Lecture 1: Model Checking. Edmund Clarke School of Computer Science Carnegie Mellon University

Size: px
Start display at page:

Download "Lecture 1: Model Checking. Edmund Clarke School of Computer Science Carnegie Mellon University"

Transcription

1 Lecture 1: Model Checking Edmund Clarke School of Computer Science Carnegie Mellon University 1

2 Cost of Software Errors June 2002 Software bugs, or errors, are so prevalent and so detrimental that they cost the U.S. economy an estimated $59.5 billion annually, or about 0.6 percent of the gross domestic product At the national level, over half of the costs are borne by software users and the remainder by software developers/vendors. NIST Planning Report 02-3 The Economic Impacts of Inadequate Infrastructure for Software Testing 2

3 Cost of Software Errors The study also found that, although all errors cannot be removed, more than a third of these costs, or an estimated $22.2 billion, could be eliminated by an improved testing infrastructure that enables earlier and more effective identification and removal of software defects. 3

4 Model Checking Developed independently by Clarke and Emerson and by Queille and Sifakis in early 1980 s. Properties are written in propositional temporal logic. Systems are modeled by finite state machines. Verification procedure is an exhaustive search of the state space of the design. Model checking complements testing/simulation. 4

5 Advantages of Model Checking No proofs!!! Fast (compared to other rigorous methods) Diagnostic counterexamples No problem with partial specifications / properties Logics can easily express many concurrency properties 5

6 Model of computation Microwave Oven Example State-transition graph describes system evolving over time. st ~ Start ~ Close ~ Heat ~ Error Start ~ Close ~ Heat Error ~ Start Close ~ Heat ~ Error ~ Start Close Heat ~ Error Start Close ~ Heat Error Start Close ~ Heat ~ Error Start Close Heat ~ Error 6

7 Temporal Logic l The oven doesn t heat up until the door is closed. l Not heat_up holds until door_closed l (~ heat_up) U door_closed 7

8 Basic Temporal Operators The symbol p is an atomic proposition, e.g. heat_up or door_closed. Fp Gp Xp puq - p holds sometime in the future. - p holds globally in the future. - p holds next time. - p holds until q holds. 8

9 Model Checking Problem Let M be a model, i.e., a state-transition graph. Let ƒ be the property in temporal logic. Find all states s such that M has property ƒ at state s. Efficient Algorithms: CE81, CES83 9

10 The EMC System 1982/83 Preprocessor Model Checker (EMC) Properties State Transition Graph 10 4 to 10 5 states True or Counterexamples 10

11 Model Checker Architecture System Description Formal Specification State Explosion Problem!! Validation or Counterexample Model Checker 11

12 The State Explosion Problem System Description Combinatorial explosion of system states renders explicit model construction infeasible. State Transition Graph Exponential Growth of global state space in number of concurrent components. memory states in memory size. Feasibility of model checking inherently tied to handling state explosion. 12

13 Combating State Explosion Binary Decision Diagrams can be used to represent state transition systems more efficiently. à Symbolic Model Checking 1992 Semantic techniques for alleviating state explosion: Partial Order Reduction. Abstraction. Compositional reasoning. Symmetry. Cone of influence reduction. Semantic minimization. 13

14 Model Checking since Clarke / Emerson: CTL Model Checking Sifakis / Quielle 1982 EMC: Explicit Model Checker Clarke, Emerson, Sistla Symbolic Model Checking Burch, Clarke, Dill, McMillan 1992 SMV: Symbolic Model Verifier McMillan 1990s: Formal Hardware Verification in Industry: Intel, IBM, Motorola, etc Bounded Model Checking using SAT Biere, Clarke, Zhu 2000 Counterexample-guided Abstraction Refinement Clarke, Grumberg, Jha, Lu, Veith

15 Model Checking since Clarke / Emerson: CTL Model Checking Sifakis / Quielle 1982 EMC: Explicit Model Checker Clarke, Emerson, Sistla 1990 Symbolic Model Checking Burch, Clarke, Dill, McMillan 1992 SMV: Symbolic Model Verifier McMillan 1998 Bounded Model Checking using SAT Biere, Clarke, Zhu 2000 Counterexample-guided Abstraction Refinement Clarke, Grumberg, Jha, Lu, Veith CBMC MAGIC 15

16 Grand Challenge: Model Check Software! What makes Software Model Checking different? 16

17 What Makes Software Model Checking Different? Large/unbounded base types: int, float, string User-defined types/classes Pointers/aliasing + unbounded # s of heapallocated cells Procedure calls/recursion/calls through pointers/ dynamic method lookup/overloading Concurrency + unbounded # s of threads 17

18 What Makes Software Model Checking Different? Templates/generics/include files Interrupts/exceptions/callbacks Use of secondary storage: files, databases Absent source code for: libraries, system calls, mobile code Esoteric features: continuations, self-modifying code Size (e.g., MS Word = 1.4 MLOC) 18

19 Grand Challenge: Model Check Software! Early attempts in the 1980s failed to scale. 2000s: renewed interest / demand: Java Pathfinder: NASA Ames SLAM: Microsoft Bandera: Kansas State BLAST: Berkeley SLAM to be shipped to Windows device driver developers. In general, these tools are unable to handle complex data 19 structures and concurrency.

20 The MAGIC Tool: Counterexample-Guided Abstraction Refinement Memory State Memory State Memory State Memory State Memory State Memory State Memory State Memory State Abstraction Abstract Memory Abstract State Memory State Abstraction maps classes of similar memory states to single abstract memory states. + Model size drastically reduced. - Invalid counterexamples possible. 20

21 The MAGIC Tool: Counterexample-Guided Abstraction Refinement C Program Abstraction Guidance Abstraction Improved Abstraction Guidance Abstract Model Verification No Yes System OK Abstraction Refinement No Counterexample Valid? Yes 21

22 CBMC: Embedded Systems Verification Method: Bounded Model Checking Implemented GUI to facilitate tech transfer Applications: Part of train controller from GE Cryptographic algorithms (DES, AES, SHS) C Models of ASICs provided by nvidia 22

23 Case Study: Verification of MicroC/OS Real-Time Operating System About 6000 lines of C code Used in commercial embedded systems UPS, Controllers, Cell-phones, ATMs Required mutual exclusion in the kernel OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL() MAGIC and CBMC: Discovered one unknown bug related to the locking discipline Discovered three more bugs Verified that no similar bugs are present 23

The Spin Model Checker : Part I/II

The Spin Model Checker : Part I/II The Spin Model Checker : Part I/II Moonzoo Kim CS Dept. KAIST Korea Advanced Institute of Science and Technology Motivation: Tragic Accidents Caused by SW Bugs 2 Cost of Software Errors June 2002 Software

More information

Model checking Timber program. Paweł Pietrzak

Model checking Timber program. Paweł Pietrzak Model checking Timber program Paweł Pietrzak 1 Outline Background on model checking (spam?) The SPIN model checker An exercise in SPIN - model checking Timber Deriving finite models from Timber programs

More information

Model Checking: Back and Forth Between Hardware and Software

Model Checking: Back and Forth Between Hardware and Software Model Checking: Back and Forth Between Hardware and Software Edmund Clarke 1, Anubhav Gupta 1, Himanshu Jain 1, and Helmut Veith 2 1 School of Computer Science, Carnegie Mellon University {emc, anubhav,

More information

Lecture1: Symbolic Model Checking with BDDs. Edmund M. Clarke, Jr. Computer Science Department Carnegie Mellon University Pittsburgh, PA 15213

Lecture1: Symbolic Model Checking with BDDs. Edmund M. Clarke, Jr. Computer Science Department Carnegie Mellon University Pittsburgh, PA 15213 Lecture: Symbolic Model Checking with BDDs Edmund M Clarke, Jr Computer Science Department Carnegie Mellon University Pittsburgh, PA 523 Temporal Logic Model Checking Specification Language: A propositional

More information

Verifying Recursive Programs using Intra-procedural Analyzers

Verifying Recursive Programs using Intra-procedural Analyzers Verifying Recursive Programs using Intra-procedural Analyzers Yu-Fang Chen, Academia Sinica, Taiwan joint work with Chiao Hsieh, Ming-Hsien Tsai, Bow-Yaw Wang and Farn Wang First of all Thanks for the

More information

Application of Propositional Logic II - How to Test/Verify my C program? Moonzoo Kim

Application of Propositional Logic II - How to Test/Verify my C program? Moonzoo Kim Application of Propositional Logic II - How to Test/Verify my C program? Moonzoo Kim 2 Solving Various Problems using SAT Solver Sudoku Puzzle Encoding 1 Encoding 2 Verify/Testing C Programs Encoding 3

More information

Sérgio Campos, Edmund Clarke

Sérgio Campos, Edmund Clarke Sérgio Campos, Edmund 1 / 23 Model checking is a technique that relies on building a finite model of a system and checking that a desired property holds in that model. The check is performed by an exhaustive

More information

Formal Verification by Model Checking

Formal Verification by Model Checking Formal Verication by Model Checking Jonathan Aldrich Carnegie Mellon University Based on slides developed by Natasha Sharygina 17-654/17-754: Analysis of Software Artacts Spring 2006 1 CTL Model Checking

More information

More on Verification and Model Checking

More on Verification and Model Checking More on Verification and Model Checking Wednesday Oct 07, 2015 Philipp Rümmer Uppsala University Philipp.Ruemmer@it.uu.se 1/60 Course fair! 2/60 Exam st October 21, 8:00 13:00 If you want to participate,

More information

Software Model Checking. From Programs to Kripke Structures

Software Model Checking. From Programs to Kripke Structures Software Model Checking (in (in C or or Java) Java) Model Model Extraction 1: int x = 2; int y = 2; 2: while (y

More information

Tutorial on Model Checking Modelling and Verification in Computer Science

Tutorial on Model Checking Modelling and Verification in Computer Science Tutorial on Model Checking Modelling and Verification in Computer Science Armin Biere Institute for Formal Models and Verification Johannes Kepler University, Linz, Austria Abstract. This paper serves

More information

Verifying IP-Core based System-On-Chip Designs

Verifying IP-Core based System-On-Chip Designs Verifying IP-Core based System-On-Chip Designs Pankaj Chauhan, Edmund M. Clarke, Yuan Lu and Dong Wang Carnegie Mellon University, Pittsburgh, PA 15213 fpchauhan, emc, yuanlu, dongwg+@cs.cmu.edu April

More information

Model-Driven Verifying Compilation of Synchronous Distributed Applications

Model-Driven Verifying Compilation of Synchronous Distributed Applications Model-Driven Verifying Compilation of Synchronous Distributed Applications Sagar Chaki, James Edmondson October 1, 2014 MODELS 14, Valencia, Spain Copyright 2014 Carnegie Mellon University This material

More information

Introduction In Practice State Explosion Problem Infinity and Uncomputability Techniques References. Model Checking. Toryn Qwyllyn Klassen

Introduction In Practice State Explosion Problem Infinity and Uncomputability Techniques References. Model Checking. Toryn Qwyllyn Klassen Model Checking Toryn Qwyllyn Klassen April 13, 2010 Limitations of testing Testing cannot in general prove that a program works. Some program states are usually not covered. Concurrent systems are particularly

More information

Double Header. Two Lectures. Flying Boxes. Some Key Players: Model Checking Software Model Checking SLAM and BLAST

Double Header. Two Lectures. Flying Boxes. Some Key Players: Model Checking Software Model Checking SLAM and BLAST Model Checking #1 Double Header Two Lectures Model Checking Software Model Checking SLAM and BLAST Flying Boxes It is traditional to describe this stuff (especially SLAM and BLAST) with high-gloss animation

More information

System Correctness. EEC 421/521: Software Engineering. System Correctness. The Problem at Hand. A system is correct when it meets its requirements

System Correctness. EEC 421/521: Software Engineering. System Correctness. The Problem at Hand. A system is correct when it meets its requirements System Correctness EEC 421/521: Software Engineering A Whirlwind Intro to Software Model Checking A system is correct when it meets its requirements a design without requirements cannot be right or wrong,

More information

A brief tutorial on formal verification with applications to security protocols

A brief tutorial on formal verification with applications to security protocols A brief tutorial on formal verification with applications to security protocols Nehul Jain Ansuman Banerjee Indian Statistical Institute Outline Formal Verification: The basics Explicit Model checking

More information

Model Checking. Dragana Cvijanovic

Model Checking. Dragana Cvijanovic Model Checking Dragana Cvijanovic d.cvijanovic@cs.ucl.ac.uk 1 Introduction Computerised systems pervade more and more our everyday lives. Digital technology is now used to supervise critical functions

More information

Lecture 2: Symbolic Model Checking With SAT

Lecture 2: Symbolic Model Checking With SAT Lecture 2: Symbolic Model Checking With SAT Edmund M. Clarke, Jr. School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 (Joint work over several years with: A. Biere, A. Cimatti, Y.

More information

Source Code Formal Verification. Riccardo Sisto, Politecnico di Torino

Source Code Formal Verification. Riccardo Sisto, Politecnico di Torino Source Code Formal Verification Riccardo Sisto, Politecnico di Torino Formal Verification: Not Just High-Level Models How to improve correctness up to the coding phase? Possible solutions: Automatic code

More information

Linear Temporal Logic. Model Checking and. Based on slides developed by Natasha Sharygina. Carnegie Mellon University.

Linear Temporal Logic. Model Checking and. Based on slides developed by Natasha Sharygina. Carnegie Mellon University. Model Checking and Linear Temporal Logic Jonathan Aldrich Carnegie Mellon University Based on slides developed by Natasha Sharygina 17-654: Analysis of Software Artifacts 1 Formal Verification by Model

More information

Model Checking. Automatic Verification Model Checking. Process A Process B. when not possible (not AI).

Model Checking. Automatic Verification Model Checking. Process A Process B. when not possible (not AI). Sérgio Campos scampos@dcc.ufmg.br Why? Imagine the implementation of a complex hardware or software system: A 100K gate ASIC perhaps 100 concurrent modules; A flight control system dozens of concurrent

More information

Model-Driven Verifying Compilation of Synchronous Distributed Applications

Model-Driven Verifying Compilation of Synchronous Distributed Applications Model-Driven Verifying Compilation of Synchronous Distributed Applications Sagar Chaki, James Edmondson October 1, 2014 MODELS 14, Valencia, Spain Report Documentation Page Form Approved OMB No. 0704-0188

More information

Automatic Verification of Finite State Concurrent Systems

Automatic Verification of Finite State Concurrent Systems Automatic Verification of Finite State Concurrent Systems Edmund M Clarke, Jr Computer Science Department Carnegie Mellon University Pittsburgh, PA 523 Temporal Logic Model Checking Specification Language:

More information

Having a BLAST with SLAM

Having a BLAST with SLAM Announcements Having a BLAST with SLAM Meetings -, CSCI 7, Fall 00 Moodle problems? Blog problems? Looked at the syllabus on the website? in program analysis Microsoft uses and distributes the Static Driver

More information

Research Collection. Formal background and algorithms. Other Conference Item. ETH Library. Author(s): Biere, Armin. Publication Date: 2001

Research Collection. Formal background and algorithms. Other Conference Item. ETH Library. Author(s): Biere, Armin. Publication Date: 2001 Research Collection Other Conference Item Formal background and algorithms Author(s): Biere, Armin Publication Date: 2001 Permanent Link: https://doi.org/10.3929/ethz-a-004239730 Rights / License: In Copyright

More information

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY T-79.5305 Formal Methods (4 ECTS) T-79.5305 Formaalit menetelmät (4 op) 2006-09-13 Tommi Junttila, Keijo Heljanko, Ilkka Niemelä, and Heikki Tauriainen T-79.5305 Formal Methods, Autumn 2006 1/27 T-79.5305

More information

Model Checking with Abstract State Matching

Model Checking with Abstract State Matching Model Checking with Abstract State Matching Corina Păsăreanu QSS, NASA Ames Research Center Joint work with Saswat Anand (Georgia Institute of Technology) Radek Pelánek (Masaryk University) Willem Visser

More information

CS 510/13. Predicate Abstraction

CS 510/13. Predicate Abstraction CS 50/3 Predicate Abstraction Predicate Abstraction Extract a finite state model from an infinite state system Used to prove assertions or safety properties Successfully applied for verification of C programs

More information

Combining Symbolic Model Checking with Uninterpreted Functions for Out-of-Order Processor Verification?

Combining Symbolic Model Checking with Uninterpreted Functions for Out-of-Order Processor Verification? Combining Symbolic Model Checking with Uninterpreted Functions for Out-of-Order Processor Verification? Sergey Berezin, Armin Biere, Edmund Clarke, and Yunshan Zhu Computer Science Department, Carnegie

More information

F-Soft: Software Verification Platform

F-Soft: Software Verification Platform F-Soft: Software Verification Platform F. Ivančić, Z. Yang, M.K. Ganai, A. Gupta, I. Shlyakhter, and P. Ashar NEC Laboratories America, 4 Independence Way, Suite 200, Princeton, NJ 08540 fsoft@nec-labs.com

More information

Software Model Checking. Xiangyu Zhang

Software Model Checking. Xiangyu Zhang Software Model Checking Xiangyu Zhang Symbolic Software Model Checking CS510 S o f t w a r e E n g i n e e r i n g Symbolic analysis explicitly explores individual paths, encodes and resolves path conditions

More information

EECS 219C: Computer-Aided Verification Introduction & Overview. Sanjit A. Seshia EECS, UC Berkeley. What we ll do today

EECS 219C: Computer-Aided Verification Introduction & Overview. Sanjit A. Seshia EECS, UC Berkeley. What we ll do today EECS 219C: Computer-Aided Verification Introduction & Overview Sanjit A. Seshia EECS, UC Berkeley What we ll do today Introductions: to Sanjit and others Brief Intro. to Model Checking, SAT, and Satisfiability

More information

Regression Verification - a practical way to verify programs

Regression Verification - a practical way to verify programs Regression Verification - a practical way to verify programs Ofer Strichman Benny Godlin Technion, Haifa, Israel. Email: ofers@ie.technion.ac.il bgodlin@cs.technion.ac.il 1 Introduction When considering

More information

Specifying circuit properties in PSL

Specifying circuit properties in PSL Specifying circuit properties in PSL Formal methods Mathematical and logical methods used in system development Aim to increase confidence in riktighet of system Apply to both hardware and software 1 Formal

More information

The ComFoRT Reasoning Framework

The ComFoRT Reasoning Framework Pittsburgh, PA 15213-3890 The ComFoRT Reasoning Framework Sagar Chaki James Ivers Natasha Sharygina Kurt Wallnau Predictable Assembly from Certifiable Components Enable the development of software systems

More information

KRATOS A Software Model Checker for SystemC

KRATOS A Software Model Checker for SystemC KRATOS A Software Model Checker for SystemC A. Cimatti, A. Griggio, A. Micheli, I. Narasamdya, and M. Roveri Fondazione Bruno Kessler Irst {cimatti,griggio,amicheli,narasamdya,roveri}@fbk.eu Abstract.

More information

Model Checking Revision: Model Checking for Infinite Systems Revision: Traffic Light Controller (TLC) Revision: 1.12

Model Checking Revision: Model Checking for Infinite Systems Revision: Traffic Light Controller (TLC) Revision: 1.12 Model Checking mc Revision:.2 Model Checking for Infinite Systems mc 2 Revision:.2 check algorithmically temporal / sequential properties fixpoint algorithms with symbolic representations: systems are

More information

Illlll~~ iII! 075l

Illlll~~ iII! 075l AD-A259 Illlll~~ 111111111iII! 075l Verification of the Futurebus+ Cache Coherence Protocol E. Clarke 1 0. Grumberg 2 H. Hiraishi 3 S. Jha 1 D. Long' K. McMillan' L. Ness 4 October 1992 CMU-CS-92-206 School

More information

Introduction to CS 270 Math Foundations of CS

Introduction to CS 270 Math Foundations of CS Introduction to CS 270 Math Foundations of CS Verification of Computer Systems Jeremy Johnson Drexel University Course Description Emphasizes analytic problem-solving and introduction of mathematical material

More information

Using Counterexample Analysis to Minimize the Number of Predicates for Predicate Abstraction

Using Counterexample Analysis to Minimize the Number of Predicates for Predicate Abstraction Using Counterexample Analysis to Minimize the Number of Predicates for Predicate Abstraction Thanyapat Sakunkonchak, Satoshi Komatsu, and Masahiro Fujita VLSI Design and Education Center, The University

More information

First Steps to Automated Driver Verification via Model Checking

First Steps to Automated Driver Verification via Model Checking WDS'06 Proceedings of Contributed Papers, Part I, 146 150, 2006. ISBN 80-86732-84-3 MATFYZPRESS First Steps to Automated Driver Verification via Model Checking T. Matoušek Charles University Prague, Faculty

More information

CS/ECE 5780/6780: Embedded System Design

CS/ECE 5780/6780: Embedded System Design CS/ECE 5780/6780: Embedded System Design John Regehr Lecture 18: Introduction to Verification What is verification? Verification: A process that determines if the design conforms to the specification.

More information

Hardware Design Verification: Simulation and Formal Method-Based Approaches William K Lam Prentice Hall Modern Semiconductor Design Series

Hardware Design Verification: Simulation and Formal Method-Based Approaches William K Lam Prentice Hall Modern Semiconductor Design Series Design Verification An Introduction Main References Hardware Design Verification: Simulation and Formal Method-Based Approaches William K Lam Prentice Hall Modern Semiconductor Design Series A Roadmap

More information

On Reasoning about Finite Sets in Software Checking

On Reasoning about Finite Sets in Software Checking On Reasoning about Finite Sets in Software Model Checking Pavel Shved Institute for System Programming, RAS SYRCoSE 2 June 2010 Static Program Verification Static Verification checking programs against

More information

No model may be available. Software Abstractions. Recap on Model Checking. Model Checking for SW Verif. More on the big picture. Abst -> MC -> Refine

No model may be available. Software Abstractions. Recap on Model Checking. Model Checking for SW Verif. More on the big picture. Abst -> MC -> Refine No model may be available Programmer Software Abstractions Tests Coverage Code Abhik Roychoudhury CS 5219 National University of Singapore Testing Debug Today s lecture Abstract model (Boolean pgm.) Desirable

More information

Simplification of NuSMV Model Checking Counter Examples. Jussi Lahtinen February 14, 2008

Simplification of NuSMV Model Checking Counter Examples. Jussi Lahtinen February 14, 2008 Simplification of NuSMV Model Checking Counter Examples Jussi Lahtinen February 14, 2008 1 Contents 1 Introduction 3 2 Model Checking 3 2.1 Modeling of Reactive Systems.................... 4 2.2 Concurrent

More information

BITCOIN MINING IN A SAT FRAMEWORK

BITCOIN MINING IN A SAT FRAMEWORK BITCOIN MINING IN A SAT FRAMEWORK Jonathan Heusser @jonathanheusser DISCLAIMER JUST TO BE CLEAR.. This is research! Not saying ASICs suck I am not a cryptographer, nor SAT solver guy WTF REALISED PHD RESEARCH

More information

An Eclipse Plug-in for Model Checking

An Eclipse Plug-in for Model Checking An Eclipse Plug-in for Model Checking Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala Electrical Engineering and Computer Sciences University of California, Berkeley, USA Rupak Majumdar Computer Science

More information

System Debugging and Verification : A New Challenge. Center for Embedded Computer Systems University of California, Irvine

System Debugging and Verification : A New Challenge. Center for Embedded Computer Systems   University of California, Irvine System Debugging and Verification : A New Challenge Daniel Gajski Samar Abdi Center for Embedded Computer Systems http://www.cecs.uci.edu University of California, Irvine Overview Simulation and debugging

More information

Having a BLAST with SLAM

Having a BLAST with SLAM Having a BLAST with SLAM Meeting, CSCI 555, Fall 20 Announcements Homework 0 due Sat Questions? Move Tue office hours to -5pm 2 Software Model Checking via Counterexample Guided Abstraction Refinement

More information

Learning-Based Assume-Guarantee Verification (Tool Paper)

Learning-Based Assume-Guarantee Verification (Tool Paper) -Based Assume-Guarantee Verification (Tool Paper) Dimitra Giannakopoulou and Corina S. Păsăreanu NASA Ames Research Center, Moffett Field, CA 94035-1000, USA 1 Introduction Despite significant advances

More information

Software verification for ubiquitous computing

Software verification for ubiquitous computing Software verification for ubiquitous computing Marta Kwiatkowska Computing Laboratory, University of Oxford QA 09, Grenoble, June 2009 Software everywhere Electronic devices, ever smaller Laptops, phones,

More information

Specification Centered Testing

Specification Centered Testing Specification Centered Testing Mats P. E. Heimdahl University of Minnesota 4-192 EE/CS Building Minneapolis, Minnesota 55455 heimdahl@cs.umn.edu Sanjai Rayadurgam University of Minnesota 4-192 EE/CS Building

More information

Binary Decision Diagrams and Symbolic Model Checking

Binary Decision Diagrams and Symbolic Model Checking Binary Decision Diagrams and Symbolic Model Checking Randy Bryant Ed Clarke Ken McMillan Allen Emerson CMU CMU Cadence U Texas http://www.cs.cmu.edu/~bryant Binary Decision Diagrams Restricted Form of

More information

Distributed Systems Programming (F21DS1) Formal Verification

Distributed Systems Programming (F21DS1) Formal Verification Distributed Systems Programming (F21DS1) Formal Verification Andrew Ireland Department of Computer Science School of Mathematical and Computer Sciences Heriot-Watt University Edinburgh Overview Focus on

More information

Model Checking VHDL with CV

Model Checking VHDL with CV Model Checking VHDL with CV David Déharbe 1, Subash Shankar 2, and Edmund M. Clarke 2 1 Universidade Federal do Rio Grande do Norte, Natal, Brazil david@dimap.ufrn.br 2 Carnegie Mellon University, Pittsburgh,

More information

Program Verification. Aarti Gupta

Program Verification. Aarti Gupta Program Verification Aarti Gupta 1 Agenda Famous bugs Common bugs Testing (from lecture 6) Reasoning about programs Techniques for program verification 2 Famous Bugs The first bug: A moth in a relay (1945)

More information

A Survey of Automated Techniques for Formal Software Verification

A Survey of Automated Techniques for Formal Software Verification TRANSACTIONS ON CAD 1 A Survey of Automated Techniques for Formal Software Verification Vijay D Silva Daniel Kroening Georg Weissenbacher Abstract The quality and the correctness of software is often the

More information

Verifying Concurrent Programs

Verifying Concurrent Programs Verifying Concurrent Programs Daniel Kroening 8 May 1 June 01 Outline Shared-Variable Concurrency Predicate Abstraction for Concurrent Programs Boolean Programs with Bounded Replication Boolean Programs

More information

Seminar in Software Engineering Presented by Dima Pavlov, November 2010

Seminar in Software Engineering Presented by Dima Pavlov, November 2010 Seminar in Software Engineering-236800 Presented by Dima Pavlov, November 2010 1. Introduction 2. Overview CBMC and SAT 3. CBMC Loop Unwinding 4. Running CBMC 5. Lets Compare 6. How does it work? 7. Conclusions

More information

Integrating Formal Verification and High-Level Processor Pipeline Synthesis

Integrating Formal Verification and High-Level Processor Pipeline Synthesis Integrating Formal Verification and High-Level Processor Pipeline Synthesis Eriko Nurvitadhi, James C. Hoe Carnegie Mellon University {enurvita, jhoe}@ece.cmu.edu Abstract When a processor implementation

More information

Verification Framework for Detecting Safety Violations in UML State chart Models of Reactive Systems C.M. Prashanth

Verification Framework for Detecting Safety Violations in UML State chart Models of Reactive Systems C.M. Prashanth Verification Framework for Detecting Safety Violations in UML State chart Models of Reactive Systems C.M. Prashanth Dept. of Computer Engineering N.I.T.K, Surathkal INDIA-575 025 +91 9448185670 prashanth_bcs@yahoo.co.in

More information

Verification of Out-Of-Order Processor Designs Using Model Checking and a Light-Weight Completion Function

Verification of Out-Of-Order Processor Designs Using Model Checking and a Light-Weight Completion Function Formal Methods in System Design, 20, 159 186, 2002 c 2002 Kluwer Academic Publishers. Manufactured in The Netherlands. Verification of Out-Of-Order Processor Designs Using Model Checking and a Light-Weight

More information

Model Checking with Automata An Overview

Model Checking with Automata An Overview Model Checking with Automata An Overview Vanessa D Carson Control and Dynamical Systems, Caltech Doyle Group Presentation, 05/02/2008 VC 1 Contents Motivation Overview Software Verification Techniques

More information

Research on the Static Analysis Method of the Localization Embedded Platform Software Code Zhijie Gaoa, Ling Lu, Wen Jiao

Research on the Static Analysis Method of the Localization Embedded Platform Software Code Zhijie Gaoa, Ling Lu, Wen Jiao 6th International Conference on Information Engineering for Mechanics and Materials (ICIMM 2016) Research on the Static Analysis Method of the Localization Embedded Platform Software Code Zhijie Gaoa,

More information

Verifying Parallel Programs

Verifying Parallel Programs Verifying Parallel Programs Stephen F. Siegel The Verified Software Laboratory Department of Computer and Information Sciences University of Delaware, Newark, USA http://www.cis.udel.edu/~siegel SIG-NEWGRAD

More information

INF672 Protocol Safety and Verification. Karthik Bhargavan Xavier Rival Thomas Clausen

INF672 Protocol Safety and Verification. Karthik Bhargavan Xavier Rival Thomas Clausen INF672 Protocol Safety and Verication Karthik Bhargavan Xavier Rival Thomas Clausen 1 Course Outline Lecture 1 [Today, Sep 15] Introduction, Motivating Examples Lectures 2-4 [Sep 22,29, Oct 6] Network

More information

CS453: Software Verification Techniques

CS453: Software Verification Techniques CS453: Software Verification Techniques Moonzoo Kim Provable Software Laboratory 1 Role of S/W: Increased in Everywhere Percent of functionality provided by software 90 80 70 60 50 40 30 20 10 0 F-22 F-4

More information

Symbolic and Concolic Execution of Programs

Symbolic and Concolic Execution of Programs Symbolic and Concolic Execution of Programs Information Security, CS 526 Omar Chowdhury 10/7/2015 Information Security, CS 526 1 Reading for this lecture Symbolic execution and program testing - James

More information

Specification and Generation of Environment for Model Checking of Software Components *

Specification and Generation of Environment for Model Checking of Software Components * Specification and Generation of Environment for Model Checking of Software Components * Pavel Parizek 1, Frantisek Plasil 1,2 1 Charles University, Faculty of Mathematics and Physics, Department of Software

More information

Predicate Abstraction Daniel Kroening 1

Predicate Abstraction Daniel Kroening 1 Predicate Abstraction 20.1.2005 Daniel Kroening 1 Motivation Software has too many state variables State Space Explosion Graf/Saïdi 97: Predicate Abstraction Idea: Only keep track of predicates on data

More information

Interpolation-based Software Verification with Wolverine

Interpolation-based Software Verification with Wolverine Interpolation-based Software Verification with Wolverine Daniel Kroening 1 and Georg Weissenbacher 2 1 Computer Science Department, Oxford University 2 Department of Electrical Engineering, Princeton University

More information

Formal Verification of Synchronization Issues in SpecC Description with Automatic Abstraction

Formal Verification of Synchronization Issues in SpecC Description with Automatic Abstraction Formal Verification of Synchronization Issues in SpecC Description with Automatic Abstraction Thanyapat Sakunkonchak and Masahiro Fujita Department of Electronic Engineering, University of Tokyo 7-3-1

More information

A Counter Example Guided Abstraction Refinement Framework for Compositional Verification of Concurrent C Programs

A Counter Example Guided Abstraction Refinement Framework for Compositional Verification of Concurrent C Programs A Counter Example Guided Abstraction Refinement Framework for Compositional Verification of Concurrent C Programs Sagar Chaki, CMU December 9, 2002 Abstract Automatic verification of software implementations

More information

Cover Page. The handle holds various files of this Leiden University dissertation

Cover Page. The handle   holds various files of this Leiden University dissertation Cover Page The handle http://hdl.handle.net/1887/22891 holds various files of this Leiden University dissertation Author: Gouw, Stijn de Title: Combining monitoring with run-time assertion checking Issue

More information

Introduction to Formal Methods

Introduction to Formal Methods 2008 Spring Software Special Development 1 Introduction to Formal Methods Part I : Formal Specification i JUNBEOM YOO jbyoo@knokuk.ac.kr Reference AS Specifier s Introduction to Formal lmethods Jeannette

More information

Verification of Intelligent Software

Verification of Intelligent Software Verification of Intelligent Software Charles Pecheur (RIACS / NASA Ames) Charles Pecheur 2003 1 Contents Model Checking for Intelligent Software Why? Intelligent software, how to verify it? What? A bird's-eye

More information

Specifying circuit properties in PSL. (Some of this material is due to Cindy Eisner and Dana Fisman, with thanks) See also the Jasper PSL Quick Ref.

Specifying circuit properties in PSL. (Some of this material is due to Cindy Eisner and Dana Fisman, with thanks) See also the Jasper PSL Quick Ref. Specifying circuit properties in PSL (Some of this material is due to Cindy Eisner and Dana Fisman, with thanks) See also the Jasper PSL Quick Ref. Background: Model Checking property G(p -> F q) yes MC

More information

Algorithmic Verification. Algorithmic Verification. Model checking. Algorithmic verification. The software crisis (and hardware as well)

Algorithmic Verification. Algorithmic Verification. Model checking. Algorithmic verification. The software crisis (and hardware as well) Algorithmic Verification The software crisis (and hardware as well) Algorithmic Verification Comp4151 Lecture 1-B Ansgar Fehnker Computer become more powerful (Moore s law) The quality of programs cannot

More information

Verifying C & C++ with ESBMC

Verifying C & C++ with ESBMC Verifying C & C++ with ESBMC Denis A Nicole dan@ecs.soton.ac.uk CyberSecuritySoton.org [w] @CybSecSoton [fb & tw] ESBMC ESBMC, the Efficient SMT-Based Context-Bounded Model Checker was originally developed

More information

A Case Study for CTL Model Update

A Case Study for CTL Model Update A Case Study for CTL Model Update Yulin Ding and Yan Zhang School of Computing & Information Technology University of Western Sydney Kingswood, N.S.W. 1797, Australia email: {yding,yan}@cit.uws.edu.au

More information

Equivalence Checking of C Programs by Locally Performing Symbolic Simulation on Dependence Graphs

Equivalence Checking of C Programs by Locally Performing Symbolic Simulation on Dependence Graphs Equivalence Checking of C Programs by Locally Performing Symbolic Simulation on Dependence Graphs Takeshi Matsumoto, Hiroshi Saito, and Masahiro Fujita Dept. of Electronics Engineering, University of Tokyo

More information

Administrivia. ECE/CS 5780/6780: Embedded System Design. Acknowledgements. What is verification?

Administrivia. ECE/CS 5780/6780: Embedded System Design. Acknowledgements. What is verification? Administrivia ECE/CS 5780/6780: Embedded System Design Scott R. Little Lab 8 status report. Set SCIBD = 52; (The Mclk rate is 16 MHz.) Lecture 18: Introduction to Hardware Verification Scott R. Little

More information

Formal Verification Techniques for Digital Systems

Formal Verification Techniques for Digital Systems &CHAPTER 1 Formal Verification Techniques for Digital Systems MASAHIRO FUJITA, SATOSHI KOMATSU, and HIROSHI SAITO University of Tokyo, Japan 1.1 INTRODUCTION In deep submicron technology, a large and complex

More information

Introduction & Formal Methods

Introduction & Formal Methods Introduction & Formal Methods http://d3s.mff.cuni.cz Jan Kofroň CHARLES UNIVERSITY IN PRAGUE faculty of mathematics and physics Introduction to dependable systems NSWE 002 What you learn: Dependable systems

More information

Software Model Checking

Software Model Checking 20 ans de Recherches sur le Software Model Checking 1989 1994 2006 2009 Université de Liège Bell Labs Microsoft Research Patrice Godefroid Page 1 Mars 2009 Model Checking A B C Each component is modeled

More information

Predicate Abstraction of ANSI C Programs using SAT Λ

Predicate Abstraction of ANSI C Programs using SAT Λ Predicate Abstraction of ANSI C Programs using SAT Λ Edmund Clarke and Daniel Kroening and Natalia Sharygina and Karen Yorav School of Computer Science Carnegie Mellon University, Pittsburgh, PA, USA Software

More information

Scenario Graphs Applied to Security (Summary Paper)

Scenario Graphs Applied to Security (Summary Paper) Book Title Book Editors IOS Press, 2003 1 Scenario Graphs Applied to Security (Summary Paper) Jeannette M. Wing Computer Science Department Carnegie Mellon University Pittsburgh, PA 15213 US Abstract.

More information

Linear-Time Model Checking: Automata Theory in Practice

Linear-Time Model Checking: Automata Theory in Practice Linear-Time Model Checking: Automata Theory in Practice (Extended Abstract of an Invited Talk) Moshe Y. Vardi Rice University, Department of Computer Science, Houston, TX 77251-1892, U.S.A. vardi@cs.rice.edu

More information

Model-Checking Concurrent Systems. The Model Checker Spin. The Model Checker Spin. Wolfgang Schreiner

Model-Checking Concurrent Systems. The Model Checker Spin. The Model Checker Spin. Wolfgang Schreiner Model-Checking Concurrent Systems Wolfgang Schreiner Wolfgang.Schreiner@risc.jku.at Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria http://www.risc.jku.at 1.

More information

Decision Procedures. An Algorithmic Point of View. Bit-Vectors. D. Kroening O. Strichman. Version 1.0, ETH/Technion

Decision Procedures. An Algorithmic Point of View. Bit-Vectors. D. Kroening O. Strichman. Version 1.0, ETH/Technion Decision Procedures An Algorithmic Point of View Bit-Vectors D. Kroening O. Strichman ETH/Technion Version 1.0, 2007 Part VI Bit-Vectors Outline 1 Introduction to Bit-Vector Logic 2 Syntax 3 Semantics

More information

Utilizing Static Analysis for Programmable Logic Controllers

Utilizing Static Analysis for Programmable Logic Controllers Sébastien Bornot Ralf Huuck Ben Lukoschus Lehrstuhl für Softwaretechnologie Universität Kiel Preußerstraße 1 9, D-24105 Kiel, Germany seb rhu bls @informatik.uni-kiel.de Yassine Lakhnech Verimag Centre

More information

To be or not programmable Dimitri Papadimitriou, Bernard Sales Alcatel-Lucent April 2013 COPYRIGHT 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

To be or not programmable Dimitri Papadimitriou, Bernard Sales Alcatel-Lucent April 2013 COPYRIGHT 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED. To be or not programmable Dimitri Papadimitriou, Bernard Sales Alcatel-Lucent April 2013 Introduction SDN research directions as outlined in IRTF RG outlines i) need for more flexibility and programmability

More information

A Case Study on Model Checking and Deductive Verification Techniques of Safety-Critical Software

A Case Study on Model Checking and Deductive Verification Techniques of Safety-Critical Software A Case Study on Model Checking and Deductive Verification Techniques of Safety-Critical Software Rovedy A. B. e Silva 1,2, Jose M. Parente de Oliveira 2, and Jorge Sousa Pinto 3 1 Aeronautics and Space

More information

Having a BLAST with SLAM

Having a BLAST with SLAM Having a BLAST with SLAM # #2 Topic: Software Model Checking via Counter-Example Guided Abstraction Refinement There are easily two dozen SLAM/BLAST/MAGIC papers; I will skim. #3 SLAM Overview INPUT: Program

More information

CISC : Finite-State Verification

CISC : Finite-State Verification CISC879-011: Finite-State Verification Stephen F. Siegel Department of Computer and Information Sciences University of Delaware Fall 2006 1 The Software Crisis The desire for formal software verification

More information

Introduction to CBMC. Software Engineering Institute Carnegie Mellon University Pittsburgh, PA Arie Gurfinkel December 5, 2011

Introduction to CBMC. Software Engineering Institute Carnegie Mellon University Pittsburgh, PA Arie Gurfinkel December 5, 2011 Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213 December 5, 2011 based on slides by Daniel Kroening Bug Catching with SAT-Solvers Main Idea: Given a program and a claim use

More information

WHEN concurrent processes share a resource such as a file

WHEN concurrent processes share a resource such as a file 1 Verification of mutual exclusion algorithms with SMV System Nikola Bogunović, Edgar Pek Faculty of Electrical Engineering and Computing Unska 3 Croatia email: nikola.bogunovic@fer.hr, edgar.pek@fer.hr

More information

Ufo: A Framework for Abstraction- and Interpolation-Based Software Verification

Ufo: A Framework for Abstraction- and Interpolation-Based Software Verification Ufo: A Framework for Abstraction- and Interpolation-Based Software Verification Aws Albarghouthi 1, Yi Li 1, Arie Gurfinkel 2, and Marsha Chechik 1 1 Department of Computer Science, University of Toronto,

More information