A Weighted Least Squares PET Image Reconstruction Method Using Iterative Coordinate Descent Algorithms

Size: px
Start display at page:

Download "A Weighted Least Squares PET Image Reconstruction Method Using Iterative Coordinate Descent Algorithms"

Transcription

1 A Weighted Least Squares PET Image Reconstruction Method Using Iterative Coordinate Descent Algorithms Hongqing Zhu, Huazhong Shu, Jian Zhou and Limin Luo Department of Biological Science and Medical Engineering, Southeast University, Nanging, 00 China Abstract In this paper, we present an image reconstruction method for positron emission tomography (PET) based on weighted least squares () obective function. Unlike a usual algorithm, the proposed method, which we call it ICD-, minimizes the obective function using iterative coordinate descent (ICD) method in a sequence of small hidden data spaces. Although ICD- uses a strategy to update parameter sequentially ust like common ICD method, however, the use of these small hidden data spaces makes the ICD- method converge more faster and produce reconstructed images with greater contrast and detail than the usual methods. The OS algorithm is also used to accelerate image reconstruction for ICD-. The experimental results show that the proposed method is more effective even if the proection data include statistic noise. I. INTRODUCTION Positron Emission Tomography (PET) is one of the most important imaging tools in modern diagnosis. Reconstruction of PET scan images is a complex problem, various efforts have been made in the past to speed up both types of PET image reconstruction algorithms, namely, analytic and iterative algorithms. Among iterative algorithms, the statistical reconstruction has become increasingly popular in PET due to its ability to model the noise and the imaging physics and to impose positivity constraints on the reconstruction. So far, all statistical reconstruction algorithms are based on either the maximum likelihood (ML) or least squares (LS) cost function, and their generalizations. A commonly used method for finding ML estimates in PET had been the expectation-maximization (EM) algorithm []. The slow convergence rate is the main disadvantage of EM. Fessler et al. thought this is due essentially to the large Fisher Information of the complete data space used in ML-EM algorithm []. They proposed a space-alternating generalized EM (SAGE) algorithm in which the parameters are updated sequentially using a sequence of small hidden data spaces rather than one large complete-data space to accelerate ML- EM algorithm [,]. Moreover, ML estimates are usually unstable due to the typical limits in fidelity of PET proection data []. To overcome this drawback, some methods such as regularization maximum a posteriori probability (MAP) estimation [,] have been proposed. The other recent algorithm known as iterative coordinate descent (ICD) for image reconstruction has been developed [, ]. It was based on the direct optimization of the MAP criterion, and used the sequential optimization of pixel values in the reconstruction. Both the SAGE algorithm and the ICD algorithm take a similar strategy to update parameters sequentially, which enable them to speed up significantly the convergence rate. The difference is the SAGE algorithm updates each pixel in the limit size complete spaces ( hidden data spaces). The first use of the weighted least squares () method in image reconstruction was Huesman et al. []. The traditional methods are based on proection data, which require the estimation of the error covariance matrix from proection data [0,, ]. Recently, Anderson et al. developed a algorithm, which uses the exact mean instead of the databased variance to describe the weights. The cost function is no longer quadratic, but it is convex [, ]. Anderson et al. demonstrated that the algorithm converges faster than the maximum likelihood expectation-maximization and produced images that had significantly better resolution and contrast []. In this paper, a novel algorithm, namely ICD- that combines the ICD algorithm with the algorithm is proposed for PET image reconstruction. In the new approach, we adopt the same obective function as that proposed by Anderson et al. []. However, unlike the common algorithm, the ICD- algorithm is to minimize each new obective function using iterative coordinate descent in a sequence of small hidden data spaces. This is important since one can cautiously choose hidden data spaces with considerably less Fisher information. According to [,], less informative hidden data spaces can yield fast convergence compared with one large complete-data space with more Fisher information. Although the ICD- algorithm is implemented by sequential updating each pixel of the image, with each updating the current pixel is chosen to minimize the new cost function, however, the use of hidden data spaces makes ICD- algorithm converge faster than the common algorithm. To improve convergence rate, the OS algorithm is used to accelerate image reconstruction for ICD-. We call it OS-ICD- method. In OS-ICD- method, the proection data are grouped into subsets: a pixel in a reconstruction image is updated by using proections in each subset /0/$0.00 (C) 00 IEEE

2 II. METHODOLOGY A. ICD- Algorithm Assume an obective image be discretized into n pixels with emission rates x =[x,...x,...x n ] T. Assume that the emission source is viewed by m detectors (i =,...,m). According to the assumption that the observed photon counts are independent Poisson random variables over the region of interest [], we have: Y i = N i + R i P oisson{ p i x + r i } () where Y i denotes the ith detector recording emissions which include the photon counts emitted by all pixels and the numbers of emissions brought by background events. {Ri} are also independent Poisson variables: R i P oisson{r i }. Background rates {r i } are assumed to be known. N i is the actual numbers of photons emitted from the th pixel and detected by the ith detector bin. The system matrix element p i represents the probability that an emission from pixel is recorded at detector tube i. x is the expected value of pixel. Under the assumption of {r i } being zero, according to [, ], we can propose the following estimator: { ˆx = arg min Φ(x) x () s.t. x 0 where Φ(x) = (Px y) T W (Px y) = m ((Px) i y i ) (Px) i = m ( = p ix y i ) = p () ix where W is m m weight matrix. Anderson et al. defined it as: w i = diag((px), (Px),...,(Px) m ) () To apply iterative coordinate descent directly to this, we might try to update x by equating the partial derivative of Φ(x) the to zero. x (Φ(x)) = (Px) i y i (Px) i =0 () Unfortunately equation () has no analytical solution. A line-search method would require multiple evaluations of (), which would be expensive. The complete-data space for the classical algorithm for this problem is the set of unobservable random variables. X = {{N i } n =, {R i }} m () According to the SAGE algorithm [,], in ICD-, we employ a series of small complete-data spaces, namely, hidden data spaces. Here, we choose a most obvious and simple hidden data space which consists of those photons emitted from a given pixel, assuming the th pixel, that is, X S = {N i,r i } m () where S = {} is an individual pixel index set, Obviously, we have S S = {,...,n}, =,...,n. Thus, the new obective function in each hidden data spaces Φ S for the th parameter is Φ S (x ; x (k) (p i x N i ) )= () p i x N i = E{N i Y = y; x (k) } = x(k) p i y i = p () ix (k) where N i is the expected photon counts emitted from pixel and detected by the ith detector. x (k) is the estimate of x after k iterations. To minimize the new obective function Φ S in each hidden data space, we calculate the partial derivate for each given pixel x in () and yield: (Φ S ) = x (p i x N i )p i x (p i x N i ) p i (p i x ) (p i x ) N i = p i x (0) Let Eq.(0) be zero; we then have the formula for the th pixel s update: or N i p i = p i x = x x = m p i N i p i () N i p i () Substituting () into () yields x = x p i yi m p i ( = p () ix ) We obtain the fixed point iterative formula for the th pixel s update as follows: x (k+) = x (k) p i yi m p i ( = p () ix (k) ) According to the ICD algorithm, the detail ICD- algorithm for Poisson data can be outlined as follows. Initialization: y i = p i x () + r i () where x () be a starting positive image vector. We can set it via the FBP reconstructed image for k =,,... until convergence of x (k) { /0/$0.00 (C) 00 IEEE

3 for =,...,n{ updating each pixel: x (k+) = x (k) m p i p i y i y i () x (k+) q = x (k) q, q () updating proection: y i = y i +(x (k+) x (k) )p i i : p i 0 () endfor endfor The above ICD- algorithm updates the parameters sequentially and the predicted measurement y i is updated within the inner loop. B. OS Version ICD- Algorithm The OS algorithm is a useful method to accelerate PET image reconstruction. OS can be applied into any algorithm, which involved a sum over proection. The ML-EM method combined with the OS algorithm is called the OSEM method []. Here, we attempt to apply the OS algorithm and develop the OS version ICD- (OS-ICD-) method. x (k+) = x (k) p iy i i S p t i i S ( t l p () ilx (k) l ) here S t denotes the chosen order subset, l S t, t is the order subset level. OS-ICD- use a strategy to update parameters grouped on a sequence of order subsets (or blocks) of proection that enable it to obtain a very good reconstructed image in few iterations. Fig.. A simulated emission thorax phantom. III. EXPERIMENTAL RESULTS In order to test the effectiveness of the proposed methods, we compare the reconstructed images of, ICD- and OS-ICD- algorithms. In our experiment, a thorax phantom is used to test the presented method. The relative activities of the elements are shown in Fig.. The sinogram has radial bins and 0 angles. The proection data including % uniform Poisson background noise is calculated. Fig. shows the reconstructed results. The iteration Fig.. (From up to down), reconstructed images using the, ICD- and OS-ICD-, the first column with noise-free and the second column with Poisson noise. numbers are 0 for, ICD- and the iteration number are for OS-ICD- method. We can observe from Fig. that the whether the proections with noise or not, the ICD- methods can yield some high-quality images in comparison with the algorithm [,]. We can also observe that OS-ICD- is more efficient than ICD- method. The former obtains a very good reconstructed image in few iterations. Fig. displays the obective function Φ versus iteration numbers for the and ICD- algorithms. Fig. shows that the obective function of ICD- decreases more rapidly than the obective function of. It is because that ICD method update parameters sequentially in hidden data spaces allows us to more accelerate the convergence. We also use the mean absolute error (MAE) and chi-square error (CSE) to evaluate the quality of reconstructed images. The MAE is defined as: where x org MAE = rec x x org n = (0) and x rec denote the value of pixel of the original activity image and the reconstructed image, respectively. MAE measures the average discrepancy between the /0/$0.00 (C) 00 IEEE

4 0 x 00 0 x 00 x 0 x Obection Function ICD Obection Function ICD ICD ICD 0 0 Fig.. Comparison of obective function versus iteration numbers, proections with noise free (left), proections with Poisson background noise (right). Fig.. Chi-square error of reconstructed images, proections without noise (left), proections with Poisson background noise (right). reconstructed image and the original activity image. The CSE is defined as CSE = [y i log(y i /y (k) i ) (y i y (k) i )] () y (k) i = n = p i x (k) () CSE measures the discrepancy between the calculated proections and the original proections. Figs. and display the MAE and CSE values of the reconstructed images using and ICD-, respectively. The results show that the MAE and CSE values using ICD- decrease more rapidly than those obtained with even if the statistic noise is presented. Fig. indicate the CSE of OS version ICD- and. The CSE quantitative valuation results express the OS-ICD- is superior to the and OS- method. The OS technique can improve convergence rate and image quality for a certainly. Mean Absolute Error (MAE) ICD Mean Absolute Error (MAE) ICD x 0 0 OS OS ICD 0 x 0 OS OS ICD Fig.. Chi-square error of reconstructed images, proections without noise (left), proections with Poisson background noise (right). algorithm. In addition, the OS technique is used to accelerate the proposed ICD- method. We attempted a fair comparison between, ICD- and their OS version. The effectiveness of the proposed ICD- and OS-ICD- reconstructed approach were confirmed by simulation experiment. ACKNOWLEDGMENT The authors gratefully acknowledge The University of Michigan for their amiably providing with thorax phantom and some Matlab code in their website. This work was supported by National Basic Research Program of China under grant, No.00CB REFERENCES Fig.. Mean absolute error of reconstructed images, proections without noise (left), proections with Poisson background noise (right). IV. CONCLUSION We have proposed a new approach named ICD- that combines the ICD algorithm and algorithm for PET image reconstruction. In the new approach, the sequential updating of parameters was completed in some small hidden data spaces, and during each update, the current pixel was chosen to minimize each new obective function, so, the convergence rate and the quality of reconstructed images have been greatly improved in comparison with the common [] L. A. Shepp and Y. Vardi, Maximum likelihood reconstruction for emission tomography, IEEE Trans. Med. Imag., vol. MI-, pp.-,. [] J. A. Fessler and A. O. Hero, Space-alternating generalized expectationmaximization algorithm, IEEE Tran. Signal Proc., vol., no.0, pp. -, Oct.. [] J. A. Fessler and A. O. Hero, New complete-data spaces and faster algorithms for penalized-likelihood emission tomography, IEEE Conference on Nuclear Science Symposium and Medical Imaging, vol., pp.-0,. [] J. A. Fessler and A. O. Hero, Penalized maximum-likelihood image reconstruction using space-alternating generalized EM algorithms, IEEE Trans. IP., vol., no., pp.-, Oct.. [] C. A. Bouman and K. Sauer, A unified approach to statistical tomography using coordinate descent optimization, IEEE Trans. Imag. Proc., vol., no., pp. 0-, March. [] E. Levitan and G. T. Herman, A maximum a posteriori probability expectation maximization algorithm for image reconstruction in emission tomography, IEEE Trans. Med. Imag., vol. MI-, /0/$0.00 (C) 00 IEEE

5 [] P. J. Green, Bayesian reconstructions from emission tomography data using a modified EM algorithm, IEEE Trans. Med. Imag., vol., pp.-, 0. [] C. A. Bouman and K. Sauer, A local update strategy for iterative reconstruction from proections, IEEE Trans. Signal Proc., vol., no., pp.-, Feb.. [] R. H. Huesman, G. T. Gullberg, W. L. Greeberg, and T, F, Budinger, User manual, Donner algorithms for reconstruction tomography, Lawrence Berkeley Lab., Univ, California,. [0] B. M. W. Tsui, Z. Zhao, E. C. Frey, and G. T. Gullberg, Comparison between ML-EM and -CG algorithms for SPECT image reconstruction, IEEE Trans. Nucl. Sci., vol., pp.-,. [] J. A. Fessler, Penalized weighted least-squares image reconstruction for positron emission tomography, IEEE Trans. Med. Imag., vol., no., pp.0-00, Jun.. [] N. H. Clinthorne, Constrained least-squares vs. maximum likelihood reconstructions for Poisson data, In Proc. IEEE Med. Imag. Conf., vol., pp. -,. [] J. M. M. Anderson, B. A. Mair, M. Rao and C. -H. Wu, Weighted leastsquares reconstruction algorithms for positron emission tomography, IEEE Trans. Med. Imag., vol., no., pp.-, April. [] J. M. M. Anderson, B. A. Mair, M. Rao and C. -H. Wu, A weighted least squares methods for PET, IEEE Nuclear Science Symposium and Medical Imaging Conference Record, vol., pp.-, San Francisco,. [] H. M. Hudson and R. S. Larkin, Accelerated image reconstruction using ordered subsets of proection data, IEEE Trans. Med Imag., vol., pp.0-0, /0/$0.00 (C) 00 IEEE

Axial block coordinate descent (ABCD) algorithm for X-ray CT image reconstruction

Axial block coordinate descent (ABCD) algorithm for X-ray CT image reconstruction Axial block coordinate descent (ABCD) algorithm for X-ray CT image reconstruction Jeffrey A. Fessler and Donghwan Kim EECS Department University of Michigan Fully 3D Image Reconstruction Conference July

More information

Temperature Distribution Measurement Based on ML-EM Method Using Enclosed Acoustic CT System

Temperature Distribution Measurement Based on ML-EM Method Using Enclosed Acoustic CT System Sensors & Transducers 2013 by IFSA http://www.sensorsportal.com Temperature Distribution Measurement Based on ML-EM Method Using Enclosed Acoustic CT System Shinji Ohyama, Masato Mukouyama Graduate School

More information

An overview of fast convergent ordered-subsets reconstruction methods for emission tomography based on the incremental EM algorithm

An overview of fast convergent ordered-subsets reconstruction methods for emission tomography based on the incremental EM algorithm An overview of fast convergent ordered-subsets reconstruction methods for emission tomography based on the incremental EM algorithm Ing-Tsung Hsiao a Parmeshwar Khurd b Anand Rangaraan c and Gene Gindi

More information

Projection Space Maximum A Posterior Method for Low Photon Counts PET Image Reconstruction

Projection Space Maximum A Posterior Method for Low Photon Counts PET Image Reconstruction Proection Space Maximum A Posterior Method for Low Photon Counts PET Image Reconstruction Liu Zhen Computer Department / Zhe Jiang Wanli University / Ningbo ABSTRACT In this paper, we proposed a new MAP

More information

STATISTICAL positron emission tomography (PET) image

STATISTICAL positron emission tomography (PET) image IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 23, NO. 9, SEPTEMBER 2004 1057 Accurate Estimation of the Fisher Information Matrix for the PET Image Reconstruction Problem Quanzheng Li, Student Member, IEEE,

More information

Noniterative sequential weighted least squares algorithm for positron emission tomography reconstruction.

Noniterative sequential weighted least squares algorithm for positron emission tomography reconstruction. Noniterative sequential weighted least squares algorithm for positron emission tomography reconstruction. Jian Zhou, Jean-Louis Coatrieux, Limin Luo To cite this version: Jian Zhou, Jean-Louis Coatrieux,

More information

STATISTICAL image reconstruction methods have shown

STATISTICAL image reconstruction methods have shown Globally Convergent Ordered Subsets Algorithms: Application to Tomography Sangtae Ahn and Jeffrey A. Fessler Abstract We present new algorithms for penalized-likelihood image reconstruction: modified BSREM

More information

SINGLE-PHOTON emission computed tomography

SINGLE-PHOTON emission computed tomography 1458 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 59, NO. 4, AUGUST 2012 SPECT Imaging With Resolution Recovery Andrei V. Bronnikov Abstract Single-photon emission computed tomography (SPECT) is a method

More information

Assessment of OSEM & FBP Reconstruction Techniques in Single Photon Emission Computed Tomography Using SPECT Phantom as Applied on Bone Scintigraphy

Assessment of OSEM & FBP Reconstruction Techniques in Single Photon Emission Computed Tomography Using SPECT Phantom as Applied on Bone Scintigraphy Assessment of OSEM & FBP Reconstruction Techniques in Single Photon Emission Computed Tomography Using SPECT Phantom as Applied on Bone Scintigraphy Physics Department, Faculty of Applied Science,Umm Al-Qura

More information

PET image reconstruction algorithms based on maximum

PET image reconstruction algorithms based on maximum IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 18, NO. 4, APRIL 1999 293 A Theoretical Study of the Contrast Recovery and Variance of MAP Reconstructions from PET Data Jinyi Qi,* Member, IEEE, and Richard

More information

THE general task in emission computed tomography (CT)

THE general task in emission computed tomography (CT) 228 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 17, NO. 2, APRIL 1998 List-Mode Likelihood: EM Algorithm and Image Quality Estimation Demonstrated on 2-D PET Lucas Parra* and Harrison H. Barrett, Member,

More information

Low-Dose Dual-Energy CT for PET Attenuation Correction with Statistical Sinogram Restoration

Low-Dose Dual-Energy CT for PET Attenuation Correction with Statistical Sinogram Restoration Low-Dose Dual-Energy CT for PET Attenuation Correction with Statistical Sinogram Restoration Joonki Noh, Jeffrey A. Fessler EECS Department, The University of Michigan Paul E. Kinahan Radiology Department,

More information

A numerical simulator in VC++ on PC for iterative image reconstruction

A numerical simulator in VC++ on PC for iterative image reconstruction Journal of X-Ray Science and Technology 11 (2003) 61 70 61 IOS Press A numerical simulator in VC++ on PC for iterative image reconstruction Xiang Li a,, Ming Jiang c and Ge Wang a,b a Department of Biomedical

More information

PET Image Reconstruction using Anatomical Information through Mutual Information Based Priors

PET Image Reconstruction using Anatomical Information through Mutual Information Based Priors 2005 IEEE Nuclear Science Symposium Conference Record M11-354 PET Image Reconstruction using Anatomical Information through Mutual Information Based Priors Sangeetha Somayajula, Evren Asma, and Richard

More information

M. Usman, A.O. Hero and J.A. Fessler. University of Michigan. parameter =[ 1 ; :::; n ] T given an observation of a vector

M. Usman, A.O. Hero and J.A. Fessler. University of Michigan. parameter =[ 1 ; :::; n ] T given an observation of a vector Uniform CR Bound: Implementation Issues And Applications M. Usman, A.O. Hero and J.A. Fessler University of Michigan ABSTRACT We apply a uniform Cramer-Rao (CR) bound [] to study the bias-variance trade-os

More information

Bias-Variance Tradeos Analysis Using Uniform CR Bound. Mohammad Usman, Alfred O. Hero, Jerey A. Fessler and W. L. Rogers. University of Michigan

Bias-Variance Tradeos Analysis Using Uniform CR Bound. Mohammad Usman, Alfred O. Hero, Jerey A. Fessler and W. L. Rogers. University of Michigan Bias-Variance Tradeos Analysis Using Uniform CR Bound Mohammad Usman, Alfred O. Hero, Jerey A. Fessler and W. L. Rogers University of Michigan ABSTRACT We quantify fundamental bias-variance tradeos for

More information

MAP Tomographic Reconstruction with a Spatially Adaptive Hierarchical Image Model

MAP Tomographic Reconstruction with a Spatially Adaptive Hierarchical Image Model 7 5th European Signal Processing Conference EUSIPCO) MAP Tomographic Reconstruction with a Spatially Adaptive Hierarchical Image Model Christophoros Nikou Department of Computer Science and Engineering

More information

Splitting-Based Statistical X-Ray CT Image Reconstruction with Blind Gain Correction

Splitting-Based Statistical X-Ray CT Image Reconstruction with Blind Gain Correction Splitting-Based Statistical X-Ray CT Image Reconstruction with Blind Gain Correction Hung Nien and Jeffrey A. Fessler Department of Electrical Engineering and Computer Science University of Michigan, Ann

More information

Workshop on Quantitative SPECT and PET Brain Studies January, 2013 PUCRS, Porto Alegre, Brasil Corrections in SPECT and PET

Workshop on Quantitative SPECT and PET Brain Studies January, 2013 PUCRS, Porto Alegre, Brasil Corrections in SPECT and PET Workshop on Quantitative SPECT and PET Brain Studies 14-16 January, 2013 PUCRS, Porto Alegre, Brasil Corrections in SPECT and PET Físico João Alfredo Borges, Me. Corrections in SPECT and PET SPECT and

More information

Iterative SPECT reconstruction with 3D detector response

Iterative SPECT reconstruction with 3D detector response Iterative SPECT reconstruction with 3D detector response Jeffrey A. Fessler and Anastasia Yendiki COMMUNICATIONS & SIGNAL PROCESSING LABORATORY Department of Electrical Engineering and Computer Science

More information

Evaluation of Spectrum Mismatching using Spectrum Binning Approach for Statistical Polychromatic Reconstruction in CT

Evaluation of Spectrum Mismatching using Spectrum Binning Approach for Statistical Polychromatic Reconstruction in CT Evaluation of Spectrum Mismatching using Spectrum Binning Approach for Statistical Polychromatic Reconstruction in CT Qiao Yang 1,4, Meng Wu 2, Andreas Maier 1,3,4, Joachim Hornegger 1,3,4, Rebecca Fahrig

More information

An Accelerated Convergent Ordered Subsets Algorithm for Emission Tomography

An Accelerated Convergent Ordered Subsets Algorithm for Emission Tomography submitted to Physics in Medicine and Biology An Accelerated Convergent Ordered Subsets Algorithm for Emission Tomography Ing-Tsung Hsiao, Anand Rangaraan, Parmeshwar Khurd, Gene Gindi School of Medical

More information

Q.Clear. Steve Ross, Ph.D.

Q.Clear. Steve Ross, Ph.D. Steve Ross, Ph.D. Accurate quantitation (SUV - Standardized Uptake Value) is becoming more important as clinicians seek to utilize PET imaging for more than just diagnosing and staging disease, but also

More information

Noise weighting with an exponent for transmission CT

Noise weighting with an exponent for transmission CT doi:10.1088/2057-1976/2/4/045004 RECEIVED 13 January 2016 REVISED 4 June 2016 ACCEPTED FOR PUBLICATION 21 June 2016 PUBLISHED 27 July 2016 PAPER Noise weighting with an exponent for transmission CT Gengsheng

More information

NONLINEAR BACK PROJECTION FOR TOMOGRAPHIC IMAGE RECONSTRUCTION

NONLINEAR BACK PROJECTION FOR TOMOGRAPHIC IMAGE RECONSTRUCTION NONLINEAR BACK PROJECTION FOR TOMOGRAPHIC IMAGE RECONSTRUCTION Ken Sauef and Charles A. Bournant *Department of Electrical Engineering, University of Notre Dame Notre Dame, IN 46556, (219) 631-6999 tschoo1

More information

THE methods of maximum likelihood (ML) and maximum

THE methods of maximum likelihood (ML) and maximum IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 3, JUNE 2008 953 On Iterative Bayes Algorithms for Emission Tomography Jun Ma Abstract In this paper we formulate a new approach to medical image reconstruction

More information

Resolution and Noise Properties of MAP Reconstruction for Fully 3-D PET

Resolution and Noise Properties of MAP Reconstruction for Fully 3-D PET IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 19, NO. 5, MAY 2000 493 Resolution and Noise Properties of MAP Reconstruction for Fully 3-D PET Jinyi Qi*, Member, IEEE, and Richard M. Leahy, Member, IEEE Abstract

More information

MAXIMUM a posteriori (MAP) or penalized ML image

MAXIMUM a posteriori (MAP) or penalized ML image 42 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 25, NO. 1, JANUARY 2006 Mean and Covariance Properties of Dynamic PET Reconstructions From List-Mode Data Evren Asma and Richard M. Leahy* Abstract We derive

More information

ATTENUATION CORRECTION IN SPECT DURING IMAGE RECONSTRUCTION USING INVERSE MONTE CARLO METHOD A SIMULATION STUDY *

ATTENUATION CORRECTION IN SPECT DURING IMAGE RECONSTRUCTION USING INVERSE MONTE CARLO METHOD A SIMULATION STUDY * Romanian Reports in Physics, Vol. 66, No. 1, P. 200 211, 2014 ATTENUATION CORRECTION IN SPECT DURING IMAGE RECONSTRUCTION USING INVERSE MONTE CARLO METHOD A SIMULATION STUDY * S. AHMADI 1, H. RAJABI 2,

More information

Reconstruction from Projections

Reconstruction from Projections Reconstruction from Projections M.C. Villa Uriol Computational Imaging Lab email: cruz.villa@upf.edu web: http://www.cilab.upf.edu Based on SPECT reconstruction Martin Šámal Charles University Prague,

More information

SPECT reconstruction

SPECT reconstruction Regional Training Workshop Advanced Image Processing of SPECT Studies Tygerberg Hospital, 19-23 April 2004 SPECT reconstruction Martin Šámal Charles University Prague, Czech Republic samal@cesnet.cz Tomography

More information

Ordered subsets algorithms for transmission tomography

Ordered subsets algorithms for transmission tomography Ordered subsets algorithms for transmission tomography HErdoğan and J A Fessler 4415 EECS Bldg., 1301 Beal Ave., University of Michigan, Ann Arbor, MI 48109-2122USA Abstract. The ordered subsets EM (OSEM)

More information

Non-Homogeneous Updates for the Iterative Coordinate Descent Algorithm

Non-Homogeneous Updates for the Iterative Coordinate Descent Algorithm Non-Homogeneous Updates for the Iterative Coordinate Descent Algorithm Zhou Yu a, Jean-Baptiste Thibault b, Charles A. Bouman a, Ken D. Sauer c, and Jiang Hsieh b a School of Electrical Engineering, Purdue

More information

Studying the properties of the updating coefficients in the OSEM algorithm for iterative image reconstruction in PET

Studying the properties of the updating coefficients in the OSEM algorithm for iterative image reconstruction in PET computer methods and programs in biomedicine 9 9 ( 2 0 1 0 ) 219 229 journal homepage: www. intl. elsevierhealth. com/ journals/ cmpb Studying the properties of the updating coefficients in the OSEM algorithm

More information

Unmatched Projector/Backprojector Pairs in an Iterative Reconstruction Algorithm

Unmatched Projector/Backprojector Pairs in an Iterative Reconstruction Algorithm 548 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 19, NO. 5, MAY 2000 Unmatched Projector/Backprojector Pairs in an Iterative Reconstruction Algorithm Gengsheng L. Zeng*, Member, IEEE, and Grant T. Gullberg,

More information

A Projection Access Scheme for Iterative Reconstruction Based on the Golden Section

A Projection Access Scheme for Iterative Reconstruction Based on the Golden Section A Projection Access Scheme for Iterative Reconstruction Based on the Golden Section Thomas Köhler Philips Research Laboratories Roentgenstrasse - Hamburg Germany Abstract A new access scheme for projections

More information

FAST KVP-SWITCHING DUAL ENERGY CT FOR PET ATTENUATION CORRECTION

FAST KVP-SWITCHING DUAL ENERGY CT FOR PET ATTENUATION CORRECTION 2009 IEEE Nuclear Science Symposium Conference Record M03-7 FAST KVP-SWITCHING DUAL ENERGY CT FOR PET ATTENUATION CORRECTION Wonseok Huh, Jeffrey A. Fessler, Adam M. Alessio, and Paul E. Kinahan Department

More information

Convergent Incremental Optimization Transfer Algorithms: Application to Tomography

Convergent Incremental Optimization Transfer Algorithms: Application to Tomography 1 Convergent Incremental Optimization Transfer Algorithms: Application to Tomography Sangtae Ahn, Member, IEEE, Jeffrey A. Fessler, Senior Member, IEEE, Doron Blatt, Student Member, IEEE, and Alfred O.

More information

Validation of New Gibbs Priors for Bayesian Tomographic Reconstruction Using Numerical Studies and Physically Acquired Data 1

Validation of New Gibbs Priors for Bayesian Tomographic Reconstruction Using Numerical Studies and Physically Acquired Data 1 Validation of New Gibbs Priors for Bayesian Tomographic Reconstruction Using Numerical Studies and Physically Acquired Data 1 S. J. Lee # Member, IEEE, Y. Choi x Member, IEEE, and G. Gindi { Member, IEEE

More information

Modeling and Incorporation of System Response Functions in 3D Whole Body PET

Modeling and Incorporation of System Response Functions in 3D Whole Body PET Modeling and Incorporation of System Response Functions in 3D Whole Body PET Adam M. Alessio, Member IEEE, Paul E. Kinahan, Senior Member IEEE, and Thomas K. Lewellen, Senior Member IEEE University of

More information

Adaptive algebraic reconstruction technique

Adaptive algebraic reconstruction technique Adaptive algebraic reconstruction technique Wenkai Lua) Department of Automation, Key State Lab of Intelligent Technology and System, Tsinghua University, Beijing 10084, People s Republic of China Fang-Fang

More information

Monte-Carlo-Based Scatter Correction for Quantitative SPECT Reconstruction

Monte-Carlo-Based Scatter Correction for Quantitative SPECT Reconstruction Monte-Carlo-Based Scatter Correction for Quantitative SPECT Reconstruction Realization and Evaluation Rolf Bippus 1, Andreas Goedicke 1, Henrik Botterweck 2 1 Philips Research Laboratories, Aachen 2 Fachhochschule

More information

(RMSE). Reconstructions showed that modeling the incremental blur improved the resolution of the attenuation map and quantitative accuracy.

(RMSE). Reconstructions showed that modeling the incremental blur improved the resolution of the attenuation map and quantitative accuracy. Modeling the Distance-Dependent Blurring in Transmission Imaging in the Ordered-Subset Transmission (OSTR) Algorithm by Using an Unmatched Projector/Backprojector Pair B. Feng, Member, IEEE, M. A. King,

More information

Alternating Direction Method of Multiplier for Tomography With Nonlocal Regularizers

Alternating Direction Method of Multiplier for Tomography With Nonlocal Regularizers 1960 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 33, NO. 10, OCTOBER 2014 Alternating Direction Method of Multiplier for Tomography With Nonlocal Regularizers Se Young Chun*, Member, IEEE, Yuni K. Dewaraja,

More information

Globally Convergent Image Reconstruction for Emission Tomography Using Relaxed Ordered Subsets Algorithms

Globally Convergent Image Reconstruction for Emission Tomography Using Relaxed Ordered Subsets Algorithms IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 22, NO. 5, MAY 2003 613 Globally Convergent Image Reconstruction Emission Tomography Using Relaxed Ordered Subsets Algorithms Sangtae Ahn*, Student Member, IEEE,

More information

A Fast GPU-Based Approach to Branchless Distance-Driven Projection and Back-Projection in Cone Beam CT

A Fast GPU-Based Approach to Branchless Distance-Driven Projection and Back-Projection in Cone Beam CT A Fast GPU-Based Approach to Branchless Distance-Driven Projection and Back-Projection in Cone Beam CT Daniel Schlifske ab and Henry Medeiros a a Marquette University, 1250 W Wisconsin Ave, Milwaukee,

More information

Column-Action Methods in Image Reconstruction

Column-Action Methods in Image Reconstruction Column-Action Methods in Image Reconstruction Per Christian Hansen joint work with Tommy Elfving Touraj Nikazad Overview of Talk Part 1: the classical row-action method = ART The advantage of algebraic

More information

AN ANALYSIS OF ITERATIVE ALGORITHMS FOR IMAGE RECONSTRUCTION FROM SATELLITE EARTH REMOTE SENSING DATA Matthew H Willis Brigham Young University, MERS Laboratory 459 CB, Provo, UT 8462 8-378-4884, FAX:

More information

A Comparison of the Uniformity Requirements for SPECT Image Reconstruction Using FBP and OSEM Techniques

A Comparison of the Uniformity Requirements for SPECT Image Reconstruction Using FBP and OSEM Techniques IMAGING A Comparison of the Uniformity Requirements for SPECT Image Reconstruction Using FBP and OSEM Techniques Lai K. Leong, Randall L. Kruger, and Michael K. O Connor Section of Nuclear Medicine, Department

More information

STATISTICAL image reconstruction methods for X-ray

STATISTICAL image reconstruction methods for X-ray IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 28, NO. 5, MAY 2009 645 Quadratic Regularization Design for 2-D CT Hugo R. Shi*, Student Member, IEEE, and Jeffrey A. Fessler, Fellow, IEEE Abstract Statistical

More information

Revisit of the Ramp Filter

Revisit of the Ramp Filter IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 62, NO. 1, FEBRUARY 2015 131 Revisit of the Ramp Filter Gengsheng L. Zeng, Fellow, IEEE Abstract An important part of the filtered backprojection (FBP) algorithm

More information

Single and Multipinhole Collimator Design Evaluation Method for Small Animal SPECT

Single and Multipinhole Collimator Design Evaluation Method for Small Animal SPECT Single and Multipinhole Collimator Design Evaluation Method for Small Animal SPECT Kathleen Vunckx, Dirk Bequé, Michel Defrise and Johan Nuyts Abstract High resolution functional imaging of small animals

More information

An object-oriented library for 3D PET reconstruction using parallel computing

An object-oriented library for 3D PET reconstruction using parallel computing An object-oriented library for 3D PET reconstruction using parallel computing Claire Labbé 1, K. Thielemans 2, D. Belluzzo 3, V. Bettinardi 3, M.C. Gilardi 3, D.S. Hague 4, M. Jacobson 5, S. Kaiser 6,

More information

Statistical iterative reconstruction using fast optimization transfer algorithm with successively increasing factor in Digital Breast Tomosynthesis

Statistical iterative reconstruction using fast optimization transfer algorithm with successively increasing factor in Digital Breast Tomosynthesis Statistical iterative reconstruction using fast optimization transfer algorithm with successively increasing factor in Digital Breast omosynthesis Shiyu Xu a and Zhenxi Zhang b and Ying Chen a,* a Department

More information

Algebraic Iterative Methods for Computed Tomography

Algebraic Iterative Methods for Computed Tomography Algebraic Iterative Methods for Computed Tomography Per Christian Hansen DTU Compute Department of Applied Mathematics and Computer Science Technical University of Denmark Per Christian Hansen Algebraic

More information

FAST MULTIRESOLUTION PHOTON-LIMITED IMAGE RECONSTRUCTION

FAST MULTIRESOLUTION PHOTON-LIMITED IMAGE RECONSTRUCTION FAST MULTIRESOLUTION PHOTON-LIMITED IMAGE RECONSTRUCTION Rebecca Willett and Robert Nowak March 18, 2004 Abstract The techniques described in this paper allow multiscale photon-limited image reconstruction

More information

TOMOGRAPHIC IMAGE RECONSTRUCTION WITH A SPATIALLY VARYING GAUSSIAN MIXTURE PRIOR. Katerina Papadimitriou, Christophoros Nikou

TOMOGRAPHIC IMAGE RECONSTRUCTION WITH A SPATIALLY VARYING GAUSSIAN MIXTURE PRIOR. Katerina Papadimitriou, Christophoros Nikou TOMOGRAPHIC IMAGE RECONSTRUCTION WITH A SPATIALLY VARYING GAUSSIAN MIXTURE PRIOR Katerina Papadimitriou, Christophoros Nikou Department of Computer Science and Engineering, University of Ioannina, 45110

More information

ELEG Compressive Sensing and Sparse Signal Representations

ELEG Compressive Sensing and Sparse Signal Representations ELEG 867 - Compressive Sensing and Sparse Signal Representations Gonzalo R. Arce Depart. of Electrical and Computer Engineering University of Delaware Fall 211 Compressive Sensing G. Arce Fall, 211 1 /

More information

Digital Image Processing Laboratory: MAP Image Restoration

Digital Image Processing Laboratory: MAP Image Restoration Purdue University: Digital Image Processing Laboratories 1 Digital Image Processing Laboratory: MAP Image Restoration October, 015 1 Introduction This laboratory explores the use of maximum a posteriori

More information

ATTENUATION correction is required for quantitatively

ATTENUATION correction is required for quantitatively IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 18, NO. 9, SEPTEMBER 1999 801 Monotonic Algorithms for Transmission Tomography Hakan Erdoğan, Member, IEEE, and Jeffrey A. Fessler,* Member, IEEE Abstract We

More information

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 23, NO. 4, APRIL

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 23, NO. 4, APRIL IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 23, NO. 4, APRIL 2004 401 Iterative Tomographic Image Reconstruction Using Fourier-Based Forward and Back-Projectors Samuel Matej*, Senior Member, IEEE, Jeffrey

More information

The Design and Implementation of COSEM, an Iterative Algorithm for Fully 3-D Listmode Data

The Design and Implementation of COSEM, an Iterative Algorithm for Fully 3-D Listmode Data IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 20, NO. 7, JULY 2001 633 The Design and Implementation of COSEM, an Iterative Algorithm for Fully 3-D Listmode Data Ron Levkovitz, Dmitry Falikman*, Michael Zibulevsky,

More information

Slab-by-Slab Blurring Model for Geometric Point Response Correction and Attenuation Correction Using Iterative Reconstruction Algorithms

Slab-by-Slab Blurring Model for Geometric Point Response Correction and Attenuation Correction Using Iterative Reconstruction Algorithms 2168 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL 45, NO. 4, AUGUST 1998 Slab-by-Slab Blurring Model for Geometric Point Response Correction and Attenuation Correction Using Iterative Reconstruction Algorithms

More information

Review of PET Physics. Timothy Turkington, Ph.D. Radiology and Medical Physics Duke University Durham, North Carolina, USA

Review of PET Physics. Timothy Turkington, Ph.D. Radiology and Medical Physics Duke University Durham, North Carolina, USA Review of PET Physics Timothy Turkington, Ph.D. Radiology and Medical Physics Duke University Durham, North Carolina, USA Chart of Nuclides Z (protons) N (number of neutrons) Nuclear Data Evaluation Lab.

More information

EMISSION tomography, which includes positron emission

EMISSION tomography, which includes positron emission 1248 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 3, JUNE 2006 Aligning Emission Tomography and MRI Images by Optimizing the Emission-Tomography Image Reconstruction Objective Function James E. Bowsher,

More information

Learning Splines for Sparse Tomographic Reconstruction. Elham Sakhaee and Alireza Entezari University of Florida

Learning Splines for Sparse Tomographic Reconstruction. Elham Sakhaee and Alireza Entezari University of Florida Learning Splines for Sparse Tomographic Reconstruction Elham Sakhaee and Alireza Entezari University of Florida esakhaee@cise.ufl.edu 2 Tomographic Reconstruction Recover the image given X-ray measurements

More information

Superiorized polyenergetic reconstruction algorithm for reduction of metal artifacts in CT images

Superiorized polyenergetic reconstruction algorithm for reduction of metal artifacts in CT images 1 Superiorized polyenergetic reconstruction algorithm for reduction of metal artifacts in CT images T. Humphries 1 and A. Gibali 2 Abstract Artifacts caused by metal objects such as dental fillings, hip

More information

USING cone-beam geometry with pinhole collimation,

USING cone-beam geometry with pinhole collimation, IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 56, NO. 3, JUNE 2009 687 A Backprojection-Based Parameter Estimation Technique for Skew-Slit Collimation Jacob A. Piatt, Student Member, IEEE, and Gengsheng L.

More information

NIH Public Access Author Manuscript Int J Imaging Syst Technol. Author manuscript; available in PMC 2010 September 1.

NIH Public Access Author Manuscript Int J Imaging Syst Technol. Author manuscript; available in PMC 2010 September 1. NIH Public Access Author Manuscript Published in final edited form as: Int J Imaging Syst Technol. 2009 September 1; 19(3): 271 276. doi:10.1002/ima.20200. Attenuation map estimation with SPECT emission

More information

Fast Projectors for Iterative 3D PET Reconstruction

Fast Projectors for Iterative 3D PET Reconstruction 2005 IEEE Nuclear Science Symposium Conference Record M05-3 Fast Projectors for Iterative 3D PET Reconstruction Sanghee Cho, Quanzheng Li, Sangtae Ahn and Richard M. Leahy Signal and Image Processing Institute,

More information

Gengsheng Lawrence Zeng. Medical Image Reconstruction. A Conceptual Tutorial

Gengsheng Lawrence Zeng. Medical Image Reconstruction. A Conceptual Tutorial Gengsheng Lawrence Zeng Medical Image Reconstruction A Conceptual Tutorial Gengsheng Lawrence Zeng Medical Image Reconstruction A Conceptual Tutorial With 163 Figures Author Prof. Dr. Gengsheng Lawrence

More information

Quantitative Statistical Methods for Image Quality Assessment

Quantitative Statistical Methods for Image Quality Assessment Quantitative Statistical Methods for Image Quality Assessment The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Dutta,

More information

A fast weighted stochastic gradient descent algorithm for image reconstruction in 3D computed tomography

A fast weighted stochastic gradient descent algorithm for image reconstruction in 3D computed tomography A fast weighted stochastic gradient descent algorithm for image reconstruction in 3D computed tomography Davood Karimi, Rabab Ward Department of Electrical and Computer Engineering University of British

More information

Comparison of 3D PET data bootstrap resampling methods for numerical observer studies

Comparison of 3D PET data bootstrap resampling methods for numerical observer studies 2005 IEEE Nuclear Science Symposium Conference Record M07-218 Comparison of 3D PET data bootstrap resampling methods for numerical observer studies C. Lartizien, I. Buvat Abstract Bootstrap methods have

More information

Using Local Median as the Location of the Prior Distribution in Iterative Emission Tomography Image Reconstruction 1

Using Local Median as the Location of the Prior Distribution in Iterative Emission Tomography Image Reconstruction 1 Using Local Median as the Location of the Prior Distriution in Iterative Emission Tomography Image Reconstruction 1 S. Alenius 1, Student Memer, IEEE, U. Ruotsalainen 2, and J. Astola 1, Memer, IEEE 1

More information

M. Usman, A.O. Hero and J.A. Fessler University of Michigan. where,

M. Usman, A.O. Hero and J.A. Fessler University of Michigan. where, Uniform CR Bound: Implement ation Issues And Applications M. Usman, A.O. Hero and J.A. Fessler University of Michigan ABSTRACT We apply a uniform Cramer-Rao (CR) bound [l] to study the bias-variance trade-offs

More information

S rect distortions in single photon emission computed

S rect distortions in single photon emission computed IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 41, NO. 6, DECEMBER 1994 2807 A Rotating and Warping Projector/Backprojector for Fan-Beam and Cone-Beam Iterative Algorithm G. L. Zeng, Y.-L. Hsieh, and G. T.

More information

Compressive Sensing for Multimedia. Communications in Wireless Sensor Networks

Compressive Sensing for Multimedia. Communications in Wireless Sensor Networks Compressive Sensing for Multimedia 1 Communications in Wireless Sensor Networks Wael Barakat & Rabih Saliba MDDSP Project Final Report Prof. Brian L. Evans May 9, 2008 Abstract Compressive Sensing is an

More information

3-D Monte Carlo-based Scatter Compensation in Quantitative I-131 SPECT Reconstruction

3-D Monte Carlo-based Scatter Compensation in Quantitative I-131 SPECT Reconstruction 3-D Monte Carlo-based Scatter Compensation in Quantitative I-131 SPECT Reconstruction Yuni K. Dewaraja, Member, IEEE, Michael Ljungberg, Member, IEEE, and Jeffrey A. Fessler, Member, IEEE Abstract- we

More information

Improvement of Efficiency and Flexibility in Multi-slice Helical CT

Improvement of Efficiency and Flexibility in Multi-slice Helical CT J. Shanghai Jiaotong Univ. (Sci.), 2008, 13(4): 408 412 DOI: 10.1007/s12204-008-0408-x Improvement of Efficiency and Flexibility in Multi-slice Helical CT SUN Wen-wu 1 ( ), CHEN Si-ping 2 ( ), ZHUANG Tian-ge

More information

CHAPTER VIII SEGMENTATION USING REGION GROWING AND THRESHOLDING ALGORITHM

CHAPTER VIII SEGMENTATION USING REGION GROWING AND THRESHOLDING ALGORITHM CHAPTER VIII SEGMENTATION USING REGION GROWING AND THRESHOLDING ALGORITHM 8.1 Algorithm Requirement The analysis of medical images often requires segmentation prior to visualization or quantification.

More information

Hybrid Spline-based Multimodal Registration using a Local Measure for Mutual Information

Hybrid Spline-based Multimodal Registration using a Local Measure for Mutual Information Hybrid Spline-based Multimodal Registration using a Local Measure for Mutual Information Andreas Biesdorf 1, Stefan Wörz 1, Hans-Jürgen Kaiser 2, Karl Rohr 1 1 University of Heidelberg, BIOQUANT, IPMB,

More information

Reconstruction of CT Images from Sparse-View Polyenergetic Data Using Total Variation Minimization

Reconstruction of CT Images from Sparse-View Polyenergetic Data Using Total Variation Minimization 1 Reconstruction of CT Images from Sparse-View Polyenergetic Data Using Total Variation Minimization T. Humphries and A. Faridani Abstract Recent work in CT image reconstruction has seen increasing interest

More information

F3-A5: Toward Model-Based Reconstruction in Scanned Baggage Security Applications

F3-A5: Toward Model-Based Reconstruction in Scanned Baggage Security Applications F3-A5: Toward Model-Based Reconstruction in Scanned Baggage Security Applications Abstract While traditional direct reconstruction algorithms such as filtered back projection depend on the analytic inversion

More information

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 32, NO. 11, NOVEMBER

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 32, NO. 11, NOVEMBER IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 32, NO. 11, NOVEMBER 2013 1965 Accelerating Ordered Subsets Image Reconstruction for X-ray CT Using Spatially Nonuniform Optimization Transfer Donghwan Kim*,

More information

Development and Evaluation of Image Reconstruction Algorithms for a Novel Desktop SPECT System

Development and Evaluation of Image Reconstruction Algorithms for a Novel Desktop SPECT System Development and Evaluation of Image Reconstruction Algorithms for a Novel Desktop SPECT System Navid Zeraatkar 1, Arman Rahmim 2,3, Saeed Sarkar 4,5, Mohammad Reza Ay 1,4* 1 Research Center for Molecular

More information

Adaptive Multiple-Frame Image Super- Resolution Based on U-Curve

Adaptive Multiple-Frame Image Super- Resolution Based on U-Curve Adaptive Multiple-Frame Image Super- Resolution Based on U-Curve IEEE Transaction on Image Processing, Vol. 19, No. 12, 2010 Qiangqiang Yuan, Liangpei Zhang, Huanfeng Shen, and Pingxiang Li Presented by

More information

CENTER FOR ADVANCED COMPUTATION

CENTER FOR ADVANCED COMPUTATION CENTER FOR ADVANCED COMPUTATION MODIFIED EXPECTATION MAXIMIZATION ALGORITHM FOR TRANSMISSION TOMOGRAPHY PATIWAT KAMONPET VENKATARAMA KRISHNAN Technical Report CAC T94-01 January 28, 1994 Parts of this

More information

High-resolution 3D Bayesian image reconstruction using the micropet small-animal scanner

High-resolution 3D Bayesian image reconstruction using the micropet small-animal scanner Phys. Med. Biol. 43 (1998) 1001 1013. Printed in the UK PII: S0031-9155(98)90627-3 High-resolution 3D Bayesian image reconstruction using the micropet small-animal scanner Jinyi Qi, Richard M Leahy, Simon

More information

ADVANCED RECONSTRUCTION FOR ELECTRON MICROSCOPY

ADVANCED RECONSTRUCTION FOR ELECTRON MICROSCOPY 1 ADVANCED RECONSTRUCTION FOR ELECTRON MICROSCOPY SUHAS SREEHARI S. V. VENKATAKRISHNAN (VENKAT) CHARLES A. BOUMAN PURDUE UNIVERSITY AUGUST 15, 2014 2 OUTLINE 1. Overview of MBIR 2. Previous work 3. Leading

More information

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask Machine Learning and Data Mining Clustering (1): Basics Kalev Kask Unsupervised learning Supervised learning Predict target value ( y ) given features ( x ) Unsupervised learning Understand patterns of

More information

Expectation Maximization and Total Variation Based Model for Computed Tomography Reconstruction from Undersampled Data

Expectation Maximization and Total Variation Based Model for Computed Tomography Reconstruction from Undersampled Data Expectation Maximization and Total Variation Based Model for Computed Tomography Reconstruction from Undersampled Data Ming Yan and Luminita A. Vese Department of Mathematics, University of California,

More information

Rapid Emission Tomography Reconstruction

Rapid Emission Tomography Reconstruction Volume Graphics (2003) I. Fujishiro, K. Mueller, A. Kaufman (Editors) Rapid Emission Tomography Reconstruction Ken Chidlow Torsten Möller Department of Computer Science, Simon Fraser University, Burnaby,

More information

Medical Image Reconstruction Term II 2012 Topic 6: Tomography

Medical Image Reconstruction Term II 2012 Topic 6: Tomography Medical Image Reconstruction Term II 2012 Topic 6: Tomography Professor Yasser Mostafa Kadah Tomography The Greek word tomos means a section, a slice, or a cut. Tomography is the process of imaging a cross

More information

Cover Page. The handle holds various files of this Leiden University dissertation

Cover Page. The handle   holds various files of this Leiden University dissertation Cover Page The handle http://hdl.handle.net/1887/8289 holds various files of this Leiden University dissertation Author: Plantagie, L. Title: Algebraic filters for filtered backprojection Issue Date: 2017-0-13

More information

TOMOGRAPHIC image reconstruction using statistical

TOMOGRAPHIC image reconstruction using statistical 688 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 8, NO. 5, MAY 1999 Conjugate-Gradient Preconditioning Methods for Shift-Variant PET Image Reconstruction Jeffrey A. Fessler, Member, IEEE, and Scott D. Booth

More information

Iterative CT Reconstruction Using Curvelet-Based Regularization

Iterative CT Reconstruction Using Curvelet-Based Regularization Iterative CT Reconstruction Using Curvelet-Based Regularization Haibo Wu 1,2, Andreas Maier 1, Joachim Hornegger 1,2 1 Pattern Recognition Lab (LME), Department of Computer Science, 2 Graduate School in

More information

Simultaneous Estimation of Attenuation and Activity Images Using Optimization Transfer

Simultaneous Estimation of Attenuation and Activity Images Using Optimization Transfer 1 Sultaneous Estation of Attenuation and Activity Images Using Optization Transfer Matthew Jacobson and Jeffrey A. Fessler Department of Electrical Engineering and Computer Science University of Michigan,

More information

Mixture Models and EM

Mixture Models and EM Mixture Models and EM Goal: Introduction to probabilistic mixture models and the expectationmaximization (EM) algorithm. Motivation: simultaneous fitting of multiple model instances unsupervised clustering

More information

Accelerated Monotonic Algorithms for Transmission Tomography

Accelerated Monotonic Algorithms for Transmission Tomography Accelerated Monotonic Algorithms for Transmission Tomography Hakan Erdogan and Jeffrey A. Fessler 4415 EECS Dept., Univeristy of Michigan, Ann Arbor, MI 48109 email: erdogan @umich.edu Abstract We present

More information