Week 8 Voronoi Diagrams

Size: px
Start display at page:

Download "Week 8 Voronoi Diagrams"

Transcription

1 1 Week 8 Voronoi Diagrams

2 2 Voronoi Diagram Very important problem in Comp. Geo. Discussed back in 1850 by Dirichlet Published in a paper by Voronoi in 1908

3 3 Voronoi Diagram Fire observation towers: an example Given n fire observation towers Which tower must extinguish a starting fire? tower fire

4 4 Fire Observation Towers B tower A D fire C

5 5 Fire Observation Towers What if we start a separate fire at each tower? B A D C

6 6 Fire Observation Towers B A D C

7 7 Voronoi Diagram Nearest Neighbor Clustering Assume that we have 3 types of nuts Type A: Inner Diameter 1, Outer Diameter 2 Type B: Inner Diameter 3, Outer Diameter 4 Type C: Inner Diameter 2, Outer Diameter 4 A B C

8 8 Voronoi Diagram A certain quality assurance measurement device tests a bolt as having Inner Diameter 2.2 and Outer Diameter 3.8 Is it Type A, B or C? x

9 9 Voronoi Diagram Create a feature space inner radius 3 B 2 x 1 C A outer radius

10 10 Voronoi Diagram Check the Voronoi Polygons inner radius 3 B 2 x 1 C A outer radius

11 11 Voronoi Diagrams Suppose that you want to open a new store Where should you locate it for best revenues? City Store Store Store Store

12 12 Voronoi Diagrams You need to stay away from existing stores City Store Store Store? Store

13 13 Voronoi Diagrams Center of the largest empty circle! City Store Store Store? Store This center is always on the Voronoi Diagram!

14 14 Voronoi Diagrams Robot motion planning A robot walks through a field filled with obstacles Tries to avoid collisions What is the best path? If the obstacles are single points The best path lies on the conventional Voronoi Diagram

15 15 Voronoi Diagrams Crystallization

16 16 Formal Definition Let P={p1, p2,, pn} be a set of points in E2 These are called the sites Partition the plane by assigning every point to the nearest site. All points assigned to pi are the Voronoi region of pi V(pi) = {x : pi - x pj - x j i}

17 17 Formal Definition Some points do not have a unique nearest site, or nearest neighbor These form the Voronoi Diagram V(P) x x

18 18 Two Sites B12 bisector p1 p2

19 19 Three Sites B12 p2 circumcenter p1 B23 B13 p3

20 20 Halfplanes H p, p V p i = i j i j H3 Voronoi Region of pi p1 pi p2 H1 H2 p3

21 21 Voronoi Regions Note that each Voronoi Region is convex The edges are called the Voronoi Edges The vertices are called the Voronoi Vertices Non-degenerate: if three edges meet at a vertex Degenerate: if more than three edges meet at a vertex

22 22 Size of Diagram How many regions exist for n sites? Linear? How many edges exist for n sites? Quadratic? Not really!

23 23 Size of a Diagram Assume that all vertices are non-degenerate Construct the dual of the Voronoi Diagram The dual is a planar graph A planar graph of n vertices has O(n) edges O(n) faces This holds even with degenerate vertices

24 24 Delaunay Triangulations If the dual graph is drawn with straight lines we obtain a triangulation of the sites this is called the Delaunay Triangulation: D(P)

25 25 Delaunay Triangulation D(P) is the straight-line dual of V(P)

26 26 Delaunay Triangulation D(P) is a triangulation if no four points are cocircular

27 27 Delaunay Triangulation Each face of D(P) corresponds to a vertex of V(P) Each edge of D(P) corresponds to an edge of V(P) Each node of D(P) corresponds to a region of V(P)

28 28 Delaunay Triangulation The boundary of D(P) is the convex hull of sites

29 29 Delaunay Triangulation The interior of each face of D(P) contains no sites

30 30 Voronoi Diagrams Each Voronoi Region is convex

31 31 Voronoi Diagrams V(pi) is unbounded iff pi is on the convex hull

32 32 Voronoi Diagrams If v is a Voronoi vertex of regions V(p1), V(p2), V(p3), then it is the center of the circle C(v) through p1,p2,p3 p1 v p2 p3

33 33 Voronoi Diagrams C(v) is the circumcircle of the Delaunay Triangle of v p1 v p2 p3

34 34 Voronoi Diagrams The interior of C(v) contains no sites p1 v p2 p3

35 35 Voronoi Diagrams If pj is a nearest neighbor of pi, then (pi,pj) is an edge of D(P) p1 p2

36 36 Voronoi Diagrams If there is some circle through pi and pj that contains no other sites, then (pi,pj) is an edge of D(P). The reverse also holds: for every edge, there is an empty circle. p1 p2

37 37 Delaunay Triangulation First part: If ab is a Delaunay Edge, then there exists an empty circle through a and b. Voronoi Edge center a If we have this site inside the circle, then this site is closer to the center, hence the Voronoi Edge is not really a Voronoi Edge r r Delaunay Edge b

38 38 Delaunay Triangulation Second part: If there is an empty circle through a and b, then ab is a Delaunay Edge a b

39 39 Algorithms Intersection of Halfplanes Construct each Voronoi Region separately Intersection of n-1 halfplanes Can be computed in O(n log n) per region Overall O(n2 log n)

40 40 Algorithms Incremental Construction Suppose the Voronoi D. of k points is constructed Now, we add one more point Let the new point be in circles C(v1)...C(vm) Only these Voronoi points will be removed Changes are local Running time: O(n2)

41 41 Algorithms Divide and Conquer Asymptotically optimal But, difficult to implement Achieves O(n log n) time

42 42 Algorithms Fortune's Algorithm Plane sweep Construct the Voronoi Diagram of the swept region Major problem The edges of some Voronoi Regions are encountered before the corresponding sites! Fortune proposed a beautiful solution

43 43 The Problem Edges are encountered first

44 44 Cones intersection site site projection

45 45 Cone Slicing

46 46 Parabolic Front

47 47 Applications Nearest Neighbors Which is the nearest neighbor to a query point? How to do it? Construct the Voronoi Diagram in O(n log n) Find in which Voronoi Region the point falls we will later see that this can be done in O(log n)

48 48 Applications Fat triangulation of a point set Maximizing the minimum angle How to do it? Edelsbrunner proved that The Delaunay Triangulation is a fat triangulation

49 49 Applications Largest Empty Circle Remember the store location problem We are looking for a center inside the Convex Hull f(p): the radius of the largest empty circle at p f(p) cannot be maximum if the circle touches a single point

50 50 Largest Empty Circle we can move the center to obtain a larger radius

51 51 Largest Empty Circle How about touching two sites? we can move the center to obtain a larger radius

52 52 Largest Empty Circle How about touching three sites? now the circle cannot be moved without including one of the sites

53 53 Largest Empty Circle Therefore, the center of the largest empty circle must be a Voronoi Vertex or, the center is on the Convex Hull where the circle touches two sites An algorithm can be implemented in O(n log n)

54 54 Medial Axis The medial axis of a polygon P is the set of points inside P that have more than one closest point among the points of boundary of P.

55 55 Connection to Convex Hulls Consider the function z = x2+y2 Given a set of points in 2D, transform all points to 3D using the above function (x, y, x2 + y2)

56 56 Connection to Convex Hulls (xi,yi,x +y ) 2 i 2 i z y (xi,yi) x

57 57 Connection to Convex Hulls z y x

58 58 Connection to Convex Hulls z y x Delaunay Triangulation

Voronoi Diagrams. A Voronoi diagram records everything one would ever want to know about proximity to a set of points

Voronoi Diagrams. A Voronoi diagram records everything one would ever want to know about proximity to a set of points Voronoi Diagrams Voronoi Diagrams A Voronoi diagram records everything one would ever want to know about proximity to a set of points Who is closest to whom? Who is furthest? We will start with a series

More information

Voronoi Diagrams in the Plane. Chapter 5 of O Rourke text Chapter 7 and 9 of course text

Voronoi Diagrams in the Plane. Chapter 5 of O Rourke text Chapter 7 and 9 of course text Voronoi Diagrams in the Plane Chapter 5 of O Rourke text Chapter 7 and 9 of course text Voronoi Diagrams As important as convex hulls Captures the neighborhood (proximity) information of geometric objects

More information

3. Voronoi Diagrams. 3.1 Definitions & Basic Properties. Examples :

3. Voronoi Diagrams. 3.1 Definitions & Basic Properties. Examples : 3. Voronoi Diagrams Examples : 1. Fire Observation Towers Imagine a vast forest containing a number of fire observation towers. Each ranger is responsible for extinguishing any fire closer to her tower

More information

Chapter 8. Voronoi Diagrams. 8.1 Post Oce Problem

Chapter 8. Voronoi Diagrams. 8.1 Post Oce Problem Chapter 8 Voronoi Diagrams 8.1 Post Oce Problem Suppose there are n post oces p 1,... p n in a city. Someone who is located at a position q within the city would like to know which post oce is closest

More information

Advanced Algorithms Computational Geometry Prof. Karen Daniels. Fall, 2012

Advanced Algorithms Computational Geometry Prof. Karen Daniels. Fall, 2012 UMass Lowell Computer Science 91.504 Advanced Algorithms Computational Geometry Prof. Karen Daniels Fall, 2012 Voronoi Diagrams & Delaunay Triangulations O Rourke: Chapter 5 de Berg et al.: Chapters 7,

More information

CS S Lecture February 13, 2017

CS S Lecture February 13, 2017 CS 6301.008.18S Lecture February 13, 2017 Main topics are #Voronoi-diagrams, #Fortune. Quick Note about Planar Point Location Last week, I started giving a difficult analysis of the planar point location

More information

CS 532: 3D Computer Vision 14 th Set of Notes

CS 532: 3D Computer Vision 14 th Set of Notes 1 CS 532: 3D Computer Vision 14 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Lecture Outline Triangulating

More information

Lecture 16: Voronoi Diagrams and Fortune s Algorithm

Lecture 16: Voronoi Diagrams and Fortune s Algorithm contains q changes as a result of the ith insertion. Let P i denote this probability (where the probability is taken over random insertion orders, irrespective of the choice of q). Since q could fall through

More information

Voronoi Diagrams and Delaunay Triangulation slides by Andy Mirzaian (a subset of the original slides are used here)

Voronoi Diagrams and Delaunay Triangulation slides by Andy Mirzaian (a subset of the original slides are used here) Voronoi Diagrams and Delaunay Triangulation slides by Andy Mirzaian (a subset of the original slides are used here) Voronoi Diagram & Delaunay Triangualtion Algorithms Divide-&-Conquer Plane Sweep Lifting

More information

Other Voronoi/Delaunay Structures

Other Voronoi/Delaunay Structures Other Voronoi/Delaunay Structures Overview Alpha hulls (a subset of Delaunay graph) Extension of Voronoi Diagrams Convex Hull What is it good for? The bounding region of a point set Not so good for describing

More information

CMPS 3130/6130 Computational Geometry Spring Voronoi Diagrams. Carola Wenk. Based on: Computational Geometry: Algorithms and Applications

CMPS 3130/6130 Computational Geometry Spring Voronoi Diagrams. Carola Wenk. Based on: Computational Geometry: Algorithms and Applications CMPS 3130/6130 Computational Geometry Spring 2015 Voronoi Diagrams Carola Wenk Based on: Computational Geometry: Algorithms and Applications 2/19/15 CMPS 3130/6130 Computational Geometry 1 Voronoi Diagram

More information

Computational Geometry

Computational Geometry Lecture 12: Lecture 12: Motivation: Terrains by interpolation To build a model of the terrain surface, we can start with a number of sample points where we know the height. Lecture 12: Motivation: Terrains

More information

VORONOI DIAGRAM PETR FELKEL. FEL CTU PRAGUE Based on [Berg] and [Mount]

VORONOI DIAGRAM PETR FELKEL. FEL CTU PRAGUE   Based on [Berg] and [Mount] VORONOI DIAGRAM PETR FELKEL FEL CTU PRAGUE felkel@fel.cvut.cz https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start Based on [Berg] and [Mount] Version from 9.11.2017 Talk overview Definition and examples

More information

Voronoi Diagram. Xiao-Ming Fu

Voronoi Diagram. Xiao-Ming Fu Voronoi Diagram Xiao-Ming Fu Outlines Introduction Post Office Problem Voronoi Diagram Duality: Delaunay triangulation Centroidal Voronoi tessellations (CVT) Definition Applications Algorithms Outlines

More information

Voronoi diagrams Delaunay Triangulations. Pierre Alliez Inria

Voronoi diagrams Delaunay Triangulations. Pierre Alliez Inria Voronoi diagrams Delaunay Triangulations Pierre Alliez Inria Voronoi Diagram Voronoi Diagram Voronoi Diagram The collection of the non-empty Voronoi regions and their faces, together with their incidence

More information

Course 16 Geometric Data Structures for Computer Graphics. Voronoi Diagrams

Course 16 Geometric Data Structures for Computer Graphics. Voronoi Diagrams Course 16 Geometric Data Structures for Computer Graphics Voronoi Diagrams Dr. Elmar Langetepe Institut für Informatik I Universität Bonn Geometric Data Structures for CG July 27 th Voronoi Diagrams San

More information

Voronoi Diagrams and Delaunay Triangulations. O Rourke, Chapter 5

Voronoi Diagrams and Delaunay Triangulations. O Rourke, Chapter 5 Voronoi Diagrams and Delaunay Triangulations O Rourke, Chapter 5 Outline Preliminaries Properties and Applications Computing the Delaunay Triangulation Preliminaries Given a function f: R 2 R, the tangent

More information

Delaunay Triangulations

Delaunay Triangulations Delaunay Triangulations (slides mostly by Glenn Eguchi) Motivation: Terrains Set of data points A R 2 Height ƒ(p) defined at each point p in A How can we most naturally approximate height of points not

More information

6.854J / J Advanced Algorithms Fall 2008

6.854J / J Advanced Algorithms Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 6.854J / 18.415J Advanced Algorithms Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.415/6.854 Advanced

More information

COMPUTATIONAL GEOMETRY

COMPUTATIONAL GEOMETRY Thursday, September 20, 2007 (Ming C. Lin) Review on Computational Geometry & Collision Detection for Convex Polytopes COMPUTATIONAL GEOMETRY (Refer to O'Rourke's and Dutch textbook ) 1. Extreme Points

More information

CS133 Computational Geometry

CS133 Computational Geometry CS133 Computational Geometry Voronoi Diagram Delaunay Triangulation 5/17/2018 1 Nearest Neighbor Problem Given a set of points P and a query point q, find the closest point p P to q p, r P, dist p, q dist(r,

More information

Approximating a set of points by circles

Approximating a set of points by circles Approximating a set of points by circles Sandra Gesing June 2005 Abstract This paper is an abstract of the German diploma thesis Approximation von Punktmengen durch Kreise finished by the author in March

More information

Art Gallery, Triangulation, and Voronoi Regions

Art Gallery, Triangulation, and Voronoi Regions Art Gallery, Triangulation, and Voronoi Regions CS535 Fall 2016 Daniel G. Aliaga Department of Computer Science Purdue University [some slides based on Profs. Shmuel Wimer and Andy Mirzaian Topics Triangulation

More information

Computational Geometry. Algorithm Design (10) Computational Geometry. Convex Hull. Areas in Computational Geometry

Computational Geometry. Algorithm Design (10) Computational Geometry. Convex Hull. Areas in Computational Geometry Computational Geometry Algorithm Design (10) Computational Geometry Graduate School of Engineering Takashi Chikayama Algorithms formulated as geometry problems Broad application areas Computer Graphics,

More information

2D Geometry. Pierre Alliez Inria Sophia Antipolis

2D Geometry. Pierre Alliez Inria Sophia Antipolis 2D Geometry Pierre Alliez Inria Sophia Antipolis Outline Sample problems Polygons Graphs Convex hull Voronoi diagram Delaunay triangulation Sample Problems Line Segment Intersection Theorem: Segments (p

More information

Computational Geometry

Computational Geometry More on Voronoi diagrams 1 Can we move a disc from one location to another amidst obstacles? 2 Since the Voronoi diagram of point sites is locally furthest away from those sites, we can move the disc if

More information

PS Computational Geometry Homework Assignment Sheet I (Due 16-March-2018)

PS Computational Geometry Homework Assignment Sheet I (Due 16-March-2018) Homework Assignment Sheet I (Due 16-March-2018) Assignment 1 Let f, g : N R with f(n) := 8n + 4 and g(n) := 1 5 n log 2 n. Prove explicitly that f O(g) and f o(g). Assignment 2 How can you generalize the

More information

Voronoi diagram and Delaunay triangulation

Voronoi diagram and Delaunay triangulation Voronoi diagram and Delaunay triangulation Ioannis Emiris & Vissarion Fisikopoulos Dept. of Informatics & Telecommunications, University of Athens Computational Geometry, spring 2015 Outline 1 Voronoi

More information

CAD & Computational Geometry Course plan

CAD & Computational Geometry Course plan Course plan Introduction Segment-Segment intersections Polygon Triangulation Intro to Voronoï Diagrams & Geometric Search Sweeping algorithm for Voronoï Diagrams 1 Voronoi Diagrams Voronoi Diagrams or

More information

How Do Computers Solve Geometric Problems? Sorelle Friedler, University of Maryland - College Park

How Do Computers Solve Geometric Problems? Sorelle Friedler, University of Maryland - College Park How Do Computers Solve Geometric Problems? Sorelle Friedler, University of Maryland - College Park http://www.cs.umd.edu/~sorelle Outline Introduction Algorithms Computational Geometry Art Museum Problem

More information

Delaunay Triangulations. Presented by Glenn Eguchi Computational Geometry October 11, 2001

Delaunay Triangulations. Presented by Glenn Eguchi Computational Geometry October 11, 2001 Delaunay Triangulations Presented by Glenn Eguchi 6.838 Computational Geometry October 11, 2001 Motivation: Terrains Set of data points A R 2 Height ƒ(p) defined at each point p in A How can we most naturally

More information

Flavor of Computational Geometry. Voronoi Diagrams. Shireen Y. Elhabian Aly A. Farag University of Louisville

Flavor of Computational Geometry. Voronoi Diagrams. Shireen Y. Elhabian Aly A. Farag University of Louisville Flavor of Computational Geometry Voronoi Diagrams Shireen Y. Elhabian Aly A. Farag University of Louisville March 2010 Pepperoni Sparse Pizzas Olive Sparse Pizzas Just Two Pepperonis A person gets the

More information

Notes in Computational Geometry Voronoi Diagrams

Notes in Computational Geometry Voronoi Diagrams Notes in Computational Geometry Voronoi Diagrams Prof. Sandeep Sen and Prof. Amit Kumar Indian Institute of Technology, Delhi Voronoi Diagrams In this lecture, we study Voronoi Diagrams, also known as

More information

Module 4: Index Structures Lecture 16: Voronoi Diagrams and Tries. The Lecture Contains: Voronoi diagrams. Tries. Index structures

Module 4: Index Structures Lecture 16: Voronoi Diagrams and Tries. The Lecture Contains: Voronoi diagrams. Tries. Index structures The Lecture Contains: Voronoi diagrams Tries Delaunay triangulation Algorithms Extensions Index structures 1-dimensional index structures Memory-based index structures Disk-based index structures Classification

More information

Computational Geometry Lecture Delaunay Triangulation

Computational Geometry Lecture Delaunay Triangulation Computational Geometry Lecture Delaunay Triangulation INSTITUTE FOR THEORETICAL INFORMATICS FACULTY OF INFORMATICS 7.12.2015 1 Modelling a Terrain Sample points p = (x p, y p, z p ) Projection π(p) = (p

More information

COMPUTING CONSTRAINED DELAUNAY

COMPUTING CONSTRAINED DELAUNAY COMPUTING CONSTRAINED DELAUNAY TRIANGULATIONS IN THE PLANE By Samuel Peterson, University of Minnesota Undergraduate The Goal The Problem The Algorithms The Implementation Applications Acknowledgments

More information

Lecture 11 Combinatorial Planning: In the Plane

Lecture 11 Combinatorial Planning: In the Plane CS 460/560 Introduction to Computational Robotics Fall 2017, Rutgers University Lecture 11 Combinatorial Planning: In the Plane Instructor: Jingjin Yu Outline Convex shapes, revisited Combinatorial planning

More information

In what follows, we will focus on Voronoi diagrams in Euclidean space. Later, we will generalize to other distance spaces.

In what follows, we will focus on Voronoi diagrams in Euclidean space. Later, we will generalize to other distance spaces. Voronoi Diagrams 4 A city builds a set of post offices, and now needs to determine which houses will be served by which office. It would be wasteful for a postman to go out of their way to make a delivery

More information

Fortune s Algorithm. Notes from the book by de Berg, Van Krevald, Overmars, and Schwarzkpf

Fortune s Algorithm. Notes from the book by de Berg, Van Krevald, Overmars, and Schwarzkpf Notes from the book by de Berg, Van Krevald, Overmars, and Schwarzkpf Based on sweeping the plane with a horizontal line and computing the Voronoi diagram as the line sweeps Straight forward approach won

More information

Voronoi Diagrams. Voronoi Diagrams. Swami Sarvottamananda. Ramakrishna Mission Vivekananda University NIT-IGGA, 2010

Voronoi Diagrams. Voronoi Diagrams. Swami Sarvottamananda. Ramakrishna Mission Vivekananda University NIT-IGGA, 2010 Voronoi Diagrams Swami Sarvottamananda Ramakrishna Mission Vivekananda University NIT-IGGA, 2010 Outline I 1 Introduction Motivation for Voronoi Diagram Historical Notes and Web References 2 Voronoi Diagrams

More information

A Minimalist s Implementation of the 3-d Divide-and-Conquer Convex Hull Algorithm

A Minimalist s Implementation of the 3-d Divide-and-Conquer Convex Hull Algorithm A Minimalist s Implementation of the 3-d Divide-and-Conquer Convex Hull Algorithm Timothy M. Chan Presented by Dana K. Jansens Carleton University Simple Polygons Polygon = A consecutive set of vertices

More information

High-Dimensional Computational Geometry. Jingbo Shang University of Illinois at Urbana-Champaign Mar 5, 2018

High-Dimensional Computational Geometry. Jingbo Shang University of Illinois at Urbana-Champaign Mar 5, 2018 High-Dimensional Computational Geometry Jingbo Shang University of Illinois at Urbana-Champaign Mar 5, 2018 Outline 3-D vector geometry High-D hyperplane intersections Convex hull & its extension to 3

More information

Planar convex hulls (I) Computational Geometry [csci 3250] Laura Toma Bowdoin College

Planar convex hulls (I) Computational Geometry [csci 3250] Laura Toma Bowdoin College Planar convex hulls (I) Computational Geometry [csci 3250] Laura Toma Bowdoin College Convex Hull Given a set P of points in 2D, their convex hull is the smallest convex polygon that contains all points

More information

Voronoi diagrams and applications

Voronoi diagrams and applications Voronoi diagrams and applications Prof. Ramin Zabih http://cs100r.cs.cornell.edu Administrivia Last quiz: Thursday 11/15 Prelim 3: Thursday 11/29 (last lecture) A6 is due Friday 11/30 (LDOC) Final projects

More information

The Farthest Point Delaunay Triangulation Minimizes Angles

The Farthest Point Delaunay Triangulation Minimizes Angles The Farthest Point Delaunay Triangulation Minimizes Angles David Eppstein Department of Information and Computer Science UC Irvine, CA 92717 November 20, 1990 Abstract We show that the planar dual to the

More information

Robot Motion Planning Using Generalised Voronoi Diagrams

Robot Motion Planning Using Generalised Voronoi Diagrams Robot Motion Planning Using Generalised Voronoi Diagrams MILOŠ ŠEDA, VÁCLAV PICH Institute of Automation and Computer Science Brno University of Technology Technická 2, 616 69 Brno CZECH REPUBLIC Abstract:

More information

CMSC 425: Lecture 9 Geometric Data Structures for Games: Geometric Graphs Thursday, Feb 21, 2013

CMSC 425: Lecture 9 Geometric Data Structures for Games: Geometric Graphs Thursday, Feb 21, 2013 CMSC 425: Lecture 9 Geometric Data Structures for Games: Geometric Graphs Thursday, Feb 21, 2013 Reading: Today s materials is presented in part in Computational Geometry: Algorithms and Applications (3rd

More information

Computational Geometry Lecture Duality of Points and Lines

Computational Geometry Lecture Duality of Points and Lines Computational Geometry Lecture Duality of Points and Lines INSTITUTE FOR THEORETICAL INFORMATICS FACULTY OF INFORMATICS 11.1.2016 Duality Transforms We have seen duality for planar graphs and duality of

More information

Week 7 Convex Hulls in 3D

Week 7 Convex Hulls in 3D 1 Week 7 Convex Hulls in 3D 2 Polyhedra A polyhedron is the natural generalization of a 2D polygon to 3D 3 Closed Polyhedral Surface A closed polyhedral surface is a finite set of interior disjoint polygons

More information

Triangulation and Convex Hull. 8th November 2018

Triangulation and Convex Hull. 8th November 2018 Triangulation and Convex Hull 8th November 2018 Agenda 1. Triangulation. No book, the slides are the curriculum 2. Finding the convex hull. Textbook, 8.6.2 2 Triangulation and terrain models Here we have

More information

7 Voronoi Diagrams. The Post Office Problem

7 Voronoi Diagrams. The Post Office Problem 7 Voronoi Diagrams The Post Office Problem Suppose you are on the advisory board for the planning of a supermarket chain, and there are plans to open a new branch at a certain location. To predict whether

More information

An Introduction to Computational Geometry: Arrangements and Duality

An Introduction to Computational Geometry: Arrangements and Duality An Introduction to Computational Geometry: Arrangements and Duality Joseph S. B. Mitchell Stony Brook University Some images from [O Rourke, Computational Geometry in C, 2 nd Edition, Chapter 6] Arrangement

More information

Outline of the presentation

Outline of the presentation Surface Reconstruction Petra Surynková Charles University in Prague Faculty of Mathematics and Physics petra.surynkova@mff.cuni.cz Outline of the presentation My work up to now Surfaces of Building Practice

More information

Roadmap Methods vs. Cell Decomposition in Robot Motion Planning

Roadmap Methods vs. Cell Decomposition in Robot Motion Planning Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation, Corfu Island, Greece, February 16-19, 007 17 Roadmap Methods vs. Cell Decomposition in Robot Motion

More information

ROBOT MOTION USING DELAUNAY TRIANGULATION

ROBOT MOTION USING DELAUNAY TRIANGULATION ROBOT MOTION USING DELAUNAY TRIANGULATION by Ioana-Maria Ileană Abstract. Robot motion is nowadays studied from a lot of different perspectives. This paper is based on the assumption of a fully known environment,

More information

Practical Linear Algebra: A Geometry Toolbox

Practical Linear Algebra: A Geometry Toolbox Practical Linear Algebra: A Geometry Toolbox Third edition Chapter 17: Breaking It Up: Triangles Gerald Farin & Dianne Hansford CRC Press, Taylor & Francis Group, An A K Peters Book www.farinhansford.com/books/pla

More information

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality Planar Graphs In the first half of this book, we consider mostly planar graphs and their geometric representations, mostly in the plane. We start with a survey of basic results on planar graphs. This chapter

More information

Algorithmische Geometrie Voronoi Diagram

Algorithmische Geometrie Voronoi Diagram Algorithmische Geometrie Voronoi Diagram Martin Held FB Computerwissenschaften Universität Salzburg A 5020 Salzburg, Austria May 28, 2008 Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go

More information

Lifting Transform, Voronoi, Delaunay, Convex Hulls

Lifting Transform, Voronoi, Delaunay, Convex Hulls Lifting Transform, Voronoi, Delaunay, Convex Hulls Subhash Suri Department of Computer Science University of California Santa Barbara, CA 93106 1 Lifting Transform (A combination of Pless notes and my

More information

CS 763 F16. Moving objects in space with obstacles/constraints.

CS 763 F16. Moving objects in space with obstacles/constraints. Moving objects in space with obstacles/constraints. Objects = robots, vehicles, jointed linkages (robot arm), tools (e.g. on automated assembly line), foldable/bendable objects. Objects need not be physical

More information

Simulations of the quadrilateral-based localization

Simulations of the quadrilateral-based localization Simulations of the quadrilateral-based localization Cluster success rate v.s. node degree. Each plot represents a simulation run. 9/15/05 Jie Gao CSE590-fall05 1 Random deployment Poisson distribution

More information

Testing Bipartiteness of Geometric Intersection Graphs David Eppstein

Testing Bipartiteness of Geometric Intersection Graphs David Eppstein Testing Bipartiteness of Geometric Intersection Graphs David Eppstein Univ. of California, Irvine School of Information and Computer Science Intersection Graphs Given arrangement of geometric objects,

More information

Computational Geometry

Computational Geometry Motivation Motivation Polygons and visibility Visibility in polygons Triangulation Proof of the Art gallery theorem Two points in a simple polygon can see each other if their connecting line segment is

More information

Delaunay Triangulation

Delaunay Triangulation Delaunay Triangulation Steve Oudot slides courtesy of O. Devillers MST MST MST use Kruskal s algorithm with Del as input O(n log n) Last: lower bound for Delaunay Let x 1, x 2,..., x n R, to be sorted

More information

Introduction to Voronoi Diagrams and Delaunay Triangulations

Introduction to Voronoi Diagrams and Delaunay Triangulations Introduction to Voronoi Diagrams and Delaunay Triangulations Solomon Boulos Introduction to Voronoi Diagrams and Delaunay Triangulations p.1 Voronoi Diagrams Voronoi region: V (p i ) = {x R n p i x p j

More information

A Novel Geometric Diagram and Its Applications in Wireless Networks

A Novel Geometric Diagram and Its Applications in Wireless Networks A Novel Geometric Diagram and Its Applications in Wireless Networks Guangbin Fan * and Jingyuan Zhang * Department of Computer and Information Science, University of Mississippi University, MS 38677, Email:

More information

Computational Geometry

Computational Geometry Computational Geometry 600.658 Convexity A set S is convex if for any two points p, q S the line segment pq S. S p S q Not convex Convex? Convexity A set S is convex if it is the intersection of (possibly

More information

2 Delaunay Triangulations

2 Delaunay Triangulations and the closed half-space H(b, a) containingb and with boundary the bisector hyperplane is the locus of all points such that (b 1 a 1 )x 1 + +(b m a m )x m (b 2 1 + + b 2 m)/2 (a 2 1 + + a 2 m)/2. The

More information

Surface Mesh Generation

Surface Mesh Generation Surface Mesh Generation J.-F. Remacle Université catholique de Louvain September 22, 2011 0 3D Model For the description of the mesh generation process, let us consider the CAD model of a propeller presented

More information

CS 410/584, Algorithm Design & Analysis, Lecture Notes 8!

CS 410/584, Algorithm Design & Analysis, Lecture Notes 8! CS 410/584, Algorithm Design & Analysis, Computational Geometry! Algorithms for manipulation of geometric objects We will concentrate on 2-D geometry Numerically robust try to avoid division Round-off

More information

The Cut Locus and the Jordan Curve Theorem

The Cut Locus and the Jordan Curve Theorem The Cut Locus and the Jordan Curve Theorem Rich Schwartz November 19, 2015 1 Introduction A Jordan curve is a subset of R 2 which is homeomorphic to the circle, S 1. The famous Jordan Curve Theorem says

More information

Voronoi Diagrams and their Applications

Voronoi Diagrams and their Applications XXVI. ASR '2001 Seminar, Instruments and Control, Ostrava, April 26-27, 2001 Paper 65 Voronoi Diagrams and their Applications ŠEDA, Miloš RNDr. Ing. Ph.D., Brno University of Technology, Faculty of Mechanical

More information

The Medial Axis of the Union of Inner Voronoi Balls in the Plane

The Medial Axis of the Union of Inner Voronoi Balls in the Plane The Medial Axis of the Union of Inner Voronoi Balls in the Plane Joachim Giesen a, Balint Miklos b,, Mark Pauly b a Max-Planck Institut für Informatik, Saarbrücken, Germany b Applied Geometry Group, ETH

More information

Further Graphics. A Brief Introduction to Computational Geometry

Further Graphics. A Brief Introduction to Computational Geometry Further Graphics A Brief Introduction to Computational Geometry 1 Alex Benton, University of Cambridge alex@bentonian.com Supported in part by Google UK, Ltd Terminology We ll be focusing on discrete (as

More information

An efficient implementation of the greedy forwarding strategy

An efficient implementation of the greedy forwarding strategy An efficient implementation of the greedy forwarding strategy Hannes Stratil Embedded Computing Systems Group E182/2 Technische Universität Wien Treitlstraße 3 A-1040 Vienna Email: hannes@ecs.tuwien.ac.at

More information

CSE 5311 Notes 13: Computational Geometry

CSE 5311 Notes 13: Computational Geometry CSE 5311 Notes 13: Computational Geometry (Last updated 4/17/17 4:39 PM) SMALLEST ENCLOSING DISK See section 4.7 of de Berg ( http://dx.doi.org.ezproxy.uta.edu/10.1007/978-3-540-77974-2 ) Algorithm MINIDISC(P)

More information

Voronoi Diagram and Convex Hull

Voronoi Diagram and Convex Hull Voronoi Diagram and Convex Hull The basic concept of Voronoi Diagram and Convex Hull along with their properties and applications are briefly explained in this chapter. A few common algorithms for generating

More information

CMSC 754: Computational Geometry Fall 2002

CMSC 754: Computational Geometry Fall 2002 CMSC 754: Computational Geometry Fall 00 http://www.cs.umd.edu/~mount/754/ Instructor: Dave Mount. Office: AVW 309. Email: mount@cs.umd.edu. Office phone: (301) 405 704. Office hours: Mon 3:00 4:00, Wed

More information

Line Arrangement. Chapter 6

Line Arrangement. Chapter 6 Line Arrangement Chapter 6 Line Arrangement Problem: Given a set L of n lines in the plane, compute their arrangement which is a planar subdivision. Line Arrangements Problem: Given a set L of n lines

More information

Robot Motion Planning in Eight Directions

Robot Motion Planning in Eight Directions Robot Motion Planning in Eight Directions Miloš Šeda and Tomáš Březina Abstract In this paper, we investigate the problem of 8-directional robot motion planning where the goal is to find a collision-free

More information

Lecture 4: Geometric Algorithms (Convex Hull, Voronoi diagrams)

Lecture 4: Geometric Algorithms (Convex Hull, Voronoi diagrams) Advanced Algorithms Fall 2015 Lecture 4: Geometric Algorithms (Convex Hull, Voronoi diagrams) Faculty: K.R. Chowdhary : Professor of CS Disclaimer: These notes have not been subjected to the usual scrutiny

More information

Computational Geometry. Geometry Cross Product Convex Hull Problem Sweep Line Algorithm

Computational Geometry. Geometry Cross Product Convex Hull Problem Sweep Line Algorithm GEOMETRY COMP 321 McGill University These slides are mainly compiled from the following resources. - Professor Jaehyun Park slides CS 97SI - Top-coder tutorials. - Programming Challenges books. Computational

More information

Prof. Gill Barequet. Center for Graphics and Geometric Computing, Technion. Dept. of Computer Science The Technion Haifa, Israel

Prof. Gill Barequet. Center for Graphics and Geometric Computing, Technion. Dept. of Computer Science The Technion Haifa, Israel Computational Geometry (CS 236719) http://www.cs.tufts.edu/~barequet/teaching/cg Chapter 1 Introduction 1 Copyright 2002-2009 2009 Prof. Gill Barequet Center for Graphics and Geometric Computing Dept.

More information

! Linear programming"! Duality "! Smallest enclosing disk"

! Linear programming! Duality ! Smallest enclosing disk ! Linear programming"! Duality "! Smallest enclosing disk" 14. 24.! Define:" " i types of foods (1!i!d).! " j types of vitamins (1!j!n)." " x i the amount of food of type i." " a ji the amount of vitamin

More information

THE METHODS OF TRIANGULATION

THE METHODS OF TRIANGULATION THE METHODS OF TRIANGULATION Abstract M. Varshosaz, Assistant Professor, Faculty of Geodesy & Geomatics Eng., K.N. Toosi University of Technology K.N. Toosi University of Technology, Vali_Asr St, Tehran,

More information

CS 410/584, Algorithm Design & Analysis, Lecture Notes 8

CS 410/584, Algorithm Design & Analysis, Lecture Notes 8 CS 410/584,, Computational Geometry Algorithms for manipulation of geometric objects We will concentrate on 2-D geometry Numerically robust try to avoid division Round-off error Divide-by-0 checks Techniques

More information

Geometric Computation: Introduction

Geometric Computation: Introduction : Introduction Piotr Indyk Welcome to 6.838! Overview and goals Course Information Syllabus 2D Convex hull Signup sheet Geometric computation occurs everywhere: Geographic Information Systems (GIS): nearest

More information

On Merging Straight Skeletons

On Merging Straight Skeletons On Merging Straight Skeletons Franz Aurenhammer 1 and Michael Steinkogler 2 1 Institute for Theoretical Computer Science, University of Technology, Graz, Austria auren@igi.tugraz.at 2 Institute for Theoretical

More information

Geometry. Zachary Friggstad. Programming Club Meeting

Geometry. Zachary Friggstad. Programming Club Meeting Geometry Zachary Friggstad Programming Club Meeting Points #i n c l u d e typedef complex p o i n t ; p o i n t p ( 1. 0, 5. 7 ) ; p. r e a l ( ) ; // x component p. imag ( ) ; // y component

More information

Computational Geometry

Computational Geometry Computational Geometry Range queries Convex hulls Lower bounds Planar subdivision search Line segment intersection Convex polygons Voronoi diagrams Minimum spanning trees Nearest neighbors Triangulations

More information

Computational Geometry

Computational Geometry Lecture 1: Introduction and convex hulls Geometry: points, lines,... Geometric objects Geometric relations Combinatorial complexity Computational geometry Plane (two-dimensional), R 2 Space (three-dimensional),

More information

Henneberg construction

Henneberg construction Henneberg construction Seminar über Algorithmen FU-Berlin, WS 2007/08 Andrei Haralevich Abstract: In this work will be explained two different types of steps of Henneberg construction. And how Henneberg

More information

Dirichlet Voronoi Diagrams and Delaunay Triangulations

Dirichlet Voronoi Diagrams and Delaunay Triangulations Chapter 9 Dirichlet Voronoi Diagrams and Delaunay Triangulations 9.1 Dirichlet Voronoi Diagrams In this chapter we present very briefly the concepts of a Voronoi diagram and of a Delaunay triangulation.

More information

15-451/651: Algorithms CMU, Spring 2016 Lecture #24: Computational Geometry Introduciton April 13, 2015 Lecturer: Danny Sleator

15-451/651: Algorithms CMU, Spring 2016 Lecture #24: Computational Geometry Introduciton April 13, 2015 Lecturer: Danny Sleator 15-451/651: Algorithms CMU, Spring 2016 Lecture #24: Computational Geometry Introduciton April 13, 2015 Lecturer: Danny Sleator 1 Introduction Computational geometry is the design and analysis of algorithms

More information

MATH 113 Section 8.2: Two-Dimensional Figures

MATH 113 Section 8.2: Two-Dimensional Figures MATH 113 Section 8.2: Two-Dimensional Figures Prof. Jonathan Duncan Walla Walla University Winter Quarter, 2008 Outline 1 Classifying Two-Dimensional Shapes 2 Polygons Triangles Quadrilaterals 3 Other

More information

Planar Point Location

Planar Point Location C.S. 252 Prof. Roberto Tamassia Computational Geometry Sem. II, 1992 1993 Lecture 04 Date: February 15, 1993 Scribe: John Bazik Planar Point Location 1 Introduction In range searching, a set of values,

More information

CS 373: Combinatorial Algorithms, Fall Name: Net ID: Alias: U 3 / 4 1

CS 373: Combinatorial Algorithms, Fall Name: Net ID: Alias: U 3 / 4 1 CS 373: Combinatorial Algorithms, Fall 2000 Homework 1 (due November 16, 2000 at midnight) Starting with Homework 1, homeworks may be done in teams of up to three people. Each team turns in just one solution,

More information

Homework 1: Intersections, Convex Hulls, and More

Homework 1: Intersections, Convex Hulls, and More CMSC 754:Fall 2014 Dave Mount Homework 1: Intersections, Convex Hulls, and More Handed out Thursday, Sep 18. Due at the start of class on Thursday, Sep 25. Late homeworks are not accepted (unless an extension

More information

Volume Illumination and Segmentation

Volume Illumination and Segmentation Volume Illumination and Segmentation Computer Animation and Visualisation Lecture 13 Institute for Perception, Action & Behaviour School of Informatics Overview Volume illumination Segmentation Volume

More information

CHAPTER 4 VORONOI DIAGRAM BASED CLUSTERING ALGORITHMS

CHAPTER 4 VORONOI DIAGRAM BASED CLUSTERING ALGORITHMS CHAPTER 4 VORONOI DIAGRAM BASED CLUSTERING ALGORITHMS 4.1 Introduction Although MST-based clustering methods are effective for complex data, they require quadratic computational time which is high for

More information