MEI Further Mathematics Support Programme

Size: px
Start display at page:

Download "MEI Further Mathematics Support Programme"

Transcription

1 Further Mathematics Support Programme

2 the Further Mathematics Support Programme Modelling and problem solving with Networks Sharon Tripconey Let Maths take you Further Nov Feb 2010

3 Network problems and algorithms Topic AQA Edexcel MEI OCR A Graphs Graphs D1 D1 D1 D1 Networks Prim D1 D1 D1 D1 Kruskal D1 D1 D1 D1 Dijkstra D1 D1 D1 D1 Floyd s algorithm D2 TSP D1 D2 D2 D1 Route inspection D1 D1 D2 D1 Network Flows D2 D2 D2 Critical Path Analysis Activity networks D2 node D1 arc D1 arc D2 arc Optimisation Matchings D1 D1 D2 Decision analysis D2

4 Graph theory Graph theory was until recently considered to be just recreational but is now regarded as a subject in its own right. It has widespread applications in all areas of mathematics and science. Many problems can be modelled as graphs (circuit diagrams, molecules in chemistry) or weighted graphs, called networks (distances networks, cost networks, decision trees) Graph theory is also widely used in sociology as a way, for example, to measure an individual s prestige or through the use of social network analysis software.

5 Leads to network analysis Graph theory forms the basis of all the network algorithms

6 Some graph theory (maths as a foreign language) A walk moves along an edge from one vertex to another and can visit a vertex or an edge more than once. A trail moves along an edge from one vertex to another and can visit a vertex more than once but cannot traverse an edge more than once. A path moves along an edge from one vertex to another but cannot visit a vertex more than once.

7 Some other terms used with graphs A graph is connected if there is a path between every pair of vertices A simple graph is one with no loops and no multiple edges between any two vertices

8 Some other terms used with graphs A tree is a simple connected graph with no cycles or loops A digraph (directed graph) is one in which at least one edge has a direction associated with it.

9 Some other terms used with graphs A complete graph is a simple graph in which every pair of vertices is connected A planar graph is a which can be drawn without any edges crossing

10 Teaching tips Give students a vocabulary list to learn Students often seem to think that the graph theory is merely background to the network algorithms and is not a topic in its own right, however there is always a graph theory question on the D1 paper. But do make sure that students realise that many of the network algorithms use graph theory (e.g. Eulerian Trails in Route Inspection, Hamiltonian cycles in TSP). The exam questions can be on any aspect of the topic and are difficult to predict so make sure that students do a wide variety of questions and are prepared for the unexpected.

11 Networks Be able to model and solve problems using networks Key Points: Understand notation and terminology. Minimum spanning trees Kruskal s and Prim s algorithms Shortest path Dijkstra s algorithm Touring Route Inspection and Travelling Salesperson

12 A problem A cable TV company based in Plymouth wants to link all the towns on the map. To keep costs to a minimum they want to use as little cable as possible. What strategy should they use to solve the problem?

13 The Modelling Cycle Accept solution Real life Problem Yes No Review Make simplifying assumptions Compare the solution with reality is it realistic? Interpret the solution in terms of the original problem Define variables and decide on the mathematical techniques to be used Solve the mathematical problem

14 A problem A cable TV company based in Plymouth wants to link all the towns on the map. To keep costs to a minimum they want to use as little cable as possible. What strategy should they use to solve the problem? Model the map as a network

15 A problem A cable TV company based in Plymouth wants to link all the towns on the map. To keep costs to a minimum they want to use as little cable as possible. What strategy should they use to solve the problem? Spanning tree of minimum length Minimum connector

16 Minimum connector algorithms Kruskal s algorithm 1. Select the shortest edge in a network 2. Select the next shortest edge which does not create a cycle 3. Repeat step 2 until all vertices have been connected Prim s algorithm 1. Select any vertex 2. Select the shortest edge connected to that vertex 3. Select the shortest edge connected to any vertex already connected 4. Repeat step 3 until all vertices have been connected

17 A cable company want to connect five villages to their network which currently extends to the market town of Avonford. What is the minimum length of cable needed? Brinleigh 5 Cornwell Avonford 7 Fingley 8 Donster Edan

18 We model the situation as a network, then the problem is to find the minimum connector for the network B 5 C A 7 F 8 D E

19 A 3 4 B 7 5 F 5 Minimum spanning tree C D Kruskal s ED 2 AB 3 CD 4 AE 4 EF 5 Prim s AB 3 AE 4 ED 2 CD 4 EF 5 E Total weight of tree: 18

20 Prim s can also be done on a table A B C D E F Brinleigh Cornwell A B C D Avenford 3 4 Fingley E F Donster The spanning tree is shown 2 4 in the diagram Length Edan = 18Km

21 Some points to note Both algorithms will always give solutions with the same total weight. They will usually select edges in a different order Occasionally they will use different edges this may happen when you have to choose between edges with the same length. In this case there is more than one minimum connector for the network.

22 Teaching tips: Minimum connector Before you have introduced any algorithms define the problem, and ask students to come up with their own algorithm (usually about 50/50 Prim/Kruskal) For Kruskal, it may be helpful to list all the edges in order of length before starting, depending on the size of the network. Make sure that students LIST the order in which they add the edges to the solution

23 Teaching tips: Minimum connector Prim s (matrix form): Introduce this with a simple example, using both network and matrix methods simultaneously to show what is going on. The textbook approach of physically deleting rows can t be replicated by students, there isn t time. Suggest they use coloured highlighter for deleting rows and for adding columns to the solution while first learning this. However, they must be able to do solutions confidently in pencil in the exams. Draw the solution as you go along this can help prevent putting in cycles by mistake. This can also prompt students to look in all relevant columns, not just the one they just added.

24 Networks Be able to model and solve problems using networks Shortest Path Dijkstra s algorithm Googlemaps and Google Earth are brilliant tools for networks

25 Dijkstra s Algorithm This algorithm finds the shortest path from the start vertex to every other vertex in the network. Showing working correctly is vital to getting the marks in these questions B 4 F A C D E G

26 Dijkstra s Algorithm Order in which vertices are labelled. Distance from A to vertex B Working 4 F 1 0 A D Label vertex A 1 as it is the first vertex labelled 3 C E 2 G

27 Teaching tips- shortest path Explain that permanent labels are unbeatable. This includes making the 0 at the starting vertex permanent, since 0 is the shortest possible distance from the start to itself. Stress the importance of working values, examiners will be looking for the correct values in here. When updating temporary values, if there is already a temporary value at a vertex, don t write a bigger one there.

28 Traversable graphs Which of these graphs can be drawn without taking your pen off the paper or repeating any edges?

29 Traversable graphs Yes start and finish in different places Semi-Eulerian Yes- start and finish in the same place Eulerian No What is significant about the results? Can you explain why?

30 Touring: The underlying Graph Theory An Eulerian Trail is a route that travels along every edge once only and returns to the starting vertex A Hamiltonian Cycle is a closed path which visits every vertex (once and only once excluding the start / finish vertex!).

31 Touring algorithms Route Inspection often called Chinese postman after the Chinese mathematician, Mei Ko Kwan, who developed the algorithm in 1962 This algorithm is about trying to find an Eulerian trail in a network. Of course, you usually can t! Travelling salesperson this algorithm is about trying to find a Hamiltonian cycle in a network.

32 Route inspection problems 1. Identify the odd vertices in the network 2. Consider all the routes joining pairs of odd vertices and select the one with the least weight. 3. Find the sum of the weights on all the edges 4. Shortest distance is the sum of the weights plus the extra that must be travelled 5. Find a tour which repeats the edges found in step 2.

33 Teaching tips: Route inspection Make sure that students consider all possible pairings and are systematic where looking for pairs of odd vertices in RI. Modelling skills are very important when tackling all types of network problems. Students must be able to interpret the solution in the context of the original problem. Students may need to work from networks, tables or combinations of both, so make sure they are prepared for any eventuality.

34 Teaching tips: Route Inspection Make sure that students consider all possible pairings and are systematic where looking for pairs of odd vertices in RI. Modelling skills are very important when tackling all types of network problem. Students must be able to interpret the solution in the context of the original problem. Students may need to work from networks, tables or combinations of both, so make sure they are prepared for any eventuality.

35 Flight plan Find the route that visits every city (at least once) and uses the least air miles.

36 Terminology A walk in a network is a finite sequence of edges such that the end vertex of one edge is the start vertex of the next. A tour is a walk that visits every vertex in the network, returning to the starting vertex. The travelling salesman problem is trying to find a walk that gives a minimum tour i.e. find a tour of minimum weight

37 Solution to the TSP problem There is no known algorithm that solves this problem So instead of doing an exhaustive search we can make use of heuristic algorithms where we can have a good answer but probably not the optimal solution.

38 Solution to the TSP problem Lower bound < optimal solution Upper bound We just need to find a largest lower bound that we can We just need to find the smallest upper bound that we can

39 In each network, find a cycle of minimum length, starting and finishing at A. Is it possible to find a cycle that visits each vertex once, and only once? A cycle that that visits each vertex once, and only once including all vertices of a network is a Hamiltonian cycle

40 Two types of problem: Classical and practical In the classical problem you must visit each vertex only once before returning to the start In the practical problem you must visit each vertex at least once before returning to the start Key idea: If you convert a network into a complete network of least distances, the classical problem and the practical problem are the same. All complete graphs do have Hamiltonian cycles

41 Nearest neighbour algorithm for upper bounds 1. Choose any vertex as the starting point. 2. From the vertices not already selected find the nearest vertex to the last one. 3. Repeat step 2 until all vertices have been selected. 4. Join the last vertex to the first vertex. 5. Repeat for different starting vertices. 6. Choose the least upper bound.

42 An algorithm for lower bounds 1. Choose a vertex and delete it and all its edges from the network. 2. Find a minimum connector for the remaining network using Kruskal s or Prim s. 3. Add in the weights of the two least weight deleted edges. 4. Repeat deleting a different vertex. 5. Choose the greatest lower bound.

43 Teaching tips: Travelling salesperson TSP uses the MST algorithms so make sure the students are secure in this first. It is important to distinguish between TSP and RI and which to use for what type of problem. When teaching TSP, make sure students understand the distinction between the classical problem, which uses a complete network, and the practical problem, which almost certainly doesn t. When finding a lower bound for TSP, we use the method where a vertex is deleted. The resulting lower bound DOES NOT give a tour, except in exceptional circumstances. Students don t understand why it is the GREATEST lower bound and LEAST upper bound.

44 Network Problems Activity

45 Exam advice Most marks (70%+) are for clearly demonstrating use of the algorithms, very few of the marks in the exam go on answers. Examiners are trying to give as many marks as possible Students often show signs of running out of time There are extension marks on every paper usually at the end of long questions Poor setting out and illegible handwriting makes it very hard to give marks; clear working is absolutely essential.

46 A satellite navigation system Sainsburys Home Delivery Snowplough clearing all the roads in a town A courier with one urgent delivery to make A milk tanker from a dairy collecting milk from farms Ambulance travelling to an emergency Cable TV company linking towns using as little cable as possible Council re painting the lines in the middle of the roads Road builder joining a few villages as economically as possible Courier with several deliveries to make Highways Authority inspecting roads for fallen trees after a storm Pedestrian precinct being created to connect places of interest in a town centre Water pipelines being laid to connect pumping stations as economically as possible A person planning the route to their holiday house A parking official patrolling all the streets in an area A family on a shopping trip with several shops to visit before they can return to their car

47 Classification Activity This activity is for students who have learnt the topics of Minimum Spanning Trees, Route Inspection Problem, Travelling Salesperson Problem and Dijkstra s Algorithm, to practise matching problems to techniques. Resources needed: sugar paper, scissors, glue, set of cards This is an activity for students working in small groups. Each group is given a set of cards to cut up and a piece of sugar paper which they divide into four as shown Minimum Spanning Trees Dijkstra s Algorithm Route Inspection Travelling Salesperson Students then discuss in their groups and stick the cards in the most appropriate section. They are then to think up one example of their own for each topic which they write on the blank cards and stick in the appropriate section. Groups can then be paired up to compare and discuss their results, or can feedback to the whole class. Posters can be displayed in the classroom

Module 2: NETWORKS AND DECISION MATHEMATICS

Module 2: NETWORKS AND DECISION MATHEMATICS Further Mathematics 2017 Module 2: NETWORKS AND DECISION MATHEMATICS Chapter 9 Undirected Graphs and Networks Key knowledge the conventions, terminology, properties and types of graphs; edge, face, loop,

More information

Further Mathematics 2016 Module 2: NETWORKS AND DECISION MATHEMATICS Chapter 9 Undirected Graphs and Networks

Further Mathematics 2016 Module 2: NETWORKS AND DECISION MATHEMATICS Chapter 9 Undirected Graphs and Networks Further Mathematics 2016 Module 2: NETWORKS AND DECISION MATHEMATICS Chapter 9 Undirected Graphs and Networks Key knowledge the conventions, terminology, properties and types of graphs; edge, face, loop,

More information

A gritting lorry gritting all the roads in a town. Council workers re painting the lines in the middle of the roads

A gritting lorry gritting all the roads in a town. Council workers re painting the lines in the middle of the roads A satellite navigation system Sainsburys Home Delivery A gritting lorry gritting all the roads in a town A courier with one urgent delivery to make A milk tanker from a dairy collecting milk from farms

More information

MEI Conference 2009: D2

MEI Conference 2009: D2 D Networks MEI Conference 009: D Travelling Salesperson Problem 7 A B Route Inspection Problems (Chinese Postman) () A 7 B () 4 () C Identify the odd vertices in the network Consider all the routes joining

More information

Topic 10 Part 2 [474 marks]

Topic 10 Part 2 [474 marks] Topic Part 2 [474 marks] The complete graph H has the following cost adjacency matrix Consider the travelling salesman problem for H a By first finding a minimum spanning tree on the subgraph of H formed

More information

Classic Graph Theory Problems

Classic Graph Theory Problems Classic Graph Theory Problems Hiroki Sayama sayama@binghamton.edu The Origin Königsberg bridge problem Pregel River (Solved negatively by Euler in 176) Representation in a graph Can all the seven edges

More information

1. Sorting (assuming sorting into ascending order) a) BUBBLE SORT

1. Sorting (assuming sorting into ascending order) a) BUBBLE SORT DECISION 1 Revision Notes 1. Sorting (assuming sorting into ascending order) a) BUBBLE SORT Make sure you show comparisons clearly and label each pass First Pass 8 4 3 6 1 4 8 3 6 1 4 3 8 6 1 4 3 6 8 1

More information

Chapter 3: Paths and Cycles

Chapter 3: Paths and Cycles Chapter 3: Paths and Cycles 5 Connectivity 1. Definitions: Walk: finite sequence of edges in which any two consecutive edges are adjacent or identical. (Initial vertex, Final vertex, length) Trail: walk

More information

Mathematics (JAN13MD0101) General Certificate of Education Advanced Subsidiary Examination January Unit Decision TOTAL

Mathematics (JAN13MD0101) General Certificate of Education Advanced Subsidiary Examination January Unit Decision TOTAL Centre Number Candidate Number For Examiner s Use Surname Other Names Candidate Signature Examiner s Initials Mathematics Unit Decision 1 Friday 25 January 2013 General Certificate of Education Advanced

More information

MATHEMATICS 4736 Decision Mathematics 1

MATHEMATICS 4736 Decision Mathematics 1 ADVANCED SUBSIDIARY GCE MATHEMATICS 4736 Decision Mathematics 1 QUESTION PAPER Candidates answer on the printed answer book. OCR supplied materials: Printed answer book 4736 List of Formulae (MF1) Other

More information

Condensed. Mathematics. General Certificate of Education Advanced Subsidiary Examination June Unit Decision 1. Time allowed * 1 hour 30 minutes

Condensed. Mathematics. General Certificate of Education Advanced Subsidiary Examination June Unit Decision 1. Time allowed * 1 hour 30 minutes General Certificate of Education Advanced Subsidiary Examination June 2010 Mathematics MD01 Unit Decision 1 Wednesday 9 June 2010 1.30 pm to 3.00 pm For this paper you must have: the blue AQA booklet of

More information

(Refer Slide Time: 01:00)

(Refer Slide Time: 01:00) Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture minus 26 Heuristics for TSP In this lecture, we continue our discussion

More information

Chapter 5: Euler Paths and Circuits The Mathematics of Getting Around

Chapter 5: Euler Paths and Circuits The Mathematics of Getting Around 1 Finite Math A Chapter 5: Euler Paths and Circuits The Mathematics of Getting Around Academic Standards Covered in this Chapter: *************************************************************************************

More information

Chapter 5: Euler Paths and Circuits The Mathematics of Getting Around

Chapter 5: Euler Paths and Circuits The Mathematics of Getting Around 1 Finite Math A Chapter 5: Euler Paths and Circuits The Mathematics of Getting Around Academic Standards Covered in this Chapter: *************************************************************************************

More information

Friday 24 June 2016 Morning Time allowed: 1 hour 30 minutes

Friday 24 June 2016 Morning Time allowed: 1 hour 30 minutes Please write clearly in block capitals. Centre number Candidate number Surname Forename(s) Candidate signature AS MATHEMATICS Unit Decision 1 Friday 24 June 2016 Morning Time allowed: 1 hour 30 minutes

More information

Mathematics (JUN10MD0101) General Certificate of Education Advanced Subsidiary Examination June Unit Decision TOTAL

Mathematics (JUN10MD0101) General Certificate of Education Advanced Subsidiary Examination June Unit Decision TOTAL Centre Number Candidate Number For Examiner s Use Surname Other Names Candidate Signature Examiner s Initials Mathematics Unit Decision 1 Wednesday 9 June 2010 General Certificate of Education Advanced

More information

How to find a minimum spanning tree

How to find a minimum spanning tree Print How to find a minimum spanning tree Definitions Kruskal s algorithm Spanning tree example Definitions Trees A tree is a connected graph without any cycles. It can also be defined as a connected graph

More information

Precept 4: Traveling Salesman Problem, Hierarchical Clustering. Qian Zhu 2/23/2011

Precept 4: Traveling Salesman Problem, Hierarchical Clustering. Qian Zhu 2/23/2011 Precept 4: Traveling Salesman Problem, Hierarchical Clustering Qian Zhu 2/23/2011 Agenda Assignment: Traveling salesman problem Hierarchical clustering Example Comparisons with K-means TSP TSP: Given the

More information

MATHEMATICS 4736 Decision Mathematics 1

MATHEMATICS 4736 Decision Mathematics 1 ADVANCED SUBSIDIARY GCE MATHEMATICS 4736 Decision Mathematics 1 QUESTION PAPER Candidates answer on the Printed Answer Book OCR Supplied Materials: Printed Answer Book 4736 List of Formulae (MF1) Other

More information

Tree. number of vertices. Connected Graph. CSE 680 Prof. Roger Crawfis

Tree. number of vertices. Connected Graph. CSE 680 Prof. Roger Crawfis Tree Introduction to lgorithms Spanning Trees CSE Prof. Roger Crawfis We call an undirected graph a tree if the graph is connected and contains no cycles. Trees: Not Trees: Not connected Has a cycle Number

More information

A path that visits every vertex exactly once is a Hamiltonian path. A circuit that visits every vertex exactly once is a Hamiltonian circuit.

A path that visits every vertex exactly once is a Hamiltonian path. A circuit that visits every vertex exactly once is a Hamiltonian circuit. Math 167 Review of Chapter 2 1 (c) Janice Epstein CHAPTER 2 BUSINESS EFFICENCY A path that visits every vertex exactly once is a Hamiltonian path. A circuit that visits every vertex exactly once is a Hamiltonian

More information

Undirected Network Summary

Undirected Network Summary Undirected Network Summary Notice that the network above has multiple edges joining nodes a to d and the network has a loop at node d. Also c is called an isolated node as it is not connected to any other

More information

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. An Introduction to Graph Theory

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. An Introduction to Graph Theory SCHOOL OF ENGINEERING & BUILT ENVIRONMENT Mathematics An Introduction to Graph Theory. Introduction. Definitions.. Vertices and Edges... The Handshaking Lemma.. Connected Graphs... Cut-Points and Bridges.

More information

EECS 203 Lecture 20. More Graphs

EECS 203 Lecture 20. More Graphs EECS 203 Lecture 20 More Graphs Admin stuffs Last homework due today Office hour changes starting Friday (also in Piazza) Friday 6/17: 2-5 Mark in his office. Sunday 6/19: 2-5 Jasmine in the UGLI. Monday

More information

Mathematics MD01. General Certificate of Education Advanced Subsidiary Examination. Unit Decision 1

Mathematics MD01. General Certificate of Education Advanced Subsidiary Examination. Unit Decision 1 Centre Number Candidate Number For Examiner s Use Surname Other Names Candidate Signature Examiner s Initials Mathematics Unit Decision 1 General Certificate of Education Advanced Subsidiary Examination

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Chapter 9 Graph Algorithms 2 Introduction graph theory useful in practice represent many real-life problems can be if not careful with data structures 3 Definitions an undirected graph G = (V, E) is a

More information

Condensed. Mathematics MD01. General Certificate of Education Advanced Subsidiary Examination June Unit Decision 1.

Condensed. Mathematics MD01. General Certificate of Education Advanced Subsidiary Examination June Unit Decision 1. General Certificate of Education Advanced Subsidiary Examination June 2015 Mathematics MD01 Unit Decision 1 Tuesday 16 June 2015 1.30 pm to 3.00 pm For this paper you must have: the blue AQA booklet of

More information

Mathematics MD01 (JUN15MD0101) General Certificate of Education Advanced Subsidiary Examination June Unit Decision TOTAL

Mathematics MD01 (JUN15MD0101) General Certificate of Education Advanced Subsidiary Examination June Unit Decision TOTAL Centre Number Candidate Number For Examiner s Use Surname Other Names Candidate Signature Examiner s Initials Mathematics Unit Decision 1 Tuesday 16 June 2015 General Certificate of Education Advanced

More information

the Further Mathematics network V SUMMARY SHEET DECISION MATHS Algorithms Input A and B (positive integers)

the Further Mathematics network  V SUMMARY SHEET DECISION MATHS Algorithms Input A and B (positive integers) the urther Mathematics network www.fmnetwork.org.uk V 07 SUMMRY SHT ISION MTHS lgorithms The main ideas are covered in Q dexcel MI OR The main ideas in this topic are Understanding and implementing a variety

More information

MAS 341: GRAPH THEORY 2016 EXAM SOLUTIONS

MAS 341: GRAPH THEORY 2016 EXAM SOLUTIONS MS 41: PH THEOY 2016 EXM SOLUTIONS 1. Question 1 1.1. Explain why any alkane C n H 2n+2 is a tree. How many isomers does C 6 H 14 have? Draw the structure of the carbon atoms in each isomer. marks; marks

More information

SUMMARY SHEET DECISION MATHS. Algorithms. Input A and B (positive integers) Let Q = int(b/a) Let R1 = B A Q

SUMMARY SHEET DECISION MATHS. Algorithms. Input A and B (positive integers) Let Q = int(b/a) Let R1 = B A Q the urther Mathematics network www.fmnetwork.org.uk V 07 SUMMRY SHT ISION MTHS lgorithms The main ideas are covered in Q dexcel MI OR The main ideas in this topic are Understanding and implementing a variety

More information

1. a graph G = (V (G), E(G)) consists of a set V (G) of vertices, and a set E(G) of edges (edges are pairs of elements of V (G))

1. a graph G = (V (G), E(G)) consists of a set V (G) of vertices, and a set E(G) of edges (edges are pairs of elements of V (G)) 10 Graphs 10.1 Graphs and Graph Models 1. a graph G = (V (G), E(G)) consists of a set V (G) of vertices, and a set E(G) of edges (edges are pairs of elements of V (G)) 2. an edge is present, say e = {u,

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Introduction graph theory useful in practice represent many real-life problems can be if not careful with data structures Chapter 9 Graph s 2 Definitions Definitions an undirected graph is a finite set

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com 1. The network in the diagram above shows the distances, in metres, between 10 wildlife observation points. The observation points are to be linked by footpaths, to form a network along the arcs indicated,

More information

Discrete mathematics

Discrete mathematics Discrete mathematics Petr Kovář petr.kovar@vsb.cz VŠB Technical University of Ostrava DiM 470-2301/02, Winter term 2018/2019 About this file This file is meant to be a guideline for the lecturer. Many

More information

Decision Mathematics 1 THURSDAY 12 JUNE 2008

Decision Mathematics 1 THURSDAY 12 JUNE 2008 ADVANCED SUBSIDIARY GCE 4736/01 MATHEMATICS Decision Mathematics 1 THURSDAY 12 JUNE 2008 Additional materials: Answer Booklet (8 pages) Insert for Question 4 List of Formulae (MF1) Morning Time: 1 hour

More information

0.0.1 Network Analysis

0.0.1 Network Analysis Graph Theory 0.0.1 Network Analysis Prototype Example: In Algonquian Park the rangers have set up snowmobile trails with various stops along the way. The system of trails is our Network. The main entrance

More information

Wednesday 15 June 2016 Morning

Wednesday 15 June 2016 Morning Oxford Cambridge and RSA Wednesday 15 June 2016 Morning AS GCE MATHEMATICS 4736/01 Decision Mathematics 1 QUESTION PAPER *6392887505* Candidates answer on the Printed Answer Book. OCR supplied materials:

More information

Thursday 24 May 2012 Morning

Thursday 24 May 2012 Morning Thursday 24 May 2012 Morning AS GCE MATHEMATICS 4736 Decision Mathematics 1 QUESTION PAPER *4715580612* Candidates answer on the Printed Answer Book. OCR supplied materials: Printed Answer Book 4736 List

More information

Monday 23 January 2012 Morning

Monday 23 January 2012 Morning Monday 23 January 2012 Morning AS GCE MATHEMATICS 4736 Decision Mathematics 1 QUESTION PAPER *4733020112* Candidates answer on the Printed Answer Book. OCR supplied materials: Printed Answer Book 4736

More information

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture 28 Chinese Postman Problem In this lecture we study the Chinese postman

More information

Friday 5 June 2015 Morning

Friday 5 June 2015 Morning Oxford Cambridge and RSA Friday 5 June 2015 Morning AS GCE MATHEMATICS 4736/01 Decision Mathematics 1 QUESTION PAPER * 3 2 4 8 7 7 8 5 4 8 * Candidates answer on the Printed Answer Book. OCR supplied materials:

More information

of optimization problems. In this chapter, it is explained that what network design

of optimization problems. In this chapter, it is explained that what network design CHAPTER 2 Network Design Network design is one of the most important and most frequently encountered classes of optimization problems. In this chapter, it is explained that what network design is? The

More information

Grade 7/8 Math Circles Graph Theory - Solutions October 13/14, 2015

Grade 7/8 Math Circles Graph Theory - Solutions October 13/14, 2015 Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 7/8 Math Circles Graph Theory - Solutions October 13/14, 2015 The Seven Bridges of Königsberg In

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Chapter 9 Graph Algorithms 2 Introduction graph theory useful in practice represent many real-life problems can be slow if not careful with data structures 3 Definitions an undirected graph G = (V, E)

More information

PATH FINDING AND GRAPH TRAVERSAL

PATH FINDING AND GRAPH TRAVERSAL GRAPH TRAVERSAL PATH FINDING AND GRAPH TRAVERSAL Path finding refers to determining the shortest path between two vertices in a graph. We discussed the Floyd Warshall algorithm previously, but you may

More information

Topics Covered. Introduction to Graphs Euler s Theorem Hamiltonian Circuits The Traveling Salesman Problem Trees and Kruskal s Algorithm

Topics Covered. Introduction to Graphs Euler s Theorem Hamiltonian Circuits The Traveling Salesman Problem Trees and Kruskal s Algorithm Graph Theory Topics Covered Introduction to Graphs Euler s Theorem Hamiltonian Circuits The Traveling Salesman Problem Trees and Kruskal s Algorithm What is a graph? A collection of points, called vertices

More information

11/22/2016. Chapter 9 Graph Algorithms. Introduction. Definitions. Definitions. Definitions. Definitions

11/22/2016. Chapter 9 Graph Algorithms. Introduction. Definitions. Definitions. Definitions. Definitions Introduction Chapter 9 Graph Algorithms graph theory useful in practice represent many real-life problems can be slow if not careful with data structures 2 Definitions an undirected graph G = (V, E) is

More information

Data Sheet Peel Port Erin Ramsey St. Johns

Data Sheet Peel Port Erin Ramsey St. Johns Bride Data Sheet Ramsey The map shows some of the towns and roads on the Isle of Man. A cable TV company wants to lay cables to connect the towns, laying the cable along the roads shown on the map. Kirk

More information

Elements of Graph Theory

Elements of Graph Theory Elements of Graph Theory Quick review of Chapters 9.1 9.5, 9.7 (studied in Mt1348/2008) = all basic concepts must be known New topics we will mostly skip shortest paths (Chapter 9.6), as that was covered

More information

Mathematical Thinking

Mathematical Thinking Mathematical Thinking Chapter 2 Hamiltonian Circuits and Spanning Trees It often happens in mathematics that what appears to be a minor detail in the statement of a problem can have a profound effect on

More information

Theory of Computing. Lecture 10 MAS 714 Hartmut Klauck

Theory of Computing. Lecture 10 MAS 714 Hartmut Klauck Theory of Computing Lecture 10 MAS 714 Hartmut Klauck Seven Bridges of Königsberg Can one take a walk that crosses each bridge exactly once? Seven Bridges of Königsberg Model as a graph Is there a path

More information

14 Graph Theory. Exercise Set 14-1

14 Graph Theory. Exercise Set 14-1 14 Graph Theory Exercise Set 14-1 1. A graph in this chapter consists of vertices and edges. In previous chapters the term was used as a visual picture of a set of ordered pairs defined by a relation or

More information

Graphs Definitions. Gunnar Gotshalks. GraphDefinitions 1

Graphs Definitions. Gunnar Gotshalks. GraphDefinitions 1 Graphs Definitions GraphDefinitions 1 Examples of Graphs Street maps» Vertices are the intersections» Edges are the streets Power line network» Vertices are the houses & power stations» Edges are the power

More information

1 Euler Circuits. Many of the things we do in daily life involve networks, like the one shown below [Houston Street Map]. Figure 1: Houston City Map

1 Euler Circuits. Many of the things we do in daily life involve networks, like the one shown below [Houston Street Map]. Figure 1: Houston City Map 1 Euler Circuits Many of the things we do in daily life involve networks, like the one shown below [Houston Street Map]. Figure 1: Houston City Map Suppose you needed to vist a number of locations in the

More information

The Travelling Salesman Problem

The Travelling Salesman Problem The Travelling Salesman Problem The travelling salesman problem cannot be solved directly without vast amounts of processing power, since every possible Hamiltonian cycle would need to be measured. For

More information

Graph Theory. 1 Introduction to Graphs. Martin Stynes Department of Mathematics, UCC January 26, 2011

Graph Theory. 1 Introduction to Graphs. Martin Stynes Department of Mathematics, UCC   January 26, 2011 Graph Theory Martin Stynes Department of Mathematics, UCC email: m.stynes@ucc.ie January 26, 2011 1 Introduction to Graphs 1 A graph G = (V, E) is a non-empty set of nodes or vertices V and a (possibly

More information

GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS

GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS DR. ANDREW SCHWARTZ, PH.D. 10.1 Graphs and Graph Models (1) A graph G = (V, E) consists of V, a nonempty set of vertices (or nodes)

More information

physicsandmathstutor.com

physicsandmathstutor.com ADVANCED SUBSIDIARY GCE UNIT 4736/01 MATHEMATICS Decision Mathematics 1 TUESDAY 23 JANUARY 2007 Afternoon Additional Materials: Answer Booklet (8 pages) List of Formulae (MF1) Time: 1 hour 30 minutes INSTRUCTIONS

More information

GCE. Mathematics. Mark Scheme for January Advanced GCE Unit 4736: Decision Mathematics 1. physicsandmathstutor.com

GCE. Mathematics. Mark Scheme for January Advanced GCE Unit 4736: Decision Mathematics 1. physicsandmathstutor.com GCE Mathematics Advanced GCE Unit 4736: Decision Mathematics 1 Mark Scheme for January 2011 Oxford Cambridge and RSA Examinations OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing

More information

Chapter 1. Urban Services. Chapter Outline. Chapter Summary

Chapter 1. Urban Services. Chapter Outline. Chapter Summary Chapter 1 Urban Services Chapter Outline Introduction Section 1.1 Euler Circuits Section 1.2 Finding Euler Circuits Section 1.3 Beyond Euler Circuits Section 1.4 Urban Graph Traversal Problems Chapter

More information

How to make Decision Maths exciting. know the big ideas. Further Mathematics Support Programme. What s in D1? Sue de Pomerai

How to make Decision Maths exciting. know the big ideas. Further Mathematics Support Programme. What s in D1? Sue de Pomerai the Further Mathematics Support Programme www.furthermaths.org.uk Further Mathematics Support Programme How to make Decision Maths exciting Sue de Pomerai the Further Mathematics Support Programme Let

More information

Graph Applications, Class Notes, CS 3137 1 Traveling Salesperson Problem Web References: http://www.tsp.gatech.edu/index.html http://www-e.uni-magdeburg.de/mertens/tsp/tsp.html TSP applets A Hamiltonian

More information

Preface MOTIVATION ORGANIZATION OF THE BOOK. Section 1: Basic Concepts of Graph Theory

Preface MOTIVATION ORGANIZATION OF THE BOOK. Section 1: Basic Concepts of Graph Theory xv Preface MOTIVATION Graph Theory as a well-known topic in discrete mathematics, has become increasingly under interest within recent decades. This is principally due to its applicability in a wide range

More information

Varying Applications (examples)

Varying Applications (examples) Graph Theory Varying Applications (examples) Computer networks Distinguish between two chemical compounds with the same molecular formula but different structures Solve shortest path problems between cities

More information

6.2 Initial Problem. Section 6.2 Network Problems. 6.2 Initial Problem, cont d. Weighted Graphs. Weighted Graphs, cont d. Weighted Graphs, cont d

6.2 Initial Problem. Section 6.2 Network Problems. 6.2 Initial Problem, cont d. Weighted Graphs. Weighted Graphs, cont d. Weighted Graphs, cont d Section 6.2 Network Problems Goals Study weighted graphs Study spanning trees Study minimal spanning trees Use Kruskal s algorithm 6.2 Initial Problem Walkways need to be built between the buildings on

More information

Math for Liberal Arts MAT 110: Chapter 13 Notes

Math for Liberal Arts MAT 110: Chapter 13 Notes Math for Liberal Arts MAT 110: Chapter 13 Notes Graph Theory David J. Gisch Networks and Euler Circuits Network Representation Network: A collection of points or objects that are interconnected in some

More information

PBW 654 Applied Statistics - I Urban Operations Research. Unit 3. Network Modelling

PBW 654 Applied Statistics - I Urban Operations Research. Unit 3. Network Modelling PBW 54 Applied Statistics - I Urban Operations Research Unit 3 Network Modelling Background So far, we treated urban space as a continuum, where an entity could travel from any point to any other point

More information

Fundamental Properties of Graphs

Fundamental Properties of Graphs Chapter three In many real-life situations we need to know how robust a graph that represents a certain network is, how edges or vertices can be removed without completely destroying the overall connectivity,

More information

Sections 5.2, 5.3. & 5.4

Sections 5.2, 5.3. & 5.4 MATH 11008: Graph Theory Terminology Sections 5.2, 5.3. & 5.4 Routing problem: A routing problem is concerned with finding ways to route the delivery of good and/or services to an assortment of destinations.

More information

MATHEMATICS Unit Decision 1

MATHEMATICS Unit Decision 1 General Certificate of Education June 2008 Advanced Subsidiary Examination MATHEMATICS Unit Decision 1 MD01 Friday 6 June 2008 1.30 pm to 3.00 pm For this paper you must have: an 8-page answer book the

More information

Optimal tour along pubs in the UK

Optimal tour along pubs in the UK 1 From Facebook Optimal tour along 24727 pubs in the UK Road distance (by google maps) see also http://www.math.uwaterloo.ca/tsp/pubs/index.html (part of TSP homepage http://www.math.uwaterloo.ca/tsp/

More information

Friday 24 May 2013 Morning

Friday 24 May 2013 Morning Friday 24 May 2013 Morning AS GCE MATHEMATICS 4736/01 Decision Mathematics 1 QUESTION PAPER *4715580613* Candidates answer on the Printed Answer Book. OCR supplied materials: Printed Answer Book 4736/01

More information

Homework 5: Graphs, Minimum Spanning Trees, and Dijkstra Shortest-Path

Homework 5: Graphs, Minimum Spanning Trees, and Dijkstra Shortest-Path Homework 5: Graphs, Minimum Spanning Trees, and Dijkstra Shortest-Path 1. (4 points) A graph is Hamiltonian if there is a cycle in the graph visiting each vertex exactly once. Give an example of an Eulerian

More information

GCE. Mathematics. Mark Scheme for June Advanced GCE Oxford Cambridge and RSA Examinations

GCE. Mathematics. Mark Scheme for June Advanced GCE Oxford Cambridge and RSA Examinations GCE Mathematics Advanced GCE 4736 Mark Scheme for June 2010 Oxford Cambridge and RSA Examinations OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications

More information

Instant Insanity Instructor s Guide Make-it and Take-it Kit for AMTNYS 2006

Instant Insanity Instructor s Guide Make-it and Take-it Kit for AMTNYS 2006 Instant Insanity Instructor s Guide Make-it and Take-it Kit for AMTNYS 2006 THE KIT: This kit contains materials for two Instant Insanity games, a student activity sheet with answer key and this instructor

More information

Chapter 5: The Mathematics of Getting Around

Chapter 5: The Mathematics of Getting Around Euler Paths and Circuits Chapter 5: The Mathematics of Getting Around 5.1 Street-Routing Problem Our story begins in the 1700s in the medieval town of Königsberg, in Eastern Europe. At the time, Königsberg

More information

AQR UNIT 7. Circuits, Paths, and Graph Structures. Packet #

AQR UNIT 7. Circuits, Paths, and Graph Structures. Packet # AQR UNIT 7 NETWORKS AND GRAPHS: Circuits, Paths, and Graph Structures Packet # BY: Introduction to Networks and Graphs: Try drawing a path for a person to walk through each door exactly once without going

More information

What Time Where Muddy City 10 min MSTLessonPlan.docx MSTWorksheets.pptx Discussion 5 min MSTLessonPlan.docx

What Time Where Muddy City 10 min MSTLessonPlan.docx MSTWorksheets.pptx Discussion 5 min MSTLessonPlan.docx MST Lesson Plan Overview Minimal Spanning Trees Summary Many networks link our society: telephone networks, utility supply networks, computer networks, and road networks. For a particular network there

More information

Maximum Flows of Minimum Cost

Maximum Flows of Minimum Cost Maximum Flows of Minimum Cost Figure 8-24 Two possible maximum flows for the same network Data Structures and Algorithms in Java 1 Maximum Flows of Minimum Cost (continued) Figure 8-25 Finding a maximum

More information

Study Guide Mods: Date:

Study Guide Mods: Date: Graph Theory Name: Study Guide Mods: Date: Define each of the following. It may be helpful to draw examples that illustrate the vocab word and/or counterexamples to define the word. 1. Graph ~ 2. Vertex

More information

Number Theory and Graph Theory

Number Theory and Graph Theory 1 Number Theory and Graph Theory Chapter 7 Graph properties By A. Satyanarayana Reddy Department of Mathematics Shiv Nadar University Uttar Pradesh, India E-mail: satya8118@gmail.com 2 Module-2: Eulerian

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 2 (Week 9) 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 2 (Week 9) 2008 The University of Sydney MATH99/09 Graph Theory Tutorial (Week 9) 00. Show that the graph on the left is Hamiltonian, but that the other two are not. To show that the graph is Hamiltonian, simply find

More information

TWO CONTRIBUTIONS OF EULER

TWO CONTRIBUTIONS OF EULER TWO CONTRIBUTIONS OF EULER SIEMION FAJTLOWICZ. MATH 4315 Eulerian Tours. Although some mathematical problems which now can be thought of as graph-theoretical, go back to the times of Euclid, the invention

More information

11-5 Networks. Königsberg Bridge Problem

11-5 Networks. Königsberg Bridge Problem Section 11-5 Networks 1 11-5 Networks In the 1700s, the people of Königsberg, Germany (now Kaliningrad in Russia), used to enjoy walking over the bridges of the Pregel River. There were three landmasses

More information

GRAPH THEORY AND LOGISTICS

GRAPH THEORY AND LOGISTICS GRAPH THEORY AND LOGISTICS Maja Fošner and Tomaž Kramberger University of Maribor Faculty of Logistics Mariborska cesta 2 3000 Celje Slovenia maja.fosner@uni-mb.si tomaz.kramberger@uni-mb.si Abstract This

More information

Undirected graphs and networks

Undirected graphs and networks Gen. Maths h. 1(1) Page 1 Thursday, ecember 0, 1999 1:10 PM Undirected graphs and networks 1 V co covverage rea of study Units 1 & Geometry In this chapter 1 Vertices and edges 1 Planar graphs 1 ulerian

More information

Practice Exam #3, Math 100, Professor Wilson. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Practice Exam #3, Math 100, Professor Wilson. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Practice Exam #3, Math 100, Professor Wilson MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A tree is A) any graph that is connected and every

More information

Unit 7 Day 6. Section 5.2 Traveling Salesman Problem & Section 5.3 Finding the Shortest Route

Unit 7 Day 6. Section 5.2 Traveling Salesman Problem & Section 5.3 Finding the Shortest Route Unit 7 Day 6 Section 5.2 Traveling Salesman Problem & Section 5.3 Finding the Shortest Route 1 Warm Up Day 7: 1. Draw a planar graph with 6 vertices. 2. Is a K 9,3 graph planar? Explain your reasoning.

More information

r=1 The Binomial Theorem. 4 MA095/98G Revision

r=1 The Binomial Theorem. 4 MA095/98G Revision Revision Read through the whole course once Make summary sheets of important definitions and results, you can use the following pages as a start and fill in more yourself Do all assignments again Do the

More information

Partha Sarathi Mandal

Partha Sarathi Mandal MA 515: Introduction to Algorithms & MA353 : Design and Analysis of Algorithms [3-0-0-6] Lecture 39 http://www.iitg.ernet.in/psm/indexing_ma353/y09/index.html Partha Sarathi Mandal psm@iitg.ernet.in Dept.

More information

Graph Theory: Week 1

Graph Theory: Week 1 Graph Theory: Week Introduction to Graph Theory John Quinn August 30, 00 The Tokyo subway Week overview What are graphs? Why study graph theory? Examples of graphs in the real world Different types of

More information

Warm -Up. 1. Draw a connected graph with 4 vertices and 7 edges. What is the sum of the degrees of all the vertices?

Warm -Up. 1. Draw a connected graph with 4 vertices and 7 edges. What is the sum of the degrees of all the vertices? Warm -Up 1. Draw a connected graph with 4 vertices and 7 edges. What is the sum of the degrees of all the vertices? 1. Is this graph a. traceable? b. Eulerian? 3. Eulerize this graph. Warm-Up Eulerize

More information

Math/Stat 2300 Modeling using Graph Theory (March 23/25) from text A First Course in Mathematical Modeling, Giordano, Fox, Horton, Weir, 2009.

Math/Stat 2300 Modeling using Graph Theory (March 23/25) from text A First Course in Mathematical Modeling, Giordano, Fox, Horton, Weir, 2009. Math/Stat 2300 Modeling using Graph Theory (March 23/25) from text A First Course in Mathematical Modeling, Giordano, Fox, Horton, Weir, 2009. Describing Graphs (8.2) A graph is a mathematical way of describing

More information

Coping with the Limitations of Algorithm Power Exact Solution Strategies Backtracking Backtracking : A Scenario

Coping with the Limitations of Algorithm Power Exact Solution Strategies Backtracking Backtracking : A Scenario Coping with the Limitations of Algorithm Power Tackling Difficult Combinatorial Problems There are two principal approaches to tackling difficult combinatorial problems (NP-hard problems): Use a strategy

More information

MATHEMATICS 4736 Decision Mathematics 1

MATHEMATICS 4736 Decision Mathematics 1 ADVANCED SUBSIDIARY GCE MATHEMATICS 4736 Decision Mathematics 1 QUESTION PAPER Candidates answer on the Printed Answer Book OCR Supplied Materials: Printed Answer Book 4736 List of Formulae (MF1) Other

More information

Decision Mathematics D1 Advanced/Advanced Subsidiary. Friday 17 May 2013 Morning Time: 1 hour 30 minutes

Decision Mathematics D1 Advanced/Advanced Subsidiary. Friday 17 May 2013 Morning Time: 1 hour 30 minutes Paper Reference(s) 6689/01R Edexcel GCE ecision Mathematics 1 Advanced/Advanced Subsidiary Friday 17 May 2013 Morning Time: 1 hour 30 minutes Materials required for examination Nil Items included with

More information

A region is each individual area or separate piece of the plane that is divided up by the network.

A region is each individual area or separate piece of the plane that is divided up by the network. Math 135 Networks and graphs Key terms Vertex (Vertices) ach point of a graph dge n edge is a segment that connects two vertices. Region region is each individual area or separate piece of the plane that

More information

Discrete mathematics II. - Graphs

Discrete mathematics II. - Graphs Emil Vatai April 25, 2018 Basic definitions Definition of an undirected graph Definition (Undirected graph) An undirected graph or (just) a graph is a triplet G = (ϕ, E, V ), where V is the set of vertices,

More information

The Traveling Salesman Problem (TSP) is where a least cost Hamiltonian circuit is found. CHAPTER 1 URBAN SERVICES

The Traveling Salesman Problem (TSP) is where a least cost Hamiltonian circuit is found. CHAPTER 1 URBAN SERVICES Math 167 eview 1 (c) Janice Epstein HPE 1 UN SEVIES path that visits every vertex exactly once is a Hamiltonian path. circuit that visits every vertex exactly once is a Hamiltonian circuit. Math 167 eview

More information