MA 252: Data Structures and Algorithms Lecture 36. Partha Sarathi Mandal. Dept. of Mathematics, IIT Guwahati

Size: px
Start display at page:

Download "MA 252: Data Structures and Algorithms Lecture 36. Partha Sarathi Mandal. Dept. of Mathematics, IIT Guwahati"

Transcription

1 MA 252: Data Structures and Algorithms Lecture 36 Partha Sarathi Mandal Dept. of Mathematics, IIT Guwahati

2 The All-Pairs Shortest Paths Problem Given a weighted digraph G = (V, E) with weight function w: E R, (R, is the set of real numbers) determine the length of the shortest path (i.e., distance between all pairs of vertices in G). Here we assume that there are no cycles with zero or negative cost.

3 Dynamic Programming Solution (based on matrix multiplication) To simplify the notation, we assume that V = {1,2,3,...,n} Assume that the graph is represented by an n n matrix with the weights of the edges : Output Format: an n n matrix D = [d ij ] where d ij is the length of the shortest path from vertex i to j.

4 How to Decompose the Original Problem Subproblems with smaller sizes should be easier to solve. An optimal solution to a subproblem should be expressed in terms of the optimal solutions to subproblems with smaller sizes.

5 Decompose in a Natural Way Define d (m) ij to be the length of the shortest path from i to j that contains at most m edges. Let D (m) be the matrix [d ij (m) ]. d ij (n-1) is the true distance from i to j. Subproblems: compute D (m) for m = 1,2,, n-1.

6 A Recursive Formula d ij (0) = 0 if i = j d ij (0) = i j Consider a shortest path from i to j of length d ij (m) Case 1: at most m-1 edges shortest path It has at most m-1 edges, then d ij (m) = d ij (m-1) = d ij (m-1) + w jj (=0) Case 2: exactly m edges shortest path It has m edges. Let k be the vertex before j then d ij (m) = d ik (m-1) + w kj where 1 k n.

7 A Recursive Formula Combining the two cases d ij (m) = min(d ij (m-1), min k {d ik (m-1) + w kj }) where 1 k n. = min (m-1) k {d ik + w kj }

8 Bottom-up Computation of D (n-1) Bottom: D (1) =[w ij ], the weight matrix W. Computing D (m) from D (m-1), for m = 2,, n-2 using d ij (m) = min k {d ik (m-1) + w kj } 1 k n

9 Extend Shortest Paths Extend-Shortest-Paths(D,W) n rows[d] let D =(d ij ) n n for i 1 to n do for j 1 to n do d ij for k 1 to n do d ij min(d ij, d ik +w kj ) return D D for D (m-1) D for D (m)

10 Relation with matrix multiplication Extend-Shortest-Paths(D,W) n rows[d] let D =(d ij ) n n for i 1 to n do for j 1 to n do d ij for k 1 to n do d ij min(d ij, d ik +w kj ) return D Matrix-Multiplication(A,B) n rows[a] let C=(c ij ) n n for i 1 to n do for j 1 to n do c ij 0 for k 1 to n do c ij c ij + a ik.b kj return C d (m-1) a w b d (m) c min + +.

11 shortest-path weights calculation Returning to the all-pairs shortest-paths problem computing the shortest-path weights by extending shortest paths edge by edge By returning n-1 times the Extend-Shortest-Paths(D,W) D (1) = D (0).W = W D (2) = D (1).W = W 2.. D (n-1) = D (n-2).w = W (n-1)

12 Example

13 Example: Computing D (2) from D (1)

14 Example: Computing D (3) from D (2) D (3) gives the distances between any pair of vertices.

15 The Algorithm for Computing D (n-1) All-Pairs-Shortest-Paths(W) n rows[w] D (1) W for m 2 to n -1 do D (m) Extend-Shortest Shortest-Paths( Paths(D (m-1),w) return D (n-1) O(n 4 ) Extend-Shortest-Paths( Paths(D,W) n rows[d] let D =(d ij ) n n O(n 3 ) for i 1 to n do for j 1 to n do d ij for k 1 to n do d ij min(d ij, d ik +w kj ) return D

16 Improving the running time D (1) D (2) = W = W 2 = W.W D (4) = W 4 = W 2.W 2.. D (2^ lg (n-1) ) = W (2^ lg (n-1) ) = W (2^ lg (n-1) ).W(2^ lg (n-1) )

17 Faster all Pairs Shortest Paths Faster-All-Pairs-Shortest-Paths(W) n rows[w] D (1) W m 1 while n -1 > m do D (2m) Extend-Shortest Shortest-Paths( Paths(D (m ), D (m ) ) m 2m return D (m) O(n 3 lg n) Extend-Shortest-Paths( Paths(D,W) n rows[d] let D =(d ij ) n n O(n 3 ) for i 1 to n do for j 1 to n do d ij for k 1 to n do d ij min(d ij, d ik +w kj ) return D

18 All-Pairs Shortest Paths Problem The Floyd-Warshall Algorithm Given a weighted digraph G = (V, E) with weight function w: E R, (R, is the set of real numbers) determine the length of the shortest path (i.e., distance between all pairs of vertices in G). Here we assume that there are no cycles with zero or negative cost.

19 Decomposition Definition: The vertices v 2, v 2,,v l-1 are called the intermediate vertices of the path p = {v 1, v 2, v 2,,v l-1, v l }. 2 2 l-1 l Let c (k) ij be the length of the shortest path from i to j such that all intermediate vertices on the path (in any) are in set {1, 2,, k}. c (0) ij is set to be w ij, i.e., no intermediate vertex. Let D (k) be the n n matrix [c (k) ij]

20 Decomposition c (k) ij is the distance from i to j. our aim is to compute D (n). Subproblems: compute D (k) for k =0, 1,, n.

21 Structure of shortest paths Observation 1: A shortest path does not contain the same vertex twice. Observation 2: For a shortest path from i to j such that any intermediate vertices on the path are chosen from the set {1,2,,k} there are two possibilities: k is not a vertex on the path, the shortest such path has length c (k-1) ij k is a vertex on the path, the shortest such path has length c (k-1) ik + c (k-1) kj.

22 Floyd-Warshall recurrence Consider a shortest path from i to j containing the vertex k. It consists of a subpath from i to k and k to j. Each subpath can only contain intermediate vertices in {1,2,, k-1} and must be as short as possible, namely they have lengths c (k-1) ik and c (k-1) kj. Hence the path has length c (k-1) ik + c (k-1) kj. intermediate vertices in {1, 2,, k}

23 Floyd-Warshall recurrence Combining the two cases we get c (k) ij =min k {c (k-1) ij,c (k-1) ik + c (k-1) kj} intermediate vertices in {1, 2,, k}

24 Bottom-up Computation Bottom: D (0) = [w ij ] the weight matrix. Compute D (k) from D (k-1) using c (k) ij =min{c (k-1) ij, c (k-1) ik + c (k-1) kj} for k = 1,2,,n

25 Pseudocode for Floyd-Warshall Floyd-Warshall(W) n rows[w] D (0) W for k 1 to n do for i 1 to n do for j 1 to n do c (k) ij min{c (k-1) ij, c (k-1) ik + c (k-1) kj} return D (n)

26 Extracting the Shortest Paths Construct a predecessor matrix Π from the D matrix. Given the predecessor matrix Π, print-all-pairsshortest-path procedure can use to print vertices on a given shortest path. The predecessor pointers π ij can be used to extract the final path. The idea is as follows. Whenever we discover that the shortest path from i to j passes through an intermediate vertex k, we set π ij = k If the shortest path does not pass through any intermediate vertex, then π ij = NIL.

27 Pseudocode for Floyd-Warshall (Extracting the Shortest Paths) Floyd-Warshall(W) n rows[w] π (0) ij =NIL if i=j or w ij = = i if i j and w ij < C (0) W =[w ij ] Π (0) [π [ (0) ij] for k 1 to n do for i 1 to n do for j 1 to n do c (k) ij min{c (k-1) ij, c (k-1) ik + c (k-1) kj} π ij k return Π (n)

28 Example Floyd-Warshall(W) n rows[w] D (0) W for k 1 to n for i 1 to n for j 1 to n c (k) ij min{c (k-1) ij, c (k-1) ik + c (k-1) kj} π ij k return D (n)

29 Run time comparison with Floyd-Warshall Algorithm O(V 2 E) Bellman-Ford (sparse graph) O(V 4 ) Bellman-Ford (dense graph) O(VElg V) Dijkstra (binary-heap) (sparse graph) O(V 3 lg V) Dijkstra (binary-heap) (dense graph) O(V 2 lg V+VE) Dijkstra (Fibonacci-heap) (sparse graph) O(V 2 lg V+V 3 ) Dijkstra (Fibonacci-heap) (dense graph) ve weight edges are not allowed in case of Dijkstra s algorithm Dynamic Programming based algorithms: O(V 4 ) matrix multiplication methods O(V 3 lg V) repeated squaring O(V 3 ) Floyd-Warshall Algorithm

30 Transitive closure of a directed graph Given a digraph G=(V,E) we may wish to find weather there is a path in G from i to j for all vertex pairs i,j. the transitive closure of G is defined as the graph G* =(V,E*) E* ={(i,j): there is a path from i to j in G}

31 Transitive closure of a directed graph

Algorithms. All-Pairs Shortest Paths. Dong Kyue Kim Hanyang University

Algorithms. All-Pairs Shortest Paths. Dong Kyue Kim Hanyang University Algorithms All-Pairs Shortest Paths Dong Kyue Kim Hanyang University dqkim@hanyang.ac.kr Contents Using single source shortest path algorithms Presents O(V 4 )-time algorithm, O(V 3 log V)-time algorithm,

More information

Chapter 25: All-Pairs Shortest-Paths

Chapter 25: All-Pairs Shortest-Paths Chapter : All-Pairs Shortest-Paths When no negative edges Some Algorithms Using Dijkstra s algorithm: O(V ) Using Binary heap implementation: O(VE lg V) Using Fibonacci heap: O(VE + V log V) When no negative

More information

All Pairs Shortest Paths

All Pairs Shortest Paths All Pairs Shortest Paths Given a directed, connected weighted graph G(V, E), for each edge u, v E, a weight w(u, v) is associated with the edge. The all pairs of shortest paths problem (APSP) is to find

More information

Shortest path problems

Shortest path problems Next... Shortest path problems Single-source shortest paths in weighted graphs Shortest-Path Problems Properties of Shortest Paths, Relaxation Dijkstra s Algorithm Bellman-Ford Algorithm Shortest-Paths

More information

Advanced Algorithm Design and Analysis (Lecture 5) SW5 fall 2007 Simonas Šaltenis

Advanced Algorithm Design and Analysis (Lecture 5) SW5 fall 2007 Simonas Šaltenis Advanced Algorithm Design and Analysis (Lecture 5) SW5 fall 2007 Simonas Šaltenis 3.2.12 simas@cs.aau.dk All-pairs shortest paths Main goals of the lecture: to go through one more example of dynamic programming

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spanning Trees Problem A town has a set of houses and a set of roads. A road connects 2 and only 2 houses. A road connecting houses u and v has a repair cost w(u, v). Goal: Repair enough (and no

More information

Lecture 11: Analysis of Algorithms (CS ) 1

Lecture 11: Analysis of Algorithms (CS ) 1 Lecture 11: Analysis of Algorithms (CS583-002) 1 Amarda Shehu November 12, 2014 1 Some material adapted from Kevin Wayne s Algorithm Class @ Princeton 1 2 Dynamic Programming Approach Floyd-Warshall Shortest

More information

The Shortest Path Problem. The Shortest Path Problem. Mathematical Model. Integer Programming Formulation

The Shortest Path Problem. The Shortest Path Problem. Mathematical Model. Integer Programming Formulation The Shortest Path Problem jla,jc@imm.dtu.dk Department of Management Engineering Technical University of Denmark The Shortest Path Problem Given a directed network G = (V,E,w) for which the underlying

More information

Shortest Path Problem

Shortest Path Problem Shortest Path Problem CLRS Chapters 24.1 3, 24.5, 25.2 Shortest path problem Shortest path problem (and variants) Properties of shortest paths Algorithmic framework Bellman-Ford algorithm Shortest paths

More information

Directed Graphs. DSA - lecture 5 - T.U.Cluj-Napoca - M. Joldos 1

Directed Graphs. DSA - lecture 5 - T.U.Cluj-Napoca - M. Joldos 1 Directed Graphs Definitions. Representations. ADT s. Single Source Shortest Path Problem (Dijkstra, Bellman-Ford, Floyd-Warshall). Traversals for DGs. Parenthesis Lemma. DAGs. Strong Components. Topological

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Shortest Path Problem G. Guérard Department of Nouvelles Energies Ecole Supérieur d Ingénieurs Léonard de Vinci Lecture 3 GG A.I. 1/42 Outline 1 The Shortest Path Problem Introduction

More information

Single Source Shortest Path (SSSP) Problem

Single Source Shortest Path (SSSP) Problem Single Source Shortest Path (SSSP) Problem Single Source Shortest Path Problem Input: A directed graph G = (V, E); an edge weight function w : E R, and a start vertex s V. Find: for each vertex u V, δ(s,

More information

CS420/520 Algorithm Analysis Spring 2009 Lecture 14

CS420/520 Algorithm Analysis Spring 2009 Lecture 14 CS420/520 Algorithm Analysis Spring 2009 Lecture 14 "A Computational Analysis of Alternative Algorithms for Labeling Techniques for Finding Shortest Path Trees", Dial, Glover, Karney, and Klingman, Networks

More information

Dynamic Programming: 1D Optimization. Dynamic Programming: 2D Optimization. Fibonacci Sequence. Crazy 8 s. Edit Distance

Dynamic Programming: 1D Optimization. Dynamic Programming: 2D Optimization. Fibonacci Sequence. Crazy 8 s. Edit Distance Dynamic Programming: 1D Optimization Fibonacci Sequence To efficiently calculate F [x], the xth element of the Fibonacci sequence, we can construct the array F from left to right (or bottom up ). We start

More information

Analysis of Algorithms, I

Analysis of Algorithms, I Analysis of Algorithms, I CSOR W4231.002 Eleni Drinea Computer Science Department Columbia University Thursday, March 8, 2016 Outline 1 Recap Single-source shortest paths in graphs with real edge weights:

More information

Mon Tue Wed Thurs Fri

Mon Tue Wed Thurs Fri In lieu of recitations 320 Office Hours Mon Tue Wed Thurs Fri 8 Cole 9 Dr. Georg Dr. Georg 10 Dr. Georg/ Jim 11 Ali Jim 12 Cole Ali 1 Cole/ Shannon Ali 2 Shannon 3 Dr. Georg Dr. Georg Jim 4 Upcoming Check

More information

Design and Analysis of Algorithms 演算法設計與分析. Lecture 13 December 18, 2013 洪國寶

Design and Analysis of Algorithms 演算法設計與分析. Lecture 13 December 18, 2013 洪國寶 Design and Analysis of Algorithms 演算法設計與分析 Lecture 13 December 18, 2013 洪國寶 1 Homework #10 1. 24.1-1 (p. 591 / p. 654) 2. 24.1-6 (p. 592 / p. 655) 3. 24.3-2 (p. 600 / p. 663) 4. 24.3-8 (p. 601) / 24.3-10

More information

Shortest Paths. Nishant Mehta Lectures 10 and 11

Shortest Paths. Nishant Mehta Lectures 10 and 11 Shortest Paths Nishant Mehta Lectures 0 and Communication Speeds in a Computer Network Find fastest way to route a data packet between two computers 6 Kbps 4 0 Mbps 6 6 Kbps 6 Kbps Gbps 00 Mbps 8 6 Kbps

More information

Algorithms for Data Science

Algorithms for Data Science Algorithms for Data Science CSOR W4246 Eleni Drinea Computer Science Department Columbia University Shortest paths in weighted graphs (Bellman-Ford, Floyd-Warshall) Outline 1 Shortest paths in graphs with

More information

Title. Ferienakademie im Sarntal Course 2 Distance Problems: Theory and Praxis. Nesrine Damak. Fakultät für Informatik TU München. 20.

Title. Ferienakademie im Sarntal Course 2 Distance Problems: Theory and Praxis. Nesrine Damak. Fakultät für Informatik TU München. 20. Title Ferienakademie im Sarntal Course 2 Distance Problems: Theory and Praxis Nesrine Damak Fakultät für Informatik TU München 20. September 2010 Nesrine Damak: Classical Shortest-Path Algorithms 1/ 35

More information

1 Non greedy algorithms (which we should have covered

1 Non greedy algorithms (which we should have covered 1 Non greedy algorithms (which we should have covered earlier) 1.1 Floyd Warshall algorithm This algorithm solves the all-pairs shortest paths problem, which is a problem where we want to find the shortest

More information

Shortest Paths. Nishant Mehta Lectures 10 and 11

Shortest Paths. Nishant Mehta Lectures 10 and 11 Shortest Paths Nishant Mehta Lectures 0 and Finding the Fastest Way to Travel between Two Intersections in Vancouver Granville St and W Hastings St Homer St and W Hastings St 6 Granville St and W Pender

More information

Lecture 18 Solving Shortest Path Problem: Dijkstra s Algorithm. October 23, 2009

Lecture 18 Solving Shortest Path Problem: Dijkstra s Algorithm. October 23, 2009 Solving Shortest Path Problem: Dijkstra s Algorithm October 23, 2009 Outline Lecture 18 Focus on Dijkstra s Algorithm Importance: Where it has been used? Algorithm s general description Algorithm steps

More information

TIE Graph algorithms

TIE Graph algorithms TIE-20106 1 1 Graph algorithms This chapter discusses the data structure that is a collection of points (called nodes or vertices) and connections between them (called edges or arcs) a graph. The common

More information

from notes written mostly by Dr. Carla Savage: All Rights Reserved

from notes written mostly by Dr. Carla Savage: All Rights Reserved CSC 505, Fall 2000: Week 9 Objectives: learn about various issues related to finding shortest paths in graphs learn algorithms for the single-source shortest-path problem observe the relationship among

More information

Algorithms and Data Structures

Algorithms and Data Structures Algorithms and Data Structures Graphs : Shortest Paths Marius Kloft Content of this Lecture Single-Source-Shortest-Paths: Dijkstra s Algorithm Single-Source-Single-Target All-Pairs Shortest Paths Transitive

More information

Graphs II - Shortest paths

Graphs II - Shortest paths Graphs II - Shortest paths Single Source Shortest Paths All Sources Shortest Paths some drawings and notes from prof. Tom Cormen Single Source SP Context: directed graph G=(V,E,w), weighted edges The shortest

More information

Partha Sarathi Manal

Partha Sarathi Manal MA 515: Introduction to Algorithms & MA353 : Design and Analysis of Algorithms [3-0-0-6] Lecture 29 http://www.iitg.ernet.in/psm/indexing_ma353/y09/index.html Partha Sarathi Manal psm@iitg.ernet.in Dept.

More information

CSE 101, Winter Design and Analysis of Algorithms. Lecture 11: Dynamic Programming, Part 2

CSE 101, Winter Design and Analysis of Algorithms. Lecture 11: Dynamic Programming, Part 2 CSE 101, Winter 2018 Design and Analysis of Algorithms Lecture 11: Dynamic Programming, Part 2 Class URL: http://vlsicad.ucsd.edu/courses/cse101-w18/ Goal: continue with DP (Knapsack, All-Pairs SPs, )

More information

Taking Stock. Last Time Flows. This Time Review! 1 Characterize the structure of an optimal solution

Taking Stock. Last Time Flows. This Time Review! 1 Characterize the structure of an optimal solution Taking Stock IE170: Algorithms in Systems Engineering: Lecture 26 Jeff Linderoth Last Time Department of Industrial and Systems Engineering Lehigh University April 2, 2007 This Time Review! Jeff Linderoth

More information

Dijkstra s Algorithm Last time we saw two methods to solve the all-pairs shortest path problem: Min-plus matrix powering in O(n 3 log n) time and the

Dijkstra s Algorithm Last time we saw two methods to solve the all-pairs shortest path problem: Min-plus matrix powering in O(n 3 log n) time and the Dijkstra s Algorithm Last time we saw two methods to solve the all-pairs shortest path problem: Min-plus matrix powering in O(n 3 log n) time and the Floyd-Warshall algorithm in O(n 3 ) time. Neither of

More information

All Shortest Paths. Questions from exercises and exams

All Shortest Paths. Questions from exercises and exams All Shortest Paths Questions from exercises and exams The Problem: G = (V, E, w) is a weighted directed graph. We want to find the shortest path between any pair of vertices in G. Example: find the distance

More information

Dynamic-Programming algorithms for shortest path problems: Bellman-Ford (for singlesource) and Floyd-Warshall (for all-pairs).

Dynamic-Programming algorithms for shortest path problems: Bellman-Ford (for singlesource) and Floyd-Warshall (for all-pairs). Lecture 13 Graph Algorithms I 13.1 Overview This is the first of several lectures on graph algorithms. We will see how simple algorithms like depth-first-search can be used in clever ways (for a problem

More information

Lecture 4: Graph Algorithms

Lecture 4: Graph Algorithms Lecture 4: Graph Algorithms Definitions Undirected graph: G =(V, E) V finite set of vertices, E finite set of edges any edge e = (u,v) is an unordered pair Directed graph: edges are ordered pairs If e

More information

END-TERM EXAMINATION

END-TERM EXAMINATION (Please Write your Exam Roll No. immediately) Exam. Roll No... END-TERM EXAMINATION Paper Code : MCA-205 DECEMBER 2006 Subject: Design and analysis of algorithm Time: 3 Hours Maximum Marks: 60 Note: Attempt

More information

Graph Algorithms (part 3 of CSC 282),

Graph Algorithms (part 3 of CSC 282), Graph Algorithms (part of CSC 8), http://www.cs.rochester.edu/~stefanko/teaching/10cs8 1 Schedule Homework is due Thursday, Oct 1. The QUIZ will be on Tuesday, Oct. 6. List of algorithms covered in the

More information

UNIT 5 GRAPH. Application of Graph Structure in real world:- Graph Terminologies:

UNIT 5 GRAPH. Application of Graph Structure in real world:- Graph Terminologies: UNIT 5 CSE 103 - Unit V- Graph GRAPH Graph is another important non-linear data structure. In tree Structure, there is a hierarchical relationship between, parent and children that is one-to-many relationship.

More information

Partha Sarathi Manal

Partha Sarathi Manal MA 515: Introduction to Algorithms & MA5 : Design and Analysis of Algorithms [-0-0-6] Lecture 20 & 21 http://www.iitg.ernet.in/psm/indexing_ma5/y09/index.html Partha Sarathi Manal psm@iitg.ernet.in Dept.

More information

Sample Solutions to Homework #4

Sample Solutions to Homework #4 National Taiwan University Handout #25 Department of Electrical Engineering January 02, 207 Algorithms, Fall 206 TA: Zhi-Wen Lin and Yen-Chun Liu Sample Solutions to Homework #4. (0) (a) Both of the answers

More information

COL 702 : Assignment 1 solutions

COL 702 : Assignment 1 solutions COL 70 : Assignment 1 solutions 1(a ( n T (n = T + bn log n ( n = T + b n ( n log + bn log n ( n = T + b n ( n 8 log + b n log ( n + bn log n = bn log n + b n log n + bn log n +... log n terms = nb [(log

More information

Fundamental Algorithms CSCI-GA /Summer Solution to Homework 8

Fundamental Algorithms CSCI-GA /Summer Solution to Homework 8 Fundamental Algorithms CSCI-GA.70-00/Summer 206 Solution to Homework 8 Problem (CLRS 23.-6). ( point) Show that a graph has a unique minimum spanning tree if, for every cut of the graph, there is a unique

More information

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Shortest Paths Date: 10/13/15

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Shortest Paths Date: 10/13/15 600.363 Introduction to Algorithms / 600.463 Algorithms I Lecturer: Michael Dinitz Topic: Shortest Paths Date: 10/13/15 14.1 Introduction Today we re going to talk about algorithms for computing shortest

More information

Partha Sarathi Mandal

Partha Sarathi Mandal MA 515: Introduction to Algorithms & MA353 : Design and Analysis of Algorithms [3-0-0-6] Lecture 39 http://www.iitg.ernet.in/psm/indexing_ma353/y09/index.html Partha Sarathi Mandal psm@iitg.ernet.in Dept.

More information

Shortest Path Algorithm

Shortest Path Algorithm Shortest Path Algorithm Shivani Sanan* 1, Leena jain 2, Bharti Kappor 3 *1 Assistant Professor, Faculty of Mathematics, Department of Applied Sciences 2 Associate Professor & Head- MCA 3 Assistant Professor,

More information

Outline. (single-source) shortest path. (all-pairs) shortest path. minimum spanning tree. Dijkstra (Section 4.4) Bellman-Ford (Section 4.

Outline. (single-source) shortest path. (all-pairs) shortest path. minimum spanning tree. Dijkstra (Section 4.4) Bellman-Ford (Section 4. Weighted Graphs 1 Outline (single-source) shortest path Dijkstra (Section 4.4) Bellman-Ford (Section 4.6) (all-pairs) shortest path Floyd-Warshall (Section 6.6) minimum spanning tree Kruskal (Section 5.1.3)

More information

Review of course COMP-251B winter 2010

Review of course COMP-251B winter 2010 Review of course COMP-251B winter 2010 Lecture 1. Book Section 15.2 : Chained matrix product Matrix product is associative Computing all possible ways of parenthesizing Recursive solution Worst-case running-time

More information

Computer Science 385 Design and Analysis of Algorithms Siena College Spring Topic Notes: Dynamic Programming

Computer Science 385 Design and Analysis of Algorithms Siena College Spring Topic Notes: Dynamic Programming Computer Science 385 Design and Analysis of Algorithms Siena College Spring 29 Topic Notes: Dynamic Programming We next consider dynamic programming, a technique for designing algorithms to solve problems

More information

Total Points: 60. Duration: 1hr

Total Points: 60. Duration: 1hr CS800 : Algorithms Fall 201 Nov 22, 201 Quiz 2 Practice Total Points: 0. Duration: 1hr 1. (,10) points Binary Heap. (a) The following is a sequence of elements presented to you (in order from left to right):

More information

Lecture I: Shortest Path Algorithms

Lecture I: Shortest Path Algorithms Lecture I: Shortest Path Algorithms Dr Kieran T. Herley Department of Computer Science University College Cork October 201 KH (21/10/1) Lecture I: Shortest Path Algorithms October 201 1 / 28 Background

More information

Lecture #10: RELAX(u, v, w) if d[v] >d[u]+w(u, v) then d[v] d[u]+w(u, v) π[v] u

Lecture #10: RELAX(u, v, w) if d[v] >d[u]+w(u, v) then d[v] d[u]+w(u, v) π[v] u Lecture #:.. raph lgorithms: hortest Path (hapter ) Problem iven a directed graph =[V,], and weight function w : R mapping edges to real valued weights. The weight of a path p = hv o,v,..., v k i is the

More information

Single Source Shortest Path

Single Source Shortest Path Single Source Shortest Path A directed graph G = (V, E) and a pair of nodes s, d is given. The edges have a real-valued weight W i. This time we are looking for the weight and the shortest path from s

More information

Chapter 24. Shortest path problems. Chapter 24. Shortest path problems. 24. Various shortest path problems. Chapter 24. Shortest path problems

Chapter 24. Shortest path problems. Chapter 24. Shortest path problems. 24. Various shortest path problems. Chapter 24. Shortest path problems Chapter 24. Shortest path problems We are given a directed graph G = (V,E) with each directed edge (u,v) E having a weight, also called a length, w(u,v) that may or may not be negative. A shortest path

More information

Unit-5 Dynamic Programming 2016

Unit-5 Dynamic Programming 2016 5 Dynamic programming Overview, Applications - shortest path in graph, matrix multiplication, travelling salesman problem, Fibonacci Series. 20% 12 Origin: Richard Bellman, 1957 Programming referred to

More information

Problem 1. Which of the following is true of functions =100 +log and = + log? Problem 2. Which of the following is true of functions = 2 and =3?

Problem 1. Which of the following is true of functions =100 +log and = + log? Problem 2. Which of the following is true of functions = 2 and =3? Multiple-choice Problems: Problem 1. Which of the following is true of functions =100+log and =+log? a) = b) =Ω c) =Θ d) All of the above e) None of the above Problem 2. Which of the following is true

More information

MA 252: Data Structures and Algorithms Lecture 9. Partha Sarathi Mandal. Dept. of Mathematics, IIT Guwahati

MA 252: Data Structures and Algorithms Lecture 9. Partha Sarathi Mandal. Dept. of Mathematics, IIT Guwahati MA 252: Data Structures and Algorithms Lecture 9 http://www.iitg.ernet.in/psm/indexing_ma252/y12/index.html Partha Sarathi Mandal Dept. of Mathematics, IIT Guwahati More about quicksort We are lucky if

More information

22 Elementary Graph Algorithms. There are two standard ways to represent a

22 Elementary Graph Algorithms. There are two standard ways to represent a VI Graph Algorithms Elementary Graph Algorithms Minimum Spanning Trees Single-Source Shortest Paths All-Pairs Shortest Paths 22 Elementary Graph Algorithms There are two standard ways to represent a graph

More information

1 More on the Bellman-Ford Algorithm

1 More on the Bellman-Ford Algorithm CS161 Lecture 12 Shortest Path and Dynamic Programming Algorithms Scribe by: Eric Huang (2015), Anthony Kim (2016), M. Wootters (2017) Date: May 15, 2017 1 More on the Bellman-Ford Algorithm We didn t

More information

Partha Sarathi Mandal

Partha Sarathi Mandal MA 5: Data Strctres and Algorithms Lectre http://www.iitg.ernet.in/psm/indexing_ma5/y1/index.html Partha Sarathi Mandal Dept. of Mathematics, IIT Gwahati Idea of Prim s Algorithm Instead of growing the

More information

Lecture 6 Basic Graph Algorithms

Lecture 6 Basic Graph Algorithms CS 491 CAP Intro to Competitive Algorithmic Programming Lecture 6 Basic Graph Algorithms Uttam Thakore University of Illinois at Urbana-Champaign September 30, 2015 Updates ICPC Regionals teams will be

More information

Introduction Single-source shortest paths All-pairs shortest paths. Shortest paths in graphs

Introduction Single-source shortest paths All-pairs shortest paths. Shortest paths in graphs Shortest paths in graphs Remarks from previous lectures: Path length in unweighted graph equals to edge count on the path Oriented distance (δ(u, v)) between vertices u, v equals to the length of the shortest

More information

Recursive-Fib(n) if n=1 or n=2 then return 1 else return Recursive-Fib(n-1)+Recursive-Fib(n-2)

Recursive-Fib(n) if n=1 or n=2 then return 1 else return Recursive-Fib(n-1)+Recursive-Fib(n-2) Dynamic Programming Any recursive formula can be directly translated into recursive algorithms. However, sometimes the compiler will not implement the recursive algorithm very efficiently. When this is

More information

CS350: Data Structures Dijkstra s Shortest Path Alg.

CS350: Data Structures Dijkstra s Shortest Path Alg. Dijkstra s Shortest Path Alg. James Moscola Department of Engineering & Computer Science York College of Pennsylvania James Moscola Shortest Path Algorithms Several different shortest path algorithms exist

More information

Classical Shortest-Path Algorithms

Classical Shortest-Path Algorithms DISTANCE PROBLEMS IN NETWORKS - THEORY AND PRACTICE Classical Shortest-Path Algorithms Nesrine Damak October 10, 2010 Abstract In this work, we present four algorithms for the shortest path problem. The

More information

Shortest Paths. CSE 373 Data Structures Lecture 21

Shortest Paths. CSE 373 Data Structures Lecture 21 Shortest Paths CSE 7 Data Structures Lecture Readings and References Reading Section 9., Section 0.. Some slides based on: CSE 6 by S. Wolfman, 000 //0 Shortest Paths - Lecture Path A path is a list of

More information

Unit 2: Algorithmic Graph Theory

Unit 2: Algorithmic Graph Theory Unit 2: Algorithmic Graph Theory Course contents: Introduction to graph theory Basic graph algorithms Reading Chapter 3 Reference: Cormen, Leiserson, and Rivest, Introduction to Algorithms, 2 nd Ed., McGraw

More information

2.3 Optimal paths. E. Amaldi Foundations of Operations Research Politecnico di Milano 1

2.3 Optimal paths. E. Amaldi Foundations of Operations Research Politecnico di Milano 1 . Optimal paths E. Amaldi Foundations of Operations Research Politecnico di Milano Optimal (minimum or maximum) paths have a wide range of applications: Google maps, GPS navigators planning and management

More information

The Shortest-Path Problem : G. Dantzig. 4-Shortest Paths Problems. The Shortest-Path Problem : G. Dantzig (continued)

The Shortest-Path Problem : G. Dantzig. 4-Shortest Paths Problems. The Shortest-Path Problem : G. Dantzig (continued) The Shortest-Path Problem : G. Dantzig 4-Shortest Paths Problems Bruno MARTIN, University of Nice - Sophia Antipolis mailto:bruno.martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods Problem: Find

More information

Algorithms and Data Structures

Algorithms and Data Structures Algorithms and Data Structures Graphs: Introduction and First Algorithms Ulf Leser This Course Introduction 2 Abstract Data Types 1 Complexity analysis 1 Styles of algorithms 1 Lists, stacks, queues 2

More information

2.3 Optimal paths. Optimal (shortest or longest) paths have a wide range of applications:

2.3 Optimal paths. Optimal (shortest or longest) paths have a wide range of applications: . Optimal paths Optimal (shortest or longest) paths have a wide range of applications: Google maps, GPS navigators planning and management of transportation, electrical and telecommunication networks project

More information

Lecture 14: Shortest Paths Steven Skiena

Lecture 14: Shortest Paths Steven Skiena Lecture 14: Shortest Paths Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.stonybrook.edu/ skiena Problem of the Day Suppose we are given

More information

CS 341: Algorithms. Douglas R. Stinson. David R. Cheriton School of Computer Science University of Waterloo. February 26, 2019

CS 341: Algorithms. Douglas R. Stinson. David R. Cheriton School of Computer Science University of Waterloo. February 26, 2019 CS 341: Algorithms Douglas R. Stinson David R. Cheriton School of Computer Science University of Waterloo February 26, 2019 D.R. Stinson (SCS) CS 341 February 26, 2019 1 / 296 1 Course Information 2 Introduction

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Chapter 9 Graph Algorithms 2 Introduction graph theory useful in practice represent many real-life problems can be slow if not careful with data structures 3 Definitions an undirected graph G = (V, E)

More information

11/22/2016. Chapter 9 Graph Algorithms. Introduction. Definitions. Definitions. Definitions. Definitions

11/22/2016. Chapter 9 Graph Algorithms. Introduction. Definitions. Definitions. Definitions. Definitions Introduction Chapter 9 Graph Algorithms graph theory useful in practice represent many real-life problems can be slow if not careful with data structures 2 Definitions an undirected graph G = (V, E) is

More information

2. True or false: even though BFS and DFS have the same space complexity, they do not always have the same worst case asymptotic time complexity.

2. True or false: even though BFS and DFS have the same space complexity, they do not always have the same worst case asymptotic time complexity. 1. T F: Consider a directed graph G = (V, E) and a vertex s V. Suppose that for all v V, there exists a directed path in G from s to v. Suppose that a DFS is run on G, starting from s. Then, true or false:

More information

Object-oriented programming. and data-structures CS/ENGRD 2110 SUMMER 2018

Object-oriented programming. and data-structures CS/ENGRD 2110 SUMMER 2018 Object-oriented programming and data-structures CS/ENGRD 20 SUMMER 208 Lecture 3: Shortest Path http://courses.cs.cornell.edu/cs20/208su Graph Algorithms Search Depth-first search Breadth-first search

More information

1. Basic idea: Use smaller instances of the problem to find the solution of larger instances

1. Basic idea: Use smaller instances of the problem to find the solution of larger instances Chapter 8. Dynamic Programming CmSc Intro to Algorithms. Basic idea: Use smaller instances of the problem to find the solution of larger instances Example : Fibonacci numbers F = F = F n = F n- + F n-

More information

Dijkstra s Algorithm. Single source shortest paths for a directed acyclic graph

Dijkstra s Algorithm. Single source shortest paths for a directed acyclic graph Dijkstra s Algorithm Single source shortest paths for a directed acyclic graph Single-Source Shortest Paths We want to find the shortest paths between Binghamton and New York City, Boston, and Washington

More information

DESIGN AND ANALYSIS OF ALGORITHMS

DESIGN AND ANALYSIS OF ALGORITHMS DESIGN AND ANALYSIS OF ALGORITHMS QUESTION BANK Module 1 OBJECTIVE: Algorithms play the central role in both the science and the practice of computing. There are compelling reasons to study algorithms.

More information

Graph Algorithms (part 3 of CSC 282),

Graph Algorithms (part 3 of CSC 282), Graph Algorithms (part of CSC 8), http://www.cs.rochester.edu/~stefanko/teaching/11cs8 Homework problem sessions are in CSB 601, 6:1-7:1pm on Oct. (Wednesday), Oct. 1 (Wednesday), and on Oct. 19 (Wednesday);

More information

Dynamic Programming II

Dynamic Programming II Lecture 11 Dynamic Programming II 11.1 Overview In this lecture we continue our discussion of dynamic programming, focusing on using it for a variety of path-finding problems in graphs. Topics in this

More information

Konigsberg Bridge Problem

Konigsberg Bridge Problem Graphs Konigsberg Bridge Problem c C d g A Kneiphof e D a B b f c A C d e g D a b f B Euler s Graph Degree of a vertex: the number of edges incident to it Euler showed that there is a walk starting at

More information

Department of Computer Applications. MCA 312: Design and Analysis of Algorithms. [Part I : Medium Answer Type Questions] UNIT I

Department of Computer Applications. MCA 312: Design and Analysis of Algorithms. [Part I : Medium Answer Type Questions] UNIT I MCA 312: Design and Analysis of Algorithms [Part I : Medium Answer Type Questions] UNIT I 1) What is an Algorithm? What is the need to study Algorithms? 2) Define: a) Time Efficiency b) Space Efficiency

More information

Introduction to Algorithms

Introduction to Algorithms Introduction to Algorithms 6.046J/18.401J LECTURE 16 Greedy Algorithms (and Graphs) Graph representation Minimum spanning trees Optimal substructure Greedy choice Prim s greedy MST algorithm Prof. Charles

More information

1 Dynamic Programming

1 Dynamic Programming CS161 Lecture 13 Dynamic Programming and Greedy Algorithms Scribe by: Eric Huang Date: May 13, 2015 1 Dynamic Programming The idea of dynamic programming is to have a table of solutions of subproblems

More information

Optimization II: Dynamic Programming

Optimization II: Dynamic Programming Chapter 12 Optimization II: Dynamic Programming In the last chapter, we saw that greedy algorithms are efficient solutions to certain optimization problems. However, there are optimization problems for

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Dynamic Programming November, 0 École Centrale Paris, Châtenay-Malabry, France Dimo Brockhoff INRIA Lille Nord Europe Course Overview Dimo Brockhoff, INRIA Introduction to

More information

Tutorial. Question There are no forward edges. 4. For each back edge u, v, we have 0 d[v] d[u].

Tutorial. Question There are no forward edges. 4. For each back edge u, v, we have 0 d[v] d[u]. Tutorial Question 1 A depth-first forest classifies the edges of a graph into tree, back, forward, and cross edges. A breadth-first tree can also be used to classify the edges reachable from the source

More information

Dynamic Programming Shabsi Walfish NYU - Fundamental Algorithms Summer 2006

Dynamic Programming Shabsi Walfish NYU - Fundamental Algorithms Summer 2006 Dynamic Programming What is Dynamic Programming? Technique for avoiding redundant work in recursive algorithms Works best with optimization problems that have a nice underlying structure Can often be used

More information

Algorithms and Data Structures

Algorithms and Data Structures Algorithms and Data Structures Graphs: Introduction and First Algorithms Ulf Leser This Course Introduction 2 Abstract Data Types 1 Complexity analysis 1 Styles of algorithms 1 Lists, stacks, queues 2

More information

CSE 502 Class 23. Jeremy Buhler Steve Cole. April BFS solves unweighted shortest path problem. Every edge traversed adds one to path length

CSE 502 Class 23. Jeremy Buhler Steve Cole. April BFS solves unweighted shortest path problem. Every edge traversed adds one to path length CSE 502 Class 23 Jeremy Buhler Steve Cole April 14 2015 1 Weighted Version of Shortest Paths BFS solves unweighted shortest path problem Every edge traversed adds one to path length What if edges have

More information

Weighted Graph Algorithms Presented by Jason Yuan

Weighted Graph Algorithms Presented by Jason Yuan Weighted Graph Algorithms Presented by Jason Yuan Slides: Zachary Friggstad Programming Club Meeting Weighted Graphs struct Edge { int u, v ; int w e i g h t ; // can be a double } ; Edge ( int uu = 0,

More information

(a) Write code to do this without using any floating-point arithmetic. Efficiency is not a concern here.

(a) Write code to do this without using any floating-point arithmetic. Efficiency is not a concern here. CS 146 Final Exam 1 Solutions by Dr. Beeson 1. Analysis of non-recursive algorithms. Consider the problem of counting the number of points with integer coordinates (x,y) on the circle of radius R, where

More information

Last week: Breadth-First Search

Last week: Breadth-First Search 1 Last week: Breadth-First Search Set L i = [] for i=1,,n L 0 = {w}, where w is the start node For i = 0,, n-1: For u in L i : For each v which is a neighbor of u: If v isn t yet visited: - mark v as visited,

More information

CSC 8301 Design & Analysis of Algorithms: Warshall s, Floyd s, and Prim s algorithms

CSC 8301 Design & Analysis of Algorithms: Warshall s, Floyd s, and Prim s algorithms CSC 8301 Design & Analysis of Algorithms: Warshall s, Floyd s, and Prim s algorithms Professor Henry Carter Fall 2016 Recap Space-time tradeoffs allow for faster algorithms at the cost of space complexity

More information

Algorithms and Data Structures

Algorithms and Data Structures Algorithms and Data Structures Graphs: Introduction Ulf Leser This Course Introduction 2 Abstract Data Types 1 Complexity analysis 1 Styles of algorithms 1 Lists, stacks, queues 2 Sorting (lists) 3 Searching

More information

CS521 \ Notes for the Final Exam

CS521 \ Notes for the Final Exam CS521 \ Notes for final exam 1 Ariel Stolerman Asymptotic Notations: CS521 \ Notes for the Final Exam Notation Definition Limit Big-O ( ) Small-o ( ) Big- ( ) Small- ( ) Big- ( ) Notes: ( ) ( ) ( ) ( )

More information

Question Paper Code : 97044

Question Paper Code : 97044 Reg. No. : Question Paper Code : 97044 B.E./B.Tech. DEGREE EXAMINATION NOVEMBER/DECEMBER 2014 Third Semester Computer Science and Engineering CS 6301 PROGRAMMING AND DATA STRUCTURES-II (Regulation 2013)

More information

Framework for Design of Dynamic Programming Algorithms

Framework for Design of Dynamic Programming Algorithms CSE 441T/541T Advanced Algorithms September 22, 2010 Framework for Design of Dynamic Programming Algorithms Dynamic programming algorithms for combinatorial optimization generalize the strategy we studied

More information

More Graph Algorithms: Topological Sort and Shortest Distance

More Graph Algorithms: Topological Sort and Shortest Distance More Graph Algorithms: Topological Sort and Shortest Distance Topological Sort The goal of a topological sort is given a list of items with dependencies, (ie. item 5 must be completed before item 3, etc.)

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Chapter 9 Graph Algorithms 2 Introduction graph theory useful in practice represent many real-life problems can be if not careful with data structures 3 Definitions an undirected graph G = (V, E) is a

More information