CS 5523 Operating Systems: Midterm II - reivew Instructor: Dr. Tongping Liu Department Computer Science The University of Texas at San Antonio

Size: px
Start display at page:

Download "CS 5523 Operating Systems: Midterm II - reivew Instructor: Dr. Tongping Liu Department Computer Science The University of Texas at San Antonio"

Transcription

1 CS 5523 Operating Systems: Midterm II - reivew Instructor: Dr. Tongping Liu Department Computer Science The University of Texas at San Antonio Fall

2 Outline Inter-Process Communication (20) Threads (50) Synchronizations (30) 2

3 Inter-Process Communication (IPC) Processes within a system may be independent or cooperating! Cooperating process can affect or be affected by other processes" Reasons for cooperating processes:" Ø Information sharing, e.g., sharing a file" Ø Computation speedup, e.g., subtasks for parallelism" Ø Modularity & Convenience ( e.g., editing, printing in the same time)" Cooperating processes need inter-process communication (IPC)" Ø Shared memory" Ø Pipe and Named Pipe" Ø Message passing" "

4 Shared Memory, Pros and Cons Pros Ø Fast bidirectional communication among any number of processes Ø Saves Resources Cons Ø Needs concurrency control (leads to data inconsistencies like Lost update ) Ø Lack of data protection from Operating System (OS)

5 Ordinary Pipes Ordinary Pipes allow communication in standard producer-consumer style Producer writes to one end (the write-end of the pipe) Consumer reads from the other end (the read-end of the pipe) Ordinary pipes are therefore unidirectional Require parent-child/sibling relationship between communicating processes

6 Named Pipes (FIFO) Named Pipes are more powerful than ordinary pipes " Communication is bidirectional " No parent-child/sibling relationship is necessary between the communicating processes " Several processes can use the named pipe for communication " Provided on both UNIX and Windows systems"

7 Lecture03: Thread and Implementation Motivation and thread basics Ø Resources requirements: thread vs. process Thread implementations Ø User threads: e.g., Pthreads and Java threads Ø Kernel threads: e.g., Linux tasks Ø Map user- and kernel-level threads Ø Lightweight process and scheduler activation Other issues with threads: process creation and signals etc. Threaded programs Ø Thread pool Ø Performance vs. number of threads vs. CPUs and I/Os CS5523: Operating UTSA 7

8 Thread vs. Process Responsiveness Ø Part of blocked Resource Sharing Ø Memory, open files, etc. Economy Ø Creation and switches Scalability Ø Increase parallelism Department of Computer UTSA 8

9 Process with Two Threads Thread 1 SP Program context: Data registers Condi.on codes Stack pointer (SP) Program counter (PC) stack brk PC Code, data, and kernel context shared libraries run-.me heap read/write data read-only code/data SP Thread 2 Program context: Data registers Condi.on codes Stack pointer (SP) Program counter (PC) stack 0 Kernel context: VM structures Descriptor table brk pointer

10 Threads vs. Processes Threads and processes: similarities Ø Each has its own logical control flow Ø Each can run concurrently with others Ø Each is context switched (scheduled) by the kernel Threads and processes: differences Ø Threads share code and data, processes (typically) do not Ø Threads are less expensive than processes ü Process control (creation and exit) is more expensive as thread control ü Context switches: processes are more expensive than for threads Ø Signal handler: shared or separate

11 Pros and Cons of Thread-Based Designs + Easy to share data structures between threads Ø e.g., logging information, file cache + Threads are more efficient than processes Unintentional sharing can introduce subtle and hard-toreproduce errors!

12 Multithreading Models: Pros and Cons Many-to-one One-to-one Many-to-many

13 Pthreads: POSIX Thread POSIX Ø Portable Operating System Interface [for Unix] Ø Standardized programming interface Pthreads Ø Thread implementations adhering to POSIX standard Ø API specifies behavior of the thread library: defined as a set of C types and procedure calls Ø Common in UNIX OS (Solaris, Linux, Mac OS X) Support for thread creation and synchronization Department of Computer UTSA 13

14 Linux Threads Linux uses the term task (rather than process or thread) when referring to a flow of control Linux provides clone() system call to create threads Ø A set of flags, passed as arguments to the clone() system call determine how much sharing is involved (e.g. open files, memory space, etc.) Linux: 1-to-1 thread mapping Ø NPTL (Native POSIX Thread Library) Department of Computer UTSA 14

15 Threads Memory Model Conceptual model: Ø Multiple threads run in the same context of a process Ø Each thread has its own separate thread context ü Thread ID, stack, stack pointer, PC, and GP registers Ø All threads share the remaining process context ü Code, data, heap, and shared library segments ü Open files and installed handlers Operationally, this model is not strictly enforced: Ø Register values are truly separate and protected, but Ø Any thread can read and write the stack of any other thread

16 Mapping Variable Instances to Memory Global var: 1 instance (ptr [data]) char **ptr; /* global */ int main() { int i; pthread_t tid; char *msgs[2] = { "Hello from foo", "Hello from bar" }; ptr = msgs; } for (i = 0; i < 2; i++) Pthread_create(&tid, NULL, thread, (void *)i);. Local vars: 1 instance (i.m, msgs.m) Local var: 2 instances ( myid.p0 [peer thread 0 s stack], myid.p1 [peer thread 1 s stack] ) /* thread routine */ void *thread(void *vargp) { int myid = (int)vargp; static int cnt = 0; } sharing.c! printf("[%d]: %s (svar=%d)\n", myid, ptr[myid], ++cnt); Local sta8c var: 1 instance (cnt [data])

17 Thread Pool Pool of threads Ø Threads in a pool where they wait for work Advantages: Ø Usually slightly faster to service a request with an existing thread than create a new thread Ø Allows the number of threads in the application(s) to be bound to the size of the pool Adjust thread number in pool Ø According to usage pattern and system load Department of Computer UTSA 17

18 Performance of Threaded Programs Suppose that the processing of each request Ø Takes X seconds for computation; and Ø Takes Y seconds for reading data from I/O disk For single-thread program/process Ø A single CPU & single disk system Ø What is the maximum throughput (i.e., the number of requests can be processed per second)? Example: suppose that each request takes 2ms for computation 8ms to read data from disk 1000/10ms = 100 Department of Computer UTSA 18

19 Lecture04: Concurrency and Synchronization Problems with concurrent access to shared data Ø Race condition and critical section Ø General structure for enforce critical section Synchronization mechanism Ø Hardware supported instructions: e.g., TestAndSet Ø Software solution: e.g., semaphore Classical Synchronization Problems High-level synchronization structure: Monitor Case study for synchronization Ø Pthread library: mutex and conditional variables Ø Java inherit monitor and conditional variable CS5523: Operating UTSA 19

20 Race Conditions Multiple processes/threads write/read shared data and the outcome depends on the particular order to access shared data are called race conditions Ø A serious problem for concurrent system using shared variables! How do we solve the problem?! Need to make sure that some high-level code sections are executed atomically Ø Atomic operation means that it completes in its entirety without worrying about interruption by any other potentially conflictcausing process Department of Computer UTSA 20

21 Critical-Section (CS) Problem Multiple processes/threads compete to use some shared data critical section (critical region): a piece of code that accesses a shared resource (data structure or device) that must not be concurrently accessed by more than one thread of execution. Problem ensure that only one process/thread is allowed to execute in its critical section (for the same shared data) at any time. The execution of critical sections must be mutually exclusive in time. Department of Computer UTSA 21

22 Solving the Critical-Section Problem Mutual Exclusion Ø No two processes can simultaneously enter into the critical section. Bounded Waiting Ø No process should wait forever to enter a critical section. Progress Ø Non-related process can not block a process trying to enter one critical section Relative Speed Ø No assumption can be made about the relative speed of different processes (though all processes have a non-zero speed). Department of Computer UTSA 22

23 General Structure for Critical Sections do { entry section critical section exit section remainder statements } while (1); In the entry section, the process requests permission. Department of Computer UTSA 23

24 Solutions for CS Problem Software based" Ø Peterson s solution" Ø Semaphores" Ø Monitors" Hardware based " Ø Locks" Ø disable interrupts" Ø Atomic instructions: TestAndSet and Swap Department of Computer UTSA 24

25 Hardware Instruction TestAndSet The TestAndSet instruction tests and modifies the content of a word atomically (non-interruptable)" Keep setting the lock to 1 and return old value. bool TestAndSet(bool *target){ boolean m = *target; *target = true; return m; } What s the problem? 1. Busy-waiting, waste cpu 2. Hardware dependent, not bounded-waiting do { Department of Computer UTSA while(testandset(&lock)); critical section //free the lock lock = false; remainder section } while(true); 25

26 Another Hardware Instruction: Swap Swap contents of two memory words void Swap (bool *a, bool *b){ bool temp = *a; *a = *b; *b = temp: } What s the problem? 1. Busy-waiting, waste cpu 2. Hardware dependent, not bounded-waiting bool lock = FALSE; While(true){ bool key = TRUE; LOCK == FALSE while(key == TRUE) { Swap(&key, &lock) ; } critical section; lock = FALSE; //release permission } Department of Computer UTSA 26

27 Semaphores Synchronization without busy waiting Ø Motivation: Avoid busy waiting by blocking a process execution until some condition is satisfied Semaphore S integer variable Two indivisible (atomic) operations: how? à later Ø wait(s) (also called P(s) or down(s) or acquire()); Ø signal(s) (also called V(s) or up(s) or release()) Ø User-visible operations on a semaphore Ø Easy to generalize, and less complicated for application programmers" Department of Computer UTSA 27

28 Semaphore Usage Counting semaphore integer value can range over an unrestricted domain" Ø Can be used to control access to a given resources with finite number of instances " Binary semaphore integer value can range only between 0 and 1; Also known as mutex locks! " S = number of resources while(1){ } mutex = 1 while(1){ } wait(s); use one of S resource signal(s); remainder section wait(mutex); Critical Section signal(mutex); remainder section

29 Monitors High-level synchronization construct (implement in different languages) that provided mutual exclusion within the monitor AND the ability to wait for a certain condition to become true monitor monitor-name{ shared variable declarations procedure body P1 ( ) {...} procedure body P2 ( ) {...} procedure body Pn ( ) {...} {initialization codes; } } Department of Computer UTSA 29

30 monitors vs. semaphores A Monitor: Ø An object designed to be accessed across threads Ø Member functions enforce mutual exclusion A Semaphore: Ø A low-level object Ø We can use semaphore to implement a monitor Department of Computer UTSA 30

31 Binary Semaphore and Mutex Lock? Binary Semaphore: Ø No ownership Mutex lock Ø Only the owner of a lock can release a lock. Ø Priority inversion safety: potentially promote a task Ø Deletion safety: a task owning a lock can t be deleted. 31

CS 5523: Operating Systems

CS 5523: Operating Systems CS 5523: Operating Systems Instructor: Dr. Tongping Liu Midterm Exam: Oct 6, 2015, Tuesday 7:15pm 8:30pm CS5523: Operating Systems @ UTSA 1 Lecture1: OS Overview Operating System: what is it?! Evolution

More information

CS 3723 Operating Systems: Final Review

CS 3723 Operating Systems: Final Review CS 3723 Operating Systems: Final Review Outline Threads Synchronizations Pthread Synchronizations Instructor: Dr. Tongping Liu 1 2 Threads: Outline Context Switches of Processes: Expensive Motivation and

More information

CS3733: Operating Systems

CS3733: Operating Systems Outline CS3733: Operating Systems Topics: Synchronization, Critical Sections and Semaphores (SGG Chapter 6) Instructor: Dr. Tongping Liu 1 Memory Model of Multithreaded Programs Synchronization for coordinated

More information

CS 5523 Operating Systems: Thread and Implementation

CS 5523 Operating Systems: Thread and Implementation When in the Course of human events, it becomes necessary for one people to dissolve the political bands which have connected them with another, and to assume among the powers of the earth, the separate

More information

CS Operating Systems: Threads (SGG 4)

CS Operating Systems: Threads (SGG 4) When in the Course of human events, it becomes necessary for one people to dissolve the political bands which have connected them with another, and to assume among the powers of the earth, the separate

More information

Synchronization: Basics

Synchronization: Basics Synchronization: Basics 53: Introduction to Computer Systems 4 th Lecture, April 8, 7 Instructor: Seth Copen Goldstein, Franz Franchetti Today Threads review Sharing Mutual exclusion Semaphores Traditional

More information

Carnegie Mellon. Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition

Carnegie Mellon. Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition Synchronization: Basics 53: Introduction to Computer Systems 4 th Lecture, November 6, 7 Instructor: Randy Bryant Today Threads review Sharing Mutual exclusion Semaphores 3 Traditional View of a Process

More information

Today. Threads review Sharing Mutual exclusion Semaphores

Today. Threads review Sharing Mutual exclusion Semaphores SYNCHRONIZATION Today Threads review Sharing Mutual exclusion Semaphores Process: Traditional View Process = process context + code, data, and stack Process context Program context: Data registers Condition

More information

CS 3723 Operating Systems: Midterm II - Review

CS 3723 Operating Systems: Midterm II - Review CS 3723 Operating Systems: Midterm II - Review Instructor: Dr Tongping Liu Memory Management: Outline Background Swapping Contiguous Memory Allocation and Fragmentation Paging Structure of the Page Table

More information

Synchronization: Basics

Synchronization: Basics Synchronization: Basics CS 485G6: Systems Programming Lecture 34: 5 Apr 6 Shared Variables in Threaded C Programs Question: Which variables in a threaded C program are shared? The answer is not as simple

More information

Threads (SGG 4) Outline. Traditional Process: Single Activity. Example: A Text Editor with Multi-Activity. Instructor: Dr.

Threads (SGG 4) Outline. Traditional Process: Single Activity. Example: A Text Editor with Multi-Activity. Instructor: Dr. When in the Course of human events, it becomes necessary for one people to dissolve the political bands which have connected them with another, and to assume among the powers of the earth, the separate

More information

Concurrency on x86-64; Threads Programming Tips

Concurrency on x86-64; Threads Programming Tips Concurrency on x86-64; Threads Programming Tips Brad Karp UCL Computer Science CS 3007 22 nd March 2018 (lecture notes derived from material from Eddie Kohler, David Mazières, Phil Gibbons, Dave O Hallaron,

More information

Carnegie Mellon Concurrency and Synchronization

Carnegie Mellon Concurrency and Synchronization Concurrency and Synchronization CMPSCI 3: Computer Systems Principles int pthread_join (pthread_t thread, void **value_ptr) { int result; ptw3_thread_t * tp = (ptw3_thread_t *) thread.p; if (NULL == tp

More information

Carnegie Mellon. Synchroniza+on : Introduc+on to Computer Systems Recita+on 14: November 25, Pra+k Shah (pcshah) Sec+on C

Carnegie Mellon. Synchroniza+on : Introduc+on to Computer Systems Recita+on 14: November 25, Pra+k Shah (pcshah) Sec+on C Synchroniza+on 15-213: Introduc+on to Computer Systems Recita+on 14: November 25, 2013 Pra+k Shah (pcshah) Sec+on C 1 Topics News Shared State Race condi+ons Synchroniza+on Mutex Semaphore Readers- writers

More information

CS 3723 Operating Systems: Final Review

CS 3723 Operating Systems: Final Review CS 3723 Operating Systems: Final Review Instructor: Dr. Tongping Liu Lecture Outline High-level synchronization structure: Monitor Pthread mutex Conditional variables Barrier Threading Issues 1 2 Monitors

More information

Thread. Disclaimer: some slides are adopted from the book authors slides with permission 1

Thread. Disclaimer: some slides are adopted from the book authors slides with permission 1 Thread Disclaimer: some slides are adopted from the book authors slides with permission 1 IPC Shared memory Recap share a memory region between processes read or write to the shared memory region fast

More information

Lecture Outline. CS 5523 Operating Systems: Concurrency and Synchronization. a = 0; b = 0; // Initial state Thread 1. Objectives.

Lecture Outline. CS 5523 Operating Systems: Concurrency and Synchronization. a = 0; b = 0; // Initial state Thread 1. Objectives. CS 5523 Operating Systems: Concurrency and Synchronization Thank Dr. Dakai Zhu and Dr. Palden Lama for providing their slides. Lecture Outline Problems with concurrent access to shared data Ø Race condition

More information

CS 333 Introduction to Operating Systems. Class 3 Threads & Concurrency. Jonathan Walpole Computer Science Portland State University

CS 333 Introduction to Operating Systems. Class 3 Threads & Concurrency. Jonathan Walpole Computer Science Portland State University CS 333 Introduction to Operating Systems Class 3 Threads & Concurrency Jonathan Walpole Computer Science Portland State University 1 Process creation in UNIX All processes have a unique process id getpid(),

More information

CS 3733 Operating Systems

CS 3733 Operating Systems What will be covered in MidtermI? CS 3733 Operating Systems Instructor: Dr. Tongping Liu Department Computer Science The University of Texas at San Antonio Basics of C programming language Processes, program

More information

Operating Systems. Designed and Presented by Dr. Ayman Elshenawy Elsefy

Operating Systems. Designed and Presented by Dr. Ayman Elshenawy Elsefy Operating Systems Designed and Presented by Dr. Ayman Elshenawy Elsefy Dept. of Systems & Computer Eng.. AL-AZHAR University Website : eaymanelshenawy.wordpress.com Email : eaymanelshenawy@yahoo.com Reference

More information

Chapter 5: Process Synchronization. Operating System Concepts 9 th Edition

Chapter 5: Process Synchronization. Operating System Concepts 9 th Edition Chapter 5: Process Synchronization Silberschatz, Galvin and Gagne 2013 Chapter 5: Process Synchronization Background The Critical-Section Problem Peterson s Solution Synchronization Hardware Mutex Locks

More information

CS 333 Introduction to Operating Systems. Class 3 Threads & Concurrency. Jonathan Walpole Computer Science Portland State University

CS 333 Introduction to Operating Systems. Class 3 Threads & Concurrency. Jonathan Walpole Computer Science Portland State University CS 333 Introduction to Operating Systems Class 3 Threads & Concurrency Jonathan Walpole Computer Science Portland State University 1 The Process Concept 2 The Process Concept Process a program in execution

More information

Lesson 6: Process Synchronization

Lesson 6: Process Synchronization Lesson 6: Process Synchronization Chapter 5: Process Synchronization Background The Critical-Section Problem Peterson s Solution Synchronization Hardware Mutex Locks Semaphores Classic Problems of Synchronization

More information

CS 475. Process = Address space + one thread of control Concurrent program = multiple threads of control

CS 475. Process = Address space + one thread of control Concurrent program = multiple threads of control Processes & Threads Concurrent Programs Process = Address space + one thread of control Concurrent program = multiple threads of control Multiple single-threaded processes Multi-threaded process 2 1 Concurrent

More information

Chapter 5: Process Synchronization. Operating System Concepts 9 th Edition

Chapter 5: Process Synchronization. Operating System Concepts 9 th Edition Chapter 5: Process Synchronization Silberschatz, Galvin and Gagne 2013 Chapter 5: Process Synchronization Background The Critical-Section Problem Peterson s Solution Synchronization Hardware Mutex Locks

More information

Chapter 6: Process Synchronization

Chapter 6: Process Synchronization Chapter 6: Process Synchronization Chapter 6: Synchronization 6.1 Background 6.2 The Critical-Section Problem 6.3 Peterson s Solution 6.4 Synchronization Hardware 6.5 Mutex Locks 6.6 Semaphores 6.7 Classic

More information

CS420: Operating Systems. Process Synchronization

CS420: Operating Systems. Process Synchronization Process Synchronization James Moscola Department of Engineering & Computer Science York College of Pennsylvania Based on Operating System Concepts, 9th Edition by Silberschatz, Galvin, Gagne Background

More information

Synchronization Spinlocks - Semaphores

Synchronization Spinlocks - Semaphores CS 4410 Operating Systems Synchronization Spinlocks - Semaphores Summer 2013 Cornell University 1 Today How can I synchronize the execution of multiple threads of the same process? Example Race condition

More information

Chapter 6: Synchronization. Chapter 6: Synchronization. 6.1 Background. Part Three - Process Coordination. Consumer. Producer. 6.

Chapter 6: Synchronization. Chapter 6: Synchronization. 6.1 Background. Part Three - Process Coordination. Consumer. Producer. 6. Part Three - Process Coordination Chapter 6: Synchronization 6.1 Background Concurrent access to shared data may result in data inconsistency Maintaining data consistency requires mechanisms to ensure

More information

Synchronization Principles

Synchronization Principles Synchronization Principles Gordon College Stephen Brinton The Problem with Concurrency Concurrent access to shared data may result in data inconsistency Maintaining data consistency requires mechanisms

More information

Chapter 6: Synchronization. Operating System Concepts 8 th Edition,

Chapter 6: Synchronization. Operating System Concepts 8 th Edition, Chapter 6: Synchronization, Silberschatz, Galvin and Gagne 2009 Outline Background The Critical-Section Problem Peterson s Solution Synchronization Hardware Semaphores Classic Problems of Synchronization

More information

Background. The Critical-Section Problem Synchronisation Hardware Inefficient Spinning Semaphores Semaphore Examples Scheduling.

Background. The Critical-Section Problem Synchronisation Hardware Inefficient Spinning Semaphores Semaphore Examples Scheduling. Background The Critical-Section Problem Background Race Conditions Solution Criteria to Critical-Section Problem Peterson s (Software) Solution Concurrent access to shared data may result in data inconsistency

More information

Concurrency, Thread. Dongkun Shin, SKKU

Concurrency, Thread. Dongkun Shin, SKKU Concurrency, Thread 1 Thread Classic view a single point of execution within a program a single PC where instructions are being fetched from and executed), Multi-threaded program Has more than one point

More information

CHAPTER 6: PROCESS SYNCHRONIZATION

CHAPTER 6: PROCESS SYNCHRONIZATION CHAPTER 6: PROCESS SYNCHRONIZATION The slides do not contain all the information and cannot be treated as a study material for Operating System. Please refer the text book for exams. TOPICS Background

More information

Chapter 5: Process Synchronization. Operating System Concepts Essentials 2 nd Edition

Chapter 5: Process Synchronization. Operating System Concepts Essentials 2 nd Edition Chapter 5: Process Synchronization Silberschatz, Galvin and Gagne 2013 Chapter 5: Process Synchronization Background The Critical-Section Problem Peterson s Solution Synchronization Hardware Mutex Locks

More information

Module 6: Process Synchronization

Module 6: Process Synchronization Module 6: Process Synchronization Background The Critical-Section Problem Peterson s Solution Synchronization Hardware Semaphores Classic Problems of Synchronization Monitors Synchronization Examples Atomic

More information

Chapter 6: Process Synchronization. Module 6: Process Synchronization

Chapter 6: Process Synchronization. Module 6: Process Synchronization Chapter 6: Process Synchronization Module 6: Process Synchronization Background The Critical-Section Problem Peterson s Solution Synchronization Hardware Semaphores Classic Problems of Synchronization

More information

Introduction to PThreads and Basic Synchronization

Introduction to PThreads and Basic Synchronization Introduction to PThreads and Basic Synchronization Michael Jantz, Dr. Prasad Kulkarni Dr. Douglas Niehaus EECS 678 Pthreads Introduction Lab 1 Introduction In this lab, we will learn about some basic synchronization

More information

Threads. What is a thread? Motivation. Single and Multithreaded Processes. Benefits

Threads. What is a thread? Motivation. Single and Multithreaded Processes. Benefits CS307 What is a thread? Threads A thread is a basic unit of CPU utilization contains a thread ID, a program counter, a register set, and a stack shares with other threads belonging to the same process

More information

Computer Systems Laboratory Sungkyunkwan University

Computer Systems Laboratory Sungkyunkwan University Concurrent Programming Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Echo Server Revisited int main (int argc, char *argv[]) {... listenfd = socket(af_inet, SOCK_STREAM, 0); bzero((char

More information

Review: Easy Piece 1

Review: Easy Piece 1 CS 537 Lecture 10 Threads Michael Swift 10/9/17 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Arpaci-Dussea, Michael Swift 1 Review: Easy Piece 1 Virtualization CPU Memory Context Switch Schedulers

More information

CS370 Operating Systems Midterm Review

CS370 Operating Systems Midterm Review CS370 Operating Systems Midterm Review Yashwant K Malaiya Fall 2015 Slides based on Text by Silberschatz, Galvin, Gagne 1 1 What is an Operating System? An OS is a program that acts an intermediary between

More information

Chapter 6 Process Synchronization

Chapter 6 Process Synchronization Chapter 6 Process Synchronization Cooperating Process process that can affect or be affected by other processes directly share a logical address space (threads) be allowed to share data via files or messages

More information

OS Process Synchronization!

OS Process Synchronization! OS Process Synchronization! Race Conditions! The Critical Section Problem! Synchronization Hardware! Semaphores! Classical Problems of Synchronization! Synchronization HW Assignment! 3.1! Concurrent Access

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Fall 2017 Lecture 11 Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ Multilevel Feedback Queue: Q0, Q1,

More information

Outline. CS4254 Computer Network Architecture and Programming. Introduction 2/4. Introduction 1/4. Dr. Ayman A. Abdel-Hamid.

Outline. CS4254 Computer Network Architecture and Programming. Introduction 2/4. Introduction 1/4. Dr. Ayman A. Abdel-Hamid. Threads Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 1 CS4254 Computer Network Architecture and Programming Dr. Ayman A. Abdel-Hamid Computer Science Department Virginia Tech Threads Outline Threads (Chapter

More information

Chapter 5: Threads. Overview Multithreading Models Threading Issues Pthreads Windows XP Threads Linux Threads Java Threads

Chapter 5: Threads. Overview Multithreading Models Threading Issues Pthreads Windows XP Threads Linux Threads Java Threads Chapter 5: Threads Overview Multithreading Models Threading Issues Pthreads Windows XP Threads Linux Threads Java Threads 5.1 Silberschatz, Galvin and Gagne 2003 More About Processes A process encapsulates

More information

Chapter 6: Process Synchronization. Operating System Concepts 8 th Edition,

Chapter 6: Process Synchronization. Operating System Concepts 8 th Edition, Chapter 6: Process Synchronization, Silberschatz, Galvin and Gagne 2009 Module 6: Process Synchronization Background The Critical-Section Problem Peterson s Solution Synchronization Hardware Semaphores

More information

Synchronization. Disclaimer: some slides are adopted from the book authors slides with permission 1

Synchronization. Disclaimer: some slides are adopted from the book authors slides with permission 1 Synchronization Disclaimer: some slides are adopted from the book authors slides with permission 1 What is it? Recap: Thread Independent flow of control What does it need (thread private)? Stack What for?

More information

Threading and Synchronization. Fahd Albinali

Threading and Synchronization. Fahd Albinali Threading and Synchronization Fahd Albinali Parallelism Parallelism and Pseudoparallelism Why parallelize? Finding parallelism Advantages: better load balancing, better scalability Disadvantages: process/thread

More information

Chapter 6: Process Synchronization

Chapter 6: Process Synchronization Chapter 6: Process Synchronization Chapter 6: Process Synchronization Background The Critical-Section Problem Peterson s Solution Synchronization Hardware Mutex Locks Semaphores Classic Problems of Synchronization

More information

IPC and Unix Special Files

IPC and Unix Special Files Outline IPC and Unix Special Files (USP Chapters 6 and 7) Instructor: Dr. Tongping Liu Inter-Process communication (IPC) Pipe and Its Operations FIFOs: Named Pipes Ø Allow Un-related Processes to Communicate

More information

The course that gives CMU its Zip! Concurrency I: Threads April 10, 2001

The course that gives CMU its Zip! Concurrency I: Threads April 10, 2001 15-213 The course that gives CMU its Zip! Concurrency I: Threads April 10, 2001 Topics Thread concept Posix threads (Pthreads) interface Linux Pthreads implementation Concurrent execution Sharing data

More information

Process/Thread Synchronization

Process/Thread Synchronization CSE325 Principles of Operating Systems Process/Thread Synchronization David Duggan dduggan@sandia.gov February 14, 2013 Reading Assignment 7 Chapter 7 Deadlocks, due 2/21 2/14/13 CSE325: Synchronization

More information

Chapter 4: Threads. Operating System Concepts. Silberschatz, Galvin and Gagne

Chapter 4: Threads. Operating System Concepts. Silberschatz, Galvin and Gagne Chapter 4: Threads Silberschatz, Galvin and Gagne Chapter 4: Threads Overview Multithreading Models Thread Libraries Threading Issues Operating System Examples Linux Threads 4.2 Silberschatz, Galvin and

More information

Concurrent Programming

Concurrent Programming Concurrent Programming CS 485G-006: Systems Programming Lectures 32 33: 18 20 Apr 2016 1 Concurrent Programming is Hard! The human mind tends to be sequential The notion of time is often misleading Thinking

More information

CSE 451: Operating Systems Winter Lecture 7 Synchronization. Steve Gribble. Synchronization. Threads cooperate in multithreaded programs

CSE 451: Operating Systems Winter Lecture 7 Synchronization. Steve Gribble. Synchronization. Threads cooperate in multithreaded programs CSE 451: Operating Systems Winter 2005 Lecture 7 Synchronization Steve Gribble Synchronization Threads cooperate in multithreaded programs to share resources, access shared data structures e.g., threads

More information

Synchronization. CSE 2431: Introduction to Operating Systems Reading: Chapter 5, [OSC] (except Section 5.10)

Synchronization. CSE 2431: Introduction to Operating Systems Reading: Chapter 5, [OSC] (except Section 5.10) Synchronization CSE 2431: Introduction to Operating Systems Reading: Chapter 5, [OSC] (except Section 5.10) 1 Outline Critical region and mutual exclusion Mutual exclusion using busy waiting Sleep and

More information

Background. Old Producer Process Code. Improving the Bounded Buffer. Old Consumer Process Code

Background. Old Producer Process Code. Improving the Bounded Buffer. Old Consumer Process Code Old Producer Process Code Concurrent access to shared data may result in data inconsistency Maintaining data consistency requires mechanisms to ensure the orderly execution of cooperating processes Our

More information

Module 6: Process Synchronization. Operating System Concepts with Java 8 th Edition

Module 6: Process Synchronization. Operating System Concepts with Java 8 th Edition Module 6: Process Synchronization 6.1 Silberschatz, Galvin and Gagne 2009 Module 6: Process Synchronization Background The Critical-Section Problem Peterson s Solution Synchronization Hardware Semaphores

More information

Threading Language and Support. CS528 Multithreading: Programming with Threads. Programming with Threads

Threading Language and Support. CS528 Multithreading: Programming with Threads. Programming with Threads Threading Language and Support CS528 Multithreading: Programming with Threads A Sahu Dept of CSE, IIT Guwahati Pthread: POSIX thread Popular, Initial and Basic one Improved Constructs for threading c++

More information

Process/Thread Synchronization

Process/Thread Synchronization CSE325 Principles of Operating Systems Process/Thread Synchronization David Duggan dduggan@sandia.gov March 1, 2011 The image cannot be displayed. Your computer may not have enough memory to open the image,

More information

Process Synchronization

Process Synchronization Process Synchronization Organized By: Vinay Arora V.A. Disclaimer This is NOT A COPYRIGHT MATERIAL Content has been taken mainly from the following books: Operating Systems Concepts By Silberschatz & Galvin,

More information

Recap: Thread. What is it? What does it need (thread private)? What for? How to implement? Independent flow of control. Stack

Recap: Thread. What is it? What does it need (thread private)? What for? How to implement? Independent flow of control. Stack What is it? Recap: Thread Independent flow of control What does it need (thread private)? Stack What for? Lightweight programming construct for concurrent activities How to implement? Kernel thread vs.

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Spring 1018 L11 Synchronization Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ Multilevel feedback queue:

More information

CISC2200 Threads Spring 2015

CISC2200 Threads Spring 2015 CISC2200 Threads Spring 2015 Process We learn the concept of process A program in execution A process owns some resources A process executes a program => execution state, PC, We learn that bash creates

More information

Multithreaded Programming

Multithreaded Programming Multithreaded Programming The slides do not contain all the information and cannot be treated as a study material for Operating System. Please refer the text book for exams. September 4, 2014 Topics Overview

More information

Interprocess Communication By: Kaushik Vaghani

Interprocess Communication By: Kaushik Vaghani Interprocess Communication By: Kaushik Vaghani Background Race Condition: A situation where several processes access and manipulate the same data concurrently and the outcome of execution depends on the

More information

Chapter 7: Process Synchronization!

Chapter 7: Process Synchronization! Chapter 7: Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors 7.1 Background Concurrent access to shared

More information

Chapter 5: Process Synchronization

Chapter 5: Process Synchronization Chapter 5: Process Synchronization Silberschatz, Galvin and Gagne 2013 Operating System Concepts 9th Edition Chapter 5: Process Synchronization Background The Critical-Section Problem Peterson s Solution

More information

Chapter 4: Threads. Operating System Concepts with Java 8 th Edition

Chapter 4: Threads. Operating System Concepts with Java 8 th Edition Chapter 4: Threads 14.1 Silberschatz, Galvin and Gagne 2009 Chapter 4: Threads Overview Multithreading Models Thread Libraries Threading Issues Operating System Examples 14.2 Silberschatz, Galvin and Gagne

More information

Chapter 5: Process Synchronization. Operating System Concepts 9 th Edition

Chapter 5: Process Synchronization. Operating System Concepts 9 th Edition Chapter 5: Process Synchronization Silberschatz, Galvin and Gagne 2013 Chapter 5: Process Synchronization Background The Critical-Section Problem Peterson s Solution Synchronization Hardware Mutex Locks

More information

Process Synchronization

Process Synchronization Process Synchronization Chapter 6 2015 Prof. Amr El-Kadi Background Concurrent access to shared data may result in data inconsistency Maintaining data consistency requires mechanisms to ensure the orderly

More information

Achieving Synchronization or How to Build a Semaphore

Achieving Synchronization or How to Build a Semaphore Achieving Synchronization or How to Build a Semaphore CS 241 March 12, 2012 Copyright University of Illinois CS 241 Staff 1 Announcements MP5 due tomorrow Jelly beans... Today Building a Semaphore If time:

More information

Introduction to OS Synchronization MOS 2.3

Introduction to OS Synchronization MOS 2.3 Introduction to OS Synchronization MOS 2.3 Mahmoud El-Gayyar elgayyar@ci.suez.edu.eg Mahmoud El-Gayyar / Introduction to OS 1 Challenge How can we help processes synchronize with each other? E.g., how

More information

Concurrent Programming

Concurrent Programming Concurrent Programming Prof. Jin-Soo Kim( jinsookim@skku.edu) TA Jinhong Kim( jinhong.kim@csl.skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Echo Server Revisited int

More information

CSE 451: Operating Systems Winter Lecture 7 Synchronization. Hank Levy 412 Sieg Hall

CSE 451: Operating Systems Winter Lecture 7 Synchronization. Hank Levy 412 Sieg Hall CSE 451: Operating Systems Winter 2003 Lecture 7 Synchronization Hank Levy Levy@cs.washington.edu 412 Sieg Hall Synchronization Threads cooperate in multithreaded programs to share resources, access shared

More information

Operating Systems. Lecture 4 - Concurrency and Synchronization. Master of Computer Science PUF - Hồ Chí Minh 2016/2017

Operating Systems. Lecture 4 - Concurrency and Synchronization. Master of Computer Science PUF - Hồ Chí Minh 2016/2017 Operating Systems Lecture 4 - Concurrency and Synchronization Adrien Krähenbühl Master of Computer Science PUF - Hồ Chí Minh 2016/2017 Mutual exclusion Hardware solutions Semaphores IPC: Message passing

More information

CS 326: Operating Systems. Process Execution. Lecture 5

CS 326: Operating Systems. Process Execution. Lecture 5 CS 326: Operating Systems Process Execution Lecture 5 Today s Schedule Process Creation Threads Limited Direct Execution Basic Scheduling 2/5/18 CS 326: Operating Systems 2 Today s Schedule Process Creation

More information

CSE Traditional Operating Systems deal with typical system software designed to be:

CSE Traditional Operating Systems deal with typical system software designed to be: CSE 6431 Traditional Operating Systems deal with typical system software designed to be: general purpose running on single processor machines Advanced Operating Systems are designed for either a special

More information

What is the Race Condition? And what is its solution? What is a critical section? And what is the critical section problem?

What is the Race Condition? And what is its solution? What is a critical section? And what is the critical section problem? What is the Race Condition? And what is its solution? Race Condition: Where several processes access and manipulate the same data concurrently and the outcome of the execution depends on the particular

More information

Synchronization: Advanced

Synchronization: Advanced Synchronization: Advanced CS 485G-006: Systems Programming Lecture 35: 27 Apr 2016 1 Enforcing Mutual Exclusion Question: How can we guarantee a safe trajectory? Answer: We must synchronize the execution

More information

CS533 Concepts of Operating Systems. Jonathan Walpole

CS533 Concepts of Operating Systems. Jonathan Walpole CS533 Concepts of Operating Systems Jonathan Walpole Introduction to Threads and Concurrency Why is Concurrency Important? Why study threads and concurrent programming in an OS class? What is a thread?

More information

Concurrent Programming is Hard! Concurrent Programming. Reminder: Iterative Echo Server. The human mind tends to be sequential

Concurrent Programming is Hard! Concurrent Programming. Reminder: Iterative Echo Server. The human mind tends to be sequential Concurrent Programming is Hard! Concurrent Programming 15 213 / 18 213: Introduction to Computer Systems 23 rd Lecture, April 11, 213 Instructors: Seth Copen Goldstein, Anthony Rowe, and Greg Kesden The

More information

Chapter 6: Process Synchronization

Chapter 6: Process Synchronization Chapter 6: Process Synchronization Objectives Introduce Concept of Critical-Section Problem Hardware and Software Solutions of Critical-Section Problem Concept of Atomic Transaction Operating Systems CS

More information

Chapter 6: Process Synchronization. Operating System Concepts 8 th Edition,

Chapter 6: Process Synchronization. Operating System Concepts 8 th Edition, Chapter 6: Process Synchronization, Silberschatz, Galvin and Gagne 2009 Module 6: Process Synchronization Background The Critical-Section Problem Peterson s Solution Synchronization Hardware Semaphores

More information

CS 333 Introduction to Operating Systems Class 4 Concurrent Programming and Synchronization Primitives

CS 333 Introduction to Operating Systems Class 4 Concurrent Programming and Synchronization Primitives CS 333 Introduction to Operating Systems Class 4 Concurrent Programming and Synchronization Primitives Jonathan Walpole Computer Science Portland State University 1 What does a typical thread API look

More information

Total Score is updated. The score of PA4 will be changed! Please check it. Will be changed

Total Score is updated. The score of PA4 will be changed! Please check it. Will be changed Announcement Total Score is updated Please check it Will be changed The score of PA4 will be changed! 1 Concurrent Programming Prof. Jin-Soo Kim( jinsookim@skku.edu) TA Sanghoon Han(sanghoon.han@csl.skku.edu)

More information

Process Co-ordination OPERATING SYSTEMS

Process Co-ordination OPERATING SYSTEMS OPERATING SYSTEMS Prescribed Text Book Operating System Principles, Seventh Edition By Abraham Silberschatz, Peter Baer Galvin and Greg Gagne 1 PROCESS - CONCEPT Processes executing concurrently in the

More information

Dealing with Issues for Interprocess Communication

Dealing with Issues for Interprocess Communication Dealing with Issues for Interprocess Communication Ref Section 2.3 Tanenbaum 7.1 Overview Processes frequently need to communicate with other processes. In a shell pipe the o/p of one process is passed

More information

CS 3305 Intro to Threads. Lecture 6

CS 3305 Intro to Threads. Lecture 6 CS 3305 Intro to Threads Lecture 6 Introduction Multiple applications run concurrently! This means that there are multiple processes running on a computer Introduction Applications often need to perform

More information

Overview. CMSC 330: Organization of Programming Languages. Concurrency. Multiprocessors. Processes vs. Threads. Computation Abstractions

Overview. CMSC 330: Organization of Programming Languages. Concurrency. Multiprocessors. Processes vs. Threads. Computation Abstractions CMSC 330: Organization of Programming Languages Multithreaded Programming Patterns in Java CMSC 330 2 Multiprocessors Description Multiple processing units (multiprocessor) From single microprocessor to

More information

Concurrency: Mutual Exclusion and

Concurrency: Mutual Exclusion and Concurrency: Mutual Exclusion and Synchronization 1 Needs of Processes Allocation of processor time Allocation and sharing resources Communication among processes Synchronization of multiple processes

More information

CS604 - Operating System Solved Subjective Midterm Papers For Midterm Exam Preparation

CS604 - Operating System Solved Subjective Midterm Papers For Midterm Exam Preparation CS604 - Operating System Solved Subjective Midterm Papers For Midterm Exam Preparation The given code is as following; boolean flag[2]; int turn; do { flag[i]=true; turn=j; while(flag[j] && turn==j); critical

More information

Chapter 6: Process Synchronization. Operating System Concepts 9 th Edit9on

Chapter 6: Process Synchronization. Operating System Concepts 9 th Edit9on Chapter 6: Process Synchronization Operating System Concepts 9 th Edit9on Silberschatz, Galvin and Gagne 2013 Objectives To present the concept of process synchronization. To introduce the critical-section

More information

Process and Its Image An operating system executes a variety of programs: A program that browses the Web A program that serves Web requests

Process and Its Image An operating system executes a variety of programs: A program that browses the Web A program that serves Web requests Recap of the Last Class System protection and kernel mode System calls and the interrupt interface Processes Process concept A process s image in a computer Operations on processes Context switches and

More information

Concept of a process

Concept of a process Concept of a process In the context of this course a process is a program whose execution is in progress States of a process: running, ready, blocked Submit Ready Running Completion Blocked Concurrent

More information

Concurrent Programming

Concurrent Programming Concurrent Programming Prof. Jinkyu Jeong( jinkyu@skku.edu) TA Jinhong Kim( jinhong.kim@csl.skku.edu) TA Seokha Shin(seokha.shin@csl.skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu

More information

Process Synchronization

Process Synchronization Process Synchronization Concurrent access to shared data may result in data inconsistency Multiple threads in a single process Maintaining data consistency requires mechanisms to ensure the orderly execution

More information

POSIX Threads: a first step toward parallel programming. George Bosilca

POSIX Threads: a first step toward parallel programming. George Bosilca POSIX Threads: a first step toward parallel programming George Bosilca bosilca@icl.utk.edu Process vs. Thread A process is a collection of virtual memory space, code, data, and system resources. A thread

More information