Notes at End of Spec] Section [16XXX] [264XXX] - SURGE PROTECTIVE DEVICES (SPDs) PART 1 - GENERAL 1.1 SCOPE A. This section includes Surge Protective Devices (SPDs) for low-voltage

More information

INTRODUCTION TO SPECIFYING SURGE PROTECTION SURGE PROTECTION NOTE 1 INTRODUCTION TERMS PROBABILITY OF SURGES APPEARING:

INTRODUCTION TO SPECIFYING SURGE PROTECTION SURGE PROTECTION NOTE 1 INTRODUCTION TERMS PROBABILITY OF SURGES APPEARING: INTRODUCTION TO SPECIFYING SURGE PROTECTION SURGE PROTECTION NOTE 1 BY PETER WALSH, PE INDUSTRIAL SOLUTIONS ENGINEER INTRODUCTION Surge Protective Devices (SPDs) can protect electrical equipment from harmful

More information

INTRODUCTION LIGHTNING MAGNITUDE AND FREQUENCY

INTRODUCTION LIGHTNING MAGNITUDE AND FREQUENCY TRANSIENT LIGHTNING PROTECTION FOR ELECTRONIC MEASUREMENT DEVICES Patrick S. McCurdy Presented by: Dick McAdams Phoenix Contact Inc. P.O. Box 4100, Harrisburg, PA 17111-0100 INTRODUCTION Technology advances

More information

Designing with Thermally Protected TCMOV Varistors for Type 1 and Type 2 UL1449 3rd Edition Applications

Designing with Thermally Protected TCMOV Varistors for Type 1 and Type 2 UL1449 3rd Edition Applications TCMOV Varistors for Type 1 and Type What is UL 1449? Underwriters Laboratories standard UL 1449 has become the primary safety standard for surge protective devices (SPDs). It describes the materials and

More information

US Catalog March Surge protective devices (SPDs) UL range

US Catalog March Surge protective devices (SPDs) UL range US Catalog March 017 Surge protective devices (SPDs) UL range Surge protective devices (SPDs) UL range Introduction 1 1 OVR surge protective devices Joslyn surge protective devices Marketing tools 4 US

More information

Application Note. Table 1. Test requirements by equipment type

Application Note. Table 1. Test requirements by equipment type UL1459 and FCC Part 68 Requirements Application Note Problem/Solution Subscriber equipment, also known as customer premise equipment (CPE), includes any equipment that is connected to the telecommunications

More information

Systems which use a conventional POTS subscriber line to dial a compatible system and transfer digital data.

Systems which use a conventional POTS subscriber line to dial a compatible system and transfer digital data. PSTN Protection The demand for voice and data communications has never been greater. Today, virtually everyone in the developed world has access to a land-line telephone, which carries their voice or data

More information

Lightning and Surge Protection of Photovoltaic Installations. Leutron GmbH 2013 Leinfelden-Echterdingen, Germany

Lightning and Surge Protection of Photovoltaic Installations. Leutron GmbH 2013 Leinfelden-Echterdingen, Germany Lightning and Surge Protection of Photovoltaic Installations 1 Lightning and Surge Protection for PV Installations 2 Safeguard from Risks Ups, that was the insurance policy of my house!! 3 Why Lightning

More information

Fundamentals of Thyristor Overvoltage Circuit Protection

Fundamentals of Thyristor Overvoltage Circuit Protection Fundamentals of Thyristor Overvoltage Circuit Protection Thyristor Surge Protection Technology The Problem of Overvoltages Electronic components have been designed to function properly when used within

More information

CPS block & CPS nano UL rd Ed. Surge protective devices (SPD)

CPS block & CPS nano UL rd Ed. Surge protective devices (SPD) V4 Cirprotec CPS block & CPS nano UL 1449 3rd Ed. Surge protective devices (SPD) Transient voltage surge suppressors (TVSS) Cirprotec, more than just protection Cirprotec, specialists in lightning and

More information

AC Surge Protection Devices

AC Surge Protection Devices AC Surge Protection Devices FLEXIBLE, INNOVATIVE SOLUTIONS FOR INFOCOM SYSTEM PROTECTION pioneers in surge protection Joslyn is recognized worldwide as the pioneer in the design, development and manufacture

More information

"Powering and Protecting Networks and Equipment Connected to It" Jim Pelegris ITW/LINX

Powering and Protecting Networks and Equipment Connected to It Jim Pelegris ITW/LINX "Powering and Protecting Networks and Equipment Connected to It" Jim Pelegris ITW/LINX Table of Contents I will cover: Electrical and Communications Infrastructures that support networks and connected

More information

Presented by: Ron Hotchkiss Chairman, IEEE PES Surge Protective Devices Committee

Presented by: Ron Hotchkiss Chairman, IEEE PES Surge Protective Devices Committee Presented by: Ron Hotchkiss Chairman, IEEE PES Surge Protective Devices Committee Activities of the IEEE PES Surge Protective Devices Committee (SPDC) Standards Development Working Group Topics https://pes-spdc.org/

More information

SPGS America Surge Protective Device (SPD) Advice For The Bussiness Owner and The Homeowner

SPGS America Surge Protective Device (SPD) Advice For The Bussiness Owner and The Homeowner SPGS America Surge Protective Device (SPD) Advice For The Bussiness Owner and The Homeowner Why would any building or home need any surge protective device (SPD)? Very few people realize it, but your electrical

More information

PREVENTING DOWNTIME OF E911 CENTERS

PREVENTING DOWNTIME OF E911 CENTERS P O W E R V A R White Paper # 600 PREVENTING DOWNTIME OF E911 CENTERS 1 4 5 0 L a k e s i d e D r i v e, Wa u k e g a n, I l l i n o i s 6 0 0 8 5 t e l e p h o n e : 8 4 7-5 9 6-7 0 0 0 f a x : 8 4 7-5

More information

Residential/Commercial/Industrial

Residential/Commercial/Industrial Thank You For Purchasing the BASIC POWER UNIT from the team! 120 Marshalls Creek Road East Stroudsburg, PA 18302 570-872-9666 Residential/Commercial/Industrial IF YOU EXPERIENCE A PROBLEM WITH YOUR PURCHASE,

More information

TDX Series. Transient Discriminating TM TVSS

TDX Series. Transient Discriminating TM TVSS TDX Series Transient Discriminating TM TVSS TDX Series TDX150 is ideal for service entrance protection. Best Value Engineered Protection With emphasis on efficiency and value, ERICO developed the TDX Series.

More information

ITU-T K.118. Requirements for lightning protection of fibre to the distribution point equipment SERIES K: PROTECTION AGAINST INTERFERENCE

ITU-T K.118. Requirements for lightning protection of fibre to the distribution point equipment SERIES K: PROTECTION AGAINST INTERFERENCE I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n ITU-T K.118 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU (12/2016) SERIES K: PROTECTION AGAINST INTERFERENCE Requirements for lightning

More information

AC Line Voltage Transients and Their Suppression

AC Line Voltage Transients and Their Suppression Harris Semiconductor No. AN9308.2 January 1998 Harris Suppression Products AC Line Voltage Transients and Their Suppression Author: Martin P. Corbett Introduction The increasing usage of sensitive solid

More information

This is a preview - click here to buy the full publication TECHNICAL REPORT

This is a preview - click here to buy the full publication TECHNICAL REPORT TECHNICAL REPORT IEC TR 62066 First edition 2002-06 Surge overvoltages and surge protection in low-voltage a.c. power systems General basic information Surtensions de choc et protection contre la foudre

More information

Technology Live Workshop

Technology Live Workshop Technology Live Workshop David Pitt Product Manager Eaton Electric Ltd. Technology Live Workshop Subjects to be covered in this Technology Live Workshop: Increased need for installation of transient voltage

More information

Introduction to Surge Protection

Introduction to Surge Protection KL Automation Engineering Sdn Bhd Introduction to Surge Protection By Abu Bakar bin Yahya OBJECTIVE 1. To give awareness on lightning and surge effects. 2. To discuss on unexplained surge effect DEGRADATION

More information

Surge Current Capacities

Surge Current Capacities Surge Current Capacities Introduction This document attempts to clarify the surge ratings of several Novaris power line and signal line surge protectors. Surge rating (also referred to as maximum surge

More information

National Standard of The People s Republic of China

National Standard of The People s Republic of China Translated English of Chinese Standard: GB/T17626.5-2008 Translated by: www.chinesestandard.net Wayne Zheng et al. Email: Sales@ChineseStandard.net ICS 33.100 L 06 GB National Standard of The People s

More information

SPM Series. Plug-in Surge Protection

SPM Series. Plug-in Surge Protection SPM Series Plug-in Surge Protection The SPM series of modular surge protection devices provides protection of equipment connected to incoming low voltage AC power supplies against the damaging effects

More information

Data Line Transient Protection

Data Line Transient Protection Data Line Transient Protection By Joseph Seymour White Paper #85 Executive Summary Electrical transients (surges) on data lines can destroy computing equipment both in the business and home office environments.

More information

SURGE PROTECTIVE DEVICES

SURGE PROTECTIVE DEVICES SURGE PROTECTIVE DEVICES SUITABLE SOLUTIONS FOR ALL TYPES OF INSTALLATIONS AND ALL RISK LEVELS 1 CONTENT: Introduction Theory and principles Installation rules Legrand offer 2 2 INTRODUCTION Lightning

More information

Commercial and Industrial LV Power Protection

Commercial and Industrial LV Power Protection Commercial and Industrial LV Power Protection Surge protection in Australia Tristan King Contents Introduction... 1 What is a Surge?... 1 Surge Protection Device... 2 Surge Protection Categories... 2 Category

More information

ITS Heartland: Overview of Transient Overvoltage Surge Protection in ITS/Traffic Systems

ITS Heartland: Overview of Transient Overvoltage Surge Protection in ITS/Traffic Systems Advanced Protection Technologies ITS Heartland: Overview of Transient Overvoltage Surge Protection in ITS/Traffic Systems Performed by: Lou Farquhar, PE, CEM, GBE VP Engineering Services (800) 237-4567

More information

LIGHTNING PROTECTION

LIGHTNING PROTECTION The University of New South Wales School of Electrical Engineering and Telecommunications Industrial and Commercial Power Systems Topic 8 LIGHTNING PROTECTION Aim is to protect: People Buildings and Contents

More information

LIGHTNING AND SURGE PROTECTION

LIGHTNING AND SURGE PROTECTION White Paper LIGHTNING AND SURGE PROTECTION Lightning and Surge Protection 01/20/17 1 of 7 www.murata.com APPLICATION NOTE: LIGHTNING AND SURGE PROTECTION Because wireless systems are typically located

More information

Chapter J. Protection against voltage surges in LV. Contents. General. Overvoltage protection devices. Choosing a protection device

Chapter J. Protection against voltage surges in LV. Contents. General. Overvoltage protection devices. Choosing a protection device Chapter J Protection against voltage surges in LV 1 2 3 4 Contents General J2 1.1 What is a voltage surge? J2 1.2 The four voltage surge types J2 1.3 Main characteristics of voltage surges J4 1.4 Different

More information

White Paper October 2009

White Paper October 2009 ANSI /UL1449 Third Edition Safety Standard (New UL and NEC standards means new performance levels, test procedures and markings to products and manufacturers) White Paper October 2009 The past two years

More information

Making the Right Choices In Lightning & Surge Arrestors Some Basics:

Making the Right Choices In Lightning & Surge Arrestors Some Basics: Making the Right Choices In Lightning & Surge Arrestors Some Basics: It is a fact that the Highveld region of South Africa and Lesotho have amongst the highest lightning strikes per square km per annum

More information

PHOTOVOLTAIC PLANTS Comprehensive lightning protection

PHOTOVOLTAIC PLANTS Comprehensive lightning protection PHOTOVOLTAIC PLANTS Comprehensive lightning protection 1. Introduction Photovoltaic (PV) plants are composed of many panels supported on large metal structures, located in open areas and normally highly

More information

ITU-T Recommendations and the Resistibility of Telecommunication Equipment

ITU-T Recommendations and the Resistibility of Telecommunication Equipment ITU-T Recommendations and the Resistibility of Telecommunication Equipment Introduction WHITE PAPER The International Telecommunications Union (ITU-T) developed its ITU-T K Series Recommendations to help

More information

Liebert AccuVar (ACV Series) Surge Protective Device (SPD) (With Noise Filtering) GUIDE SPECIFICATIONS for a Parallel Surge Suppression System

Liebert AccuVar (ACV Series) Surge Protective Device (SPD) (With Noise Filtering) GUIDE SPECIFICATIONS for a Parallel Surge Suppression System Liebert AccuVar (ACV Series) Surge Protective Device (SPD) (With Noise Filtering) GUIDE SPECIFICATIONS for a Parallel Surge Suppression System Part 1 General 1.01 Summary A. These specifications describe

More information

Suppressing Transients: A New Approach

Suppressing Transients: A New Approach Page 1 of 5 Suppressing Transients: A New Approach By Rudy T. Wodrich and Tommy Mok, Schneider Electric, Bramalea, Ontario, Canada Power Quality, Apr 1, 2001 For years, transients generated on the utility

More information

Power Quality of Commercial and Industrial Power Systems

Power Quality of Commercial and Industrial Power Systems Hanover Risk Solutions Power Quality of Commercial and Industrial Power Systems Power quality is a general term used to describe the quality of several different power-related characteristics. These characteristics

More information

YOU NEED A WHOLE- HOUSE PROTECTION SYSTEM

YOU NEED A WHOLE- HOUSE PROTECTION SYSTEM YOU NEED A WHOLE- HOUSE PROTECTION SYSTEM Dr. Richard L. Cohen Panamax San Rafael, CA, 94903 (INTRO/ABSTRACT) Hard-wired AC and telephone protectors at the building entrance can keep major disturbances

More information

MV Network Switchgear, Protection and Control

MV Network Switchgear, Protection and Control MV Network Switchgear, Protection and Control Ravinder Negi Manager, Services Execution INDIA Schneider Electric, New Delhi. Agenda An Overview MV Network Basic Definitions Circuit breaker Switchgear Control

More information

Power Quality of Commercial Buildings - Advanced

Power Quality of Commercial Buildings - Advanced Buildings - Advanced Hartford Steam Boiler One State Street P.O. Box 5024 Hartford, CT 06102-5024 Tel: (800) 472-1866 www.munichre.com/hsb May 2017 Background Power quality is a general term used to describe

More information

White Paper Surge Protective Devices in Automatic Transfer Switches

White Paper Surge Protective Devices in Automatic Transfer Switches White Paper Surge Protective Devices in Automatic Transfer Switches Standby power systems provide emergency power, legally required power, or optional standby AC power during utility outages. Standby AC

More information

SPM Series Plug-in Surge Protection

SPM Series Plug-in Surge Protection SPM Series Plug-in Surge Protection The SPM series of modular surge protection devices provides protection of equipment connected to incoming low voltage AC power supplies against the damaging effects

More information

3 Design of the electrical installation protection system

3 Design of the electrical installation protection system J - Protection against voltage surges in LV 3 Design of the electrical To protect an electrical installation in a building, simple rules apply for the choice of b (s); b its protection system. 3.1 Design

More information

Equipment protection

Equipment protection Equipment protection Serie K Risk of electrical surges Equipment protection 5.000.000 ightning strikes per day 61% Electrical damages caused by surges 30k verage current of a lightning strike ightning

More information

Session Two: Effective Surge Protection Installation

Session Two: Effective Surge Protection Installation Abstract Session Two: Effective Surge Protection Installation Phillip Tompson Managing Director, Novaris Pty Ltd This paper provides an outline of how to effectively install surge protection to various

More information

Industrial Facility Wide Protection

Industrial Facility Wide Protection Industrial Facility Wide Protection Anywhere in your facility from the service entrance to the most critical production equipment, SolaHD can power your process control applications with our power conversion

More information

Protection of PHOTOVOLTAIC SYSTEMS against LIGHTNING and OVERVOLTAGE. Surge Protection Device

Protection of PHOTOVOLTAIC SYSTEMS against LIGHTNING and OVERVOLTAGE. Surge Protection Device Protection of PHOTOVOLTAIC SYSTEMS against LIGHTNING and OVERVOLTAGE Surge Protection Device CHOICE OF SURGE PROTECTION DEVICES FOR PHOTOVOLTAIC APPLICATIONS General concept To achieve complete functionality

More information

PROTEC Z LV the universal solution for transient switching protection for LV motors, generators, transformer LV secundaries, VSD and UPS equipment

PROTEC Z LV the universal solution for transient switching protection for LV motors, generators, transformer LV secundaries, VSD and UPS equipment PROTEC Z LV the universal solution for transient switching protection for LV motors, generators, transformer LV secundaries, VSD and UPS equipment NTSA has developed the ultimate solution for protecting

More information

ELG4125: System Protection

ELG4125: System Protection ELG4125: System Protection System Protection Any power system is prone to 'faults', (also called short-circuits), which occur mostly as a result of insulation failure and sometimes due to external causes.

More information

LPI SG + SST Spark Gap Surge Filter

LPI SG + SST Spark Gap Surge Filter LPI SG + SST Spark Gap Surge Filter Features High performance surge protector for an operating voltage of 220-240Vac Encapsulated spark gap and SST capable of sustaining fault and over-voltage conditions

More information

Tel: Web: Lightning and surge protection help pages

Tel: Web:    Lightning and surge protection help pages Lightning and surge protection help pages Effects of lightning on your home or office Modern Technology has progressed to the point where detecting and preventing surges, has become an exact science -

More information

Frequently Asked Questions - Meter Based Surge Protection Devices

Frequently Asked Questions - Meter Based Surge Protection Devices 1. What is a meter based surge protector? A meter based SPD (Surge Protection Device) is a primary Type 1 listed protector for application/use in an IEEE category C operating environment. The IEEE location

More information

Deploying surge protective devices (SPDs) in photovoltaic systems. Technical Information

Deploying surge protective devices (SPDs) in photovoltaic systems. Technical Information Deploying surge protective devices (SPDs) in photovoltaic systems Technical Information 2 00/09.08 Preface Preface Damages caused by overvoltage s are not only responsible for expensive repair costs; they

More information

POWER QUALITY (UNIT-3) ELECTRICAL TRANSIENT:

POWER QUALITY (UNIT-3) ELECTRICAL TRANSIENT: POWER QUALITY (UNIT-3) ELECTRICAL TRANSIENT: Transients are disturbances that occur for a very short duration (less than a cycle), and the electrical circuit is quickly restored to original operation provided

More information

SPM Series Plug-in Surge Protector Type 2/3 (Test Class II/III) Single & Three Phase Surge Arresters

SPM Series Plug-in Surge Protector Type 2/3 (Test Class II/III) Single & Three Phase Surge Arresters The SPM series of modular surge protection devices provides protection of equipment connected to incoming low voltage AC power supplies against the damaging effects of transient over voltages caused by

More information

How To Help Electronic Equipment Survive The Storm

How To Help Electronic Equipment Survive The Storm How To Help Electronic Equipment Survive The Storm Forster Electrical Engineering, Inc. 550 N. Burr Oak Ave, Oregon, WI 53575 (608) 835-9009 (608) 835-9039 fax Outline of the Discussion What are the problems?

More information

M ISCELLANEOUS A CCESSORIES O BSTRUCTIONS LIGHTS MISCELLANEOUS ACCESSORIES OBSTRUCTION LIGHTS

M ISCELLANEOUS A CCESSORIES O BSTRUCTIONS LIGHTS MISCELLANEOUS ACCESSORIES OBSTRUCTION LIGHTS M ISCELLANEOUS A CCESSORIES O BSTRUCTIONS LIGHTS MISCELLANEOUS ACCESSORIES OBSTRUCTION LIGHTS G1 Outdoor Surge Protector for AC/Traction network VP range Dimensions (in mm) 19 M8 44 73 diam. 47 6 mm² Electrical

More information

Product Overview 2Pro AC Devices Provide Overcurrent/Overvoltage/ Overtemperature Protection for AC Industrial and Appliance Applications

Product Overview 2Pro AC Devices Provide Overcurrent/Overvoltage/ Overtemperature Protection for AC Industrial and Appliance Applications Product Overview 2Pro AC Devices Provide Overcurrent/Overvoltage/ Overtemperature Protection for AC Industrial and Appliance Applications The 2Pro AC family of devices provide integrated overcurrent/ overvoltage/overtemperature

More information

Surge Protection Systems Performance and Evaluation

Surge Protection Systems Performance and Evaluation PDHonline Course E288 (2 PDH) Surge Protection Systems Performance and Evaluation Instructor: Bijan Ghayour, PE 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax:

More information

Standards Update Notice (SUN) Issued: August 11, 2017

Standards Update Notice (SUN) Issued: August 11, 2017 Standard Information Standard Number: UL 621 Standard Name: Ice Cream Makers Standard Edition and Issue Date: 7 th Edition Dated May 7, 2010 Date of Revision: February 15, 2017 Date of Previous Revision

More information

GE Digital Energy. Power Quality

GE Digital Energy. Power Quality GE Digital Energy Power Quality INSTALLATION, OPERATION AND MAINTENANCE MANUAL GE TRANQUELL Enhanced Thermal Protection (ETP) Series Wall Mounted Medium and High Exposure Surge Protective Devices (SPDs)

More information

OVP2. The Over-Voltage Protector 2 (OVP2) Technical Literature

OVP2. The Over-Voltage Protector 2 (OVP2) Technical Literature The Over-Voltage Protector 2 (OVP2) Technical Literature INTRODUCTION The Over-Voltage Protector (OVP) design has been established since 1999 as the premier explosion-proof (Division 1) protection device

More information

THE SURGE PROTECTION SOLUTION

THE SURGE PROTECTION SOLUTION THE SOLUTION Unique product features and benefits never before offered in the surge protection industry POWER QUALITY INTERNATIONAL, LLC 2404 Merchant Ave., Odessa, Florida, USA 33556 (888) 539-7712 PowerQuality.net

More information

Telcordia GR-1089-CORE Issue 4 Topics Primary Protection

Telcordia GR-1089-CORE Issue 4 Topics Primary Protection Telcordia GR-1089-CORE Issue 4 Topics Primary Protection Bourns engages in standards development and produces components that will help customers products comply with published standard requirements. For

More information

CONNECT AND PROTECT. nvent ERICO Critec SRF N-Series. Surge Reduction Filters

CONNECT AND PROTECT. nvent ERICO Critec SRF N-Series. Surge Reduction Filters CONNECT AND PROTECT nvent ERICO Critec SRF N-Series Surge Reduction Filters TABLE OF CONTENTS PROVEN FOR CRITICAL APPLICATIONS... 3 SRF N-SERIES COMBINED TECHNOLOGY PROTECTION... 4 SPARK GAP TECHNOLOGY...

More information

Application Note TAN MTL Surge Technologies. Lightning surge protection for electronic equipment - a practical guide.

Application Note TAN MTL Surge Technologies. Lightning surge protection for electronic equipment - a practical guide. MTL Surge Technologies Lightning surge protection for electronic - a practical guide Synopsis This publication discusses the nature of the threat to electronic instrumentation and communications networks

More information

Revised Standards Provide Design Options for Primary and Secondary Protection TELECOM PROTECTION WHITE PAPER

Revised Standards Provide Design Options for Primary and Secondary Protection TELECOM PROTECTION WHITE PAPER TELECOM PROTECTION WHITE PAPER INTRODUCTION Telecommunications networks are subject to surges from lightning or power line faults, and the effects of these can be extremely detrimental to systems and equipment.

More information

CHAPTER 11 HOW TO ENHANCE THE RELIABILITY & POWER QUALITY OF ELECTRICITY SUPPLY

CHAPTER 11 HOW TO ENHANCE THE RELIABILITY & POWER QUALITY OF ELECTRICITY SUPPLY CHAPTER 11 HOW TO ENHANCE THE RELIABILITY & POWER QUALITY OF ELECTRICITY SUPPLY CHAPTER 11 HOW TO ENHANCE THE RELIABILITY & POWER QUALITY OF ELECTRICITY SUPPLY 11.1 Introduction 1. HK Electric provides

More information

Low Voltage and Medium Voltage Surge Protection

Low Voltage and Medium Voltage Surge Protection Low Voltage and Medium Voltage Surge Protection Chris M. Finen, P.E. Senior Application Engineer, Nashville TN 2018 Eaton Corporation. All rights reserved. Agenda Surge / Transient Basics Symptoms of Voltage

More information

Lightning Current Equipotential Bonding SPDs

Lightning Current Equipotential Bonding SPDs Lightning Current Equipotential Bonding SPDs Introduction Furse is a world leader in the design, manufacture, and supply of earthing and lightning protection systems. Over 100 years of experience makes

More information

Certification Exams. Detailed Content Outlines Level 2 Certified Assistant Technician Level 3 Certified Technician Level 4 Certified Senior Technician

Certification Exams. Detailed Content Outlines Level 2 Certified Assistant Technician Level 3 Certified Technician Level 4 Certified Senior Technician Detailed Content Outlines Level 2 Certified Assistant Technician Level 3 Certified Technician Level 4 Certified Senior Technician Certification Exams How to Use the Detailed Content Outlines These Detailed

More information

SOUTH CAROLINA ELECTRIC COOPERATIVES SECONDARY TYPE 1 SURGE PROTECTIVE DEVICE SPECIFICATIONS Updated/Revised: October 6, 2014

SOUTH CAROLINA ELECTRIC COOPERATIVES SECONDARY TYPE 1 SURGE PROTECTIVE DEVICE SPECIFICATIONS Updated/Revised: October 6, 2014 SOUTH CAROLINA ELECTRIC COOPERATIVES SECONDARY TYPE 1 SURGE PROTECTIVE DEVICE SPECIFICATIONS Updated/Revised: October 6, 2014 1.0 SCOPE This secondary Type 1 surge protective device specification covers

More information

Electrical Protection Considerations for an All Internet Protocol Network

Electrical Protection Considerations for an All Internet Protocol Network Electrical Protection Considerations for an All Internet Protocol Network Presented by: Ernie Gallo, Director, Ericsson Larry Payne, Network Design Engineer, AT&T A High Level View of Internet Protocol

More information

LPI SG + SS480 Spark Gap Surge Filters

LPI SG + SS480 Spark Gap Surge Filters LPI SG + Spark Gap Surge Filters Features High performance surge protector for an operating voltage of 220-277Vac Encapsulated spark gap and technology capable of operation under fault /overvoltage conditions

More information

GLOSSARY OF TERMS. Surge and Lightning Protection ERICO Inc.

GLOSSARY OF TERMS. Surge and Lightning Protection ERICO Inc. GLOSSARY OF TERMS Surge and Lightning Protection ERICO Inc. Air Termination - shall mean that part of a lightning protection system designed to capture the lightning strike. Normally is mounted on the

More information