Client Server Computing

Size: px
Start display at page:

Download "Client Server Computing"

Transcription

1 Client Server Computing Although the Internet provides a basic communication service, the protocol software cannot initiate contact with, or accept contact from, a remote computer. Instead, two application programs must participate in any communication with one application initiates communication and the one accepts it. In network applications, a server application waits passively for contact after informing local protocol software that a specific type of message is expected, while a client application initiates communication actively by sending a matched type of message. 8/25/99 Socket API/ 1

2 Characteristics of Clients Software is an arbitrary application program that becomes a client temporarily when remote access is needed, but also performs other computation locally. is invoked directly by a user, and executes only for one session. runs locally on a user s personal computer. actively initiates contact with a server. can access multiple services as needed, but actively contacts one remote server at a time. does not require special hardware or sophisticated operating system. 8/25/99 Socket API/ 2

3 Characteristics of Servers Software is a special-purpose, privileged program dedicated to providing one service, but can handle multiple remote clients at the same time. is invoked automatically when a system boots, and continues to execute through many sessions. runs on a shared computer (i.e., not on a user s personal computer). waits passively for contact from arbitrary clients. accepts contact from arbitrary clients, but offers a single service. requires powerful hardware and a sophisticated OS. 8/25/99 Socket API/ 3

4 Identifying A Particular Service Transport protocols assign each service a unique identifier. Both client and server specify the service identifier; protocol software uses the identifier to direct each incoming request to the correct server. In TCP/IP, TCP uses 16-bit integer values known as protocol port numbers to identify services. 8/25/99 Socket API/ 4

5 Concurrent Server Concurrent execution is fundamental to servers because concurrency permits multiple clients to obtain a given service without having to wait for the server to finish previous requests. In concurrent server designs, the server creates a new thread to handle each client. Transport protocols assign an identifier to each client as well as to each service. Protocol software on the server s machine uses the combination of client and server identifiers to choose the correct copy of a concurrent server. 8/25/99 Socket API/ 5

6 The Socket API The interface between an application program and the communication protocols in an operating system (OS) is known as the Application Program Interface or API. Sockets provide an implementation of the SAP (Service Access Point) abstraction at the Transport Layer in the TCP/IP protocol suite, which is part of the BSD Unix. A socket library can provide applications with a socket API on an operating system that does not provide native sockets (e.g. Windows 3.1). When an application calls one of the socket procedures, control passes to a library routine that makes one or more calls to the underlying OS to implement the socket function. 8/25/99 Socket API/ 6

7 A socket may be thought of as a generalization of the BSD Unix file access mechanism (open-read-write-close) that provides an end-point for communication. When an application creates a socket, the application is given a small integer descriptor used to reference the socket. If a system uses the same descriptor space for sockets and other I/O, a single application can be used for network communication as well as for local data transfer. An application must supply many details for each socket by specifying many parameters and options (e.g. an application must choose a particular protocol, provide address of remote machine, specify whether it is a client or server, etc.) To avoid having a single socket function with separate parameters for each options, designers of the socket API chose to define many functions, each with a few parameters. 8/25/99 Socket API/ 7

8 Server (connection-oriented protocol) socket() bind() listen() accept() blocks until connection from client read() connection establishment data (request) Socket system calls for connection-oriented protocol Client socket() connect() write() process request write() data (reply) read() 8/25/99 Socket API/ 8

9 Server (connectionless protocol) socket() bind() recvfrom() Socket system calls for connectionless protocol Client socket() blocks until data received from client process request data (request) bind() sendto() sendto() data (reply) revfrom() 8/25/99 Socket API/ 9

10 Data communication between two hosts on the Internet require the five components of what is called an association to be initialized: {protocol,local-addr, localprocess, foreign-addr, foreign-process} The different system calls for sockets provides values for one or more of these components. 8/25/99 Socket API/ 10

11 Socket system call The first system call any process wishing to do network I/O has to call is the socket system call. int listenfd = socket (int family, int type, int protocol) Examples of Family include: PF_UNIX PF_INET Examples of Type include SOCK_STREAM SOCK_DGRAM SOCK_RAW The protocol argument is typically zero, but may be specified to request an actual protocol like UDP, TCP, ICMP, etc. Ideally, the three parameters should be orthogonal, but in reality, not all combinations are meaningful. 8/25/99 Socket API/ 11

12 The socket system call just fills in one element of the five-tuple we ve looked at - the protocol. The remaining are filled in by the other calls as shown in the figure. Connection-Oriented Server Connection-oriented Client Connectionless Server Connectionless Client protocol local_addr, local_process foreign_addr, foreign_process socket() bind() accept() socket() connect() socket() socket() bind() bind() recvfrom() sendto() 8/25/99 Socket API/ 12

13 Bind System Call The bind system call assigns an address to an unnamed socket. Example int bind(int listenfd, struct sockaddr_in *myaddr, int addrlen) What is bind used for? Servers (both connection oriented and connectionless) NEED to register their well-known address to be able to accept connection requests. A client can register a specific address for itself. A connectionless client NEEDS to assure that it is bound to some unique address, so that the server has a valid return address to send its responses to. 8/25/99 Socket API/ 13

14 The bind system call provides the values for the local_addr and local_process elements in the five_tuple in an association. An address for the Internet domain sockets is a combination of a hostname and a port number, as shown below: struct sockaddr_in { short sin_family ; /*typically AF_INET*/ u_short sin_port; /* 16 bit port number, network byte ordered */ struct in_addr sin_addr ; /* 32 bit netid/hostid, network byte ordered */ char sin_zero[8]; /* unused*/ } 8/25/99 Socket API/ 14

15 Connect/Listen/Accept System Calls Connect A client process connects a socket descriptor after a socket system call to establish a connection with the server. int connect(int listenfd, struct sockaddr_in *servaddr, int addrlen) For a connection-oriented client, the connect (along with an accept at the server side) assigns all four addresses and process components of the association. 8/25/99 Socket API/ 15

16 Listen The listen system call is used by a connection-oriented server to indicate it is willing to receive connections, e.g., listen(listenfd, qlength), where the system will enqueue up to qlength requests for connections. Accept After the server executes a listen, it waits for connection requests from client(s) in the accept system call, e.g., connfd = accept(listenfd, peer, addrlen) accept returns a new socket descriptor, which has all five components of the association specified - three (protocol, local addr, local_process) are inherited from the existing listenfd (which has its foreign address and process components unspecified, and hence can be re-used to accept another request. This scenario is typical for concurrent servers. ) 8/25/99 Socket API/ 16

17 Sending and Receiving Data Here s how you might read from a socket: num_read = read(listenfd, buff_ptr, num_bytes) And here s how you read from an open file descriptor in Unix: num_read = read(fildes, buff_ptr, numbytes) There are other ways (with different parameters) to send and receive data: read, readv, recv, recvfrom, recvmsg to receive data through a socket; and write, writev, send, sendto, sendmsg to send data through a socket. 8/25/99 Socket API/ 17

18 server {*.21, *.*} listening socket Figure 1. TCP concurrent server with a passive open on port client { , } Connection request to ,port 21 server {*.21, *.*} listening socket Figure 2. Connection request from client to concurrent server. 8/25/99 Socket API/ 18

19 client server { , } connection {*.21, *.*} fork listening socket server (child) { , } connected socket Figure 3. Concurrent server has child handle client. 8/25/99 Socket API/ 19

20 Connection-oriented Concurrent Server int listenfd, connfd; if ( (listenfd = socket(... )) < 0) err_sys("socket error"); if(bind(listenfd,... ) < 0) err_sys("bind error"); if(listen(listenfd, 5) < 0) err_sys("listen error"); for ( ; ; ) { connfd = accept(listenfd,... ); /*blocks */ if (connfd < 0) err_sys("accept error"); if (fork() == 0) { close(listenfd); /* child */ doit(connfd); close(connfd); exit(0); } close(connfd); /* parent */ } 8/25/99 Socket API/ 20

21 client connect( ) connection request server listenfd Figure 4. Status of client-server before call to accept. client connect( ) connection server listenfd connfd Figure 5. Status of client-server after return from accept. 8/25/99 Socket API/ 21

22 client server (parent) connect( ) connection listenfd connfd fork server (child) listenfd connfd Figure 6. Status of client-server after fork returns. 8/25/99 Socket API/ 22

23 client connect( ) server (parent) listenfd connection server (child) connfd Figure 7. Status of client-server after parent and child close appropriate sockets. 8/25/99 Socket API/ 23

24 Windows Sockets Windows sockets specification defines a network programming interface for Microsoft Windows which is based on BSD Unix Sockets. It has all the BSD Unix style socket routines, Database routines, and a set of windows-specific extensions. Windows Sockets Applications Programming Interface (Winsock API) is a library of functions (on Windows 3.1) or is a set of System Calls (on Windows 95 or Windows NT) that implement the socket interface as popularized by the BSD Unix. 8/25/99 Socket API/ 24

25 Winsock augments the Berkeley socket implementation by adding Windows specific extensions to support the message driven nature of Windows. Current version of Winsock is bound to the TCP/IP protocol suite. Future versions of Winsock are expected to support Novells IPX/SX, Apples Appletalk and other popular network protocols. We are particularly interested in the socket interface to TCP/IP protocol stack. 8/25/99 Socket API/ 25

26 Winsock specification allows TCP/IP stack vendors to provide a consistent interface to their stacks so that application developers can write an application to the Winsock specification and have that application run on any vendors Winsock compatible TCP/IP stack. Winsock API is built on top of Windows Socket DLL (Dynamic Link Library), which is built on top of the TCP/IP Protocol Stack API, which is typically proprietary. 8/25/99 Socket API/ 26

27 Deviation from Berkeley Socket There are some subtle differences between socket operations in Windows Sockets and regular UNIX based BSD Sockets. These can cause problems if you are not aware of them. Socket data type has been defined to enable the future usage of sockets as file handles in Windows NT environment. Additionally, whereas sockets on UNIX are file descriptors with a signed value, sockets in Windows Sockets are unsigned integers. In Berkeley sockets, they can be closed using close() call, whereas in Windows Sockets they are closed using closesocket() routine. 8/25/99 Socket API/ 27

28 In case of Berkeley sockets, by default, calls like recv are blocking calls if it is not specified by the programmer. These blocking calls are treated differently in Windows sockets. The Windows Socket DLL initiates the operation, and then enters a loop in which it dispatches any Window messages and then checks for the completion of socket calls. Winsock supports the TCP/IP domain for interprocess communication on the same computer as well as network communication. Sockets in most of the UNIX implementations support the UNIX domain of inter-process communication on the same computer and the Xerox XNS domain. 8/25/99 Socket API/ 28

29 Return values are different. For Example socket() function call returns -1 on failure in Unix environment and INVALID_SOCKET in WinSock implementation. In case of Windows socket programming, initially the underlying Windows Socket DLL should be initialized. This is done by command WSAStartup(). Any windows socket program should end with command WSACleanup(). Other differences include the select() API and error code retrieval. 8/25/99 Socket API/ 29

30 Winsock Extensions Most of the extensions to Winsock are due to the message-driven architecture of Microsoft Windows. Some of the extensions are also required to support the non-preemptive nature of 16- bit Windows 3.1 Operating System. 8/25/99 Socket API/ 30

31 Blocking versus non-blocking Many of the Berkeley Socket functions take an indeterminate amount of time. This is what it means by saying that a function is blocking. The calling function blocks the further execution of the program. This does not pose problems in UNIX environment because UNIX OS would simply preempt the blocking program and begin running another program. 8/25/99 Socket API/ 31

32 Windows 3.1 can not preempt a task. Because of this, all the other programs are put on hold until the blocking call returns. This is why Socket calls in Windows 3.1 have been designed to be non-blocking calls. This is where the socket calls use the message driven architecture of Windows operating system. The message queues of other applications were checked. This was not very efficient. 8/25/99 Socket API/ 32

33 Winsock Asynchronous functions There exists an implementation of nonblocking socket calls. Send can be implemented as both blocking and nonblocking call. If it is created in a blocking mode it would not return until data has been delivered. If it is created in a nonblocking mode it returns immediately and the program must call another function called select() to determine the status of send function call. 8/25/99 Socket API/ 33

34 This could be implemented similarly in Windows, but the best way to implement is by using special Windows asynchronous functions. The special Windows asynchronous functions begin with the prefix WSAAsync. The most common events to use these asynchronous functions are the send and receive events. Sending data may not happen instantly and the receiving is surely going to make a program wait. 8/25/99 Socket API/ 34

35 By creating a socket for nonblocking send and receive and using the WSAAsynSelect() function call, an application will receive event notification messages to inform it whether data has arrived or when it can send data. Winsock also uses a set of database functions. For Example, WSAAsyncGetXbyY (e.g.wsaasyncgethostbyname), which is a nonblocking function call, i.e., the application will be notified by message of the completion of the lookup. 8/25/99 Socket API/ 35

Programming with TCP/IP. Ram Dantu

Programming with TCP/IP. Ram Dantu 1 Programming with TCP/IP Ram Dantu 2 Client Server Computing Although the Internet provides a basic communication service, the protocol software cannot initiate contact with, or accept contact from, a

More information

Sockets. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Sockets. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Sockets Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Internet Connections (1) Connection Clients and servers communicate by sending streams of

More information

Socket Programming. CSIS0234A Computer and Communication Networks. Socket Programming in C

Socket Programming. CSIS0234A Computer and Communication Networks. Socket Programming in C 1 CSIS0234A Computer and Communication Networks Socket Programming in C References Beej's Guide to Network Programming Official homepage: http://beej.us/guide/bgnet/ Local mirror http://www.cs.hku.hk/~c0234a/bgnet/

More information

Session NM056. Programming TCP/IP with Sockets. Geoff Bryant Process software

Session NM056. Programming TCP/IP with Sockets. Geoff Bryant Process software Session NM056 Programming TCP/IP with Sockets Geoff Bryant Process software Course Roadmap Slide 57 NM055 (11:00-12:00) Important Terms and Concepts TCP/IP and Client/Server Model Sockets and TLI Client/Server

More information

PA #2 Reviews. set_name, get_name, del_name. Questions? Will be modified after PA #4 ~

PA #2 Reviews. set_name, get_name, del_name. Questions? Will be modified after PA #4 ~ Sockets Prof. Jin-Soo Kim( jinsookim@skku.edu) TA Dong-Yun Lee(dylee@csl.skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu PA #2 Reviews set_name, get_name, del_name Will

More information

Lecture 24. Thursday, November 19 CS 375 UNIX System Programming - Lecture 24 1

Lecture 24. Thursday, November 19 CS 375 UNIX System Programming - Lecture 24 1 Lecture 24 Log into Linux. Copy directory /home/hwang/cs375/lecture24 Final project posted. Due during finals week. Reminder: No class next Tuesday (11/24) Questions? Thursday, November 19 CS 375 UNIX

More information

Hyo-bong Son Computer Systems Laboratory Sungkyunkwan University

Hyo-bong Son Computer Systems Laboratory Sungkyunkwan University Sockets Hyo-bong Son (proshb@csl.skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Client-Server Model Most network application is based on the client-server model: A server

More information

Context. Distributed Systems: Sockets Programming. Alberto Bosio, Associate Professor UM Microelectronic Departement

Context. Distributed Systems: Sockets Programming. Alberto Bosio, Associate Professor UM Microelectronic Departement Distributed Systems: Sockets Programming Alberto Bosio, Associate Professor UM Microelectronic Departement bosio@lirmm.fr Context Computer Network hosts, routers, communication channels Hosts run applications

More information

A Client-Server Exchange

A Client-Server Exchange Socket programming A Client-Server Exchange A server process and one or more client processes Server manages some resource. Server provides service by manipulating resource for clients. 1. Client sends

More information

Unix Network Programming Chapter 4. Elementary TCP Sockets 광운대학교컴퓨터과학과 정보통신연구실 석사과정안중현

Unix Network Programming Chapter 4. Elementary TCP Sockets 광운대학교컴퓨터과학과 정보통신연구실 석사과정안중현 Unix Network Programming Chapter 4. Elementary TCP Sockets 광운대학교컴퓨터과학과 정보통신연구실 석사과정안중현 4.1 Introduction A Time line of the typical scenario that takes place between a TCP client and server. Describes the

More information

SOCKETS. COMP750 Distributed Systems

SOCKETS. COMP750 Distributed Systems SOCKETS COMP750 Distributed Systems Sockets The Socket library is a traditional Application Program Interface (API) to the transport layer. Sockets were originally implemented in Unix systems and have

More information

UNIX Sockets. Developed for the Azera Group By: Joseph D. Fournier B.Sc.E.E., M.Sc.E.E.

UNIX Sockets. Developed for the Azera Group By: Joseph D. Fournier B.Sc.E.E., M.Sc.E.E. UNIX Sockets Developed for the Azera Group By: Joseph D. Fournier B.Sc.E.E., M.Sc.E.E. Socket and Process Communication application layer User Process Socket transport layer (TCP/UDP) network layer (IP)

More information

WinSock. What Is Sockets What Is Windows Sockets What Are Its Benefits Architecture of Windows Sockets Network Application Mechanics

WinSock. What Is Sockets What Is Windows Sockets What Are Its Benefits Architecture of Windows Sockets Network Application Mechanics WinSock What Is Sockets What Is Windows Sockets What Are Its Benefits Architecture of Windows Sockets Network Application Mechanics What Is Sockets Standard API (Application Programming Interface) for

More information

Socket Programming. Sungkyunkwan University. Hyunseung Choo Copyright Networking Laboratory

Socket Programming. Sungkyunkwan University. Hyunseung Choo Copyright Networking Laboratory Socket Programming Sungkyunkwan University Hyunseung Choo choo@skku.edu Copyright 2000-2019 Networking Laboratory Contents Goals Client-Server mechanism Introduction to socket Programming with socket on

More information

Lecture 3 Overview! Last Lecture! TCP/UDP and Sockets introduction!

Lecture 3 Overview! Last Lecture! TCP/UDP and Sockets introduction! Lecture 3 Overview! Last Lecture! TCP/UDP and Sockets introduction! This Lecture! Elementary TCP sockets! TCP Client-Server example! Source: Stevens book(chapters 4,5), Comer s book (Chapters 20, 21)!

More information

ECE 650 Systems Programming & Engineering. Spring 2018

ECE 650 Systems Programming & Engineering. Spring 2018 ECE 650 Systems Programming & Engineering Spring 2018 Programming with Network Sockets Tyler Bletsch Duke University Slides are adapted from Brian Rogers (Duke) Sockets We ve looked at shared memory vs.

More information

Elementary TCP Sockets

Elementary TCP Sockets Elementary TCP Sockets Chapter 4 UNIX Network Programming Vol. 1, Second Ed. Stevens Distributed Computer Systems 1 socket interface Application 1 Application 2 socket interface user kernel user kernel

More information

Ports under 1024 are often considered special, and usually require special OS privileges to use.

Ports under 1024 are often considered special, and usually require special OS privileges to use. 1 2 Turns out that besides an IP address (used by the IP layer), there is another address that is used by TCP (stream sockets) and, coincidentally, by UDP (datagram sockets). It is the port number. It's

More information

Oral. Total. Dated Sign (2) (5) (3) (2)

Oral. Total. Dated Sign (2) (5) (3) (2) R N Oral Total Dated Sign (2) (5) (3) (2) Assignment Group- A_07 Problem Definition Write a program using TCP socket for wired network for following Say Hello to Each other ( For all students) File transfer

More information

Socket Programming. Dr. -Ing. Abdalkarim Awad. Informatik 7 Rechnernetze und Kommunikationssysteme

Socket Programming. Dr. -Ing. Abdalkarim Awad. Informatik 7 Rechnernetze und Kommunikationssysteme Socket Programming Dr. -Ing. Abdalkarim Awad Informatik 7 Rechnernetze und Kommunikationssysteme Before we start Can you find the ip address of an interface? Can you find the mac address of an interface?

More information

sottotitolo Socket Programming Milano, XX mese 20XX A.A. 2016/17 Federico Reghenzani

sottotitolo Socket Programming Milano, XX mese 20XX A.A. 2016/17 Federico Reghenzani Titolo presentazione Piattaforme Software per la Rete sottotitolo Socket Programming Milano, XX mese 20XX A.A. 2016/17 Outline 1) Introduction to Sockets 2) UDP communication 3) TCP communication 4) RAW

More information

CLIENT-SIDE PROGRAMMING

CLIENT-SIDE PROGRAMMING CLIENT-SIDE PROGRAMMING George Porter Apr 11, 2018 ATTRIBUTION These slides are released under an Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) Creative Commons license These slides

More information

CS321: Computer Networks Socket Programming

CS321: Computer Networks Socket Programming CS321: Computer Networks Socket Programming Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur E-mail: manaskhatua@iitj.ac.in Socket Programming It shows how the network application programs

More information

Tutorial on Socket Programming

Tutorial on Socket Programming Tutorial on Socket Programming Computer Networks - CSC 458 Department of Computer Science Hao Wang (Slides are mainly from Seyed Hossein Mortazavi, Monia Ghobadi, and Amin Tootoonchian, ) 1 Outline Client-server

More information

CS321: Computer Networks Introduction to Application Layer

CS321: Computer Networks Introduction to Application Layer CS321: Computer Networks Introduction to Application Layer Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur E-mail: manaskhatua@iitj.ac.in Basic Application layer provides services to the

More information

Outline. Distributed Computing Systems. Socket Basics (1 of 2) Socket Basics (2 of 2) 3/28/2014

Outline. Distributed Computing Systems. Socket Basics (1 of 2) Socket Basics (2 of 2) 3/28/2014 Outline Distributed Computing Systems Sockets Socket basics Socket details (TCP and UDP) Socket options Final notes Socket Basics (1 of 2) An end-point for an Internet network connection what application

More information

Types (Protocols) Associated functions Styles We will look at using sockets in C Java sockets are conceptually quite similar

Types (Protocols) Associated functions Styles We will look at using sockets in C Java sockets are conceptually quite similar Socket Programming What is a socket? Using sockets Types (Protocols) Associated functions Styles We will look at using sockets in C Java sockets are conceptually quite similar - Advanced Data Communications:

More information

Introduction to Socket Programming

Introduction to Socket Programming UNIT II - ELEMENTARY TCP SOCKETS Introduction to Socket Programming Introduction to Sockets Socket address Structures Byte ordering functions address conversion functions Elementary TCP Sockets socket,

More information

Outline. Distributed Computer Systems. Socket Basics An end-point for a IP network connection. Ports. Sockets and the OS. Transport Layer.

Outline. Distributed Computer Systems. Socket Basics An end-point for a IP network connection. Ports. Sockets and the OS. Transport Layer. Outline Distributed Computer Systems Socket basics Socket details (TCP and UDP) Socket options Final notes Sockets Socket Basics An end-point for a IP network connection what the application layer plugs

More information

NETWORK PROGRAMMING. Instructor: Junaid Tariq, Lecturer, Department of Computer Science

NETWORK PROGRAMMING. Instructor: Junaid Tariq, Lecturer, Department of Computer Science NETWORK PROGRAMMING CSC- 341 25 Instructor: Junaid Tariq, Lecturer, Department of Computer Science 26 9 Lecture Sockets as means for inter-process communication (IPC) application layer Client Process Socket

More information

Hybrid of client-server and P2P. Pure P2P Architecture. App-layer Protocols. Communicating Processes. Transport Service Requirements

Hybrid of client-server and P2P. Pure P2P Architecture. App-layer Protocols. Communicating Processes. Transport Service Requirements Announcements CS 5565 Network Architecture and Protocols Lecture 5 Godmar Back Problem Set 1 due Feb 17 Project 1 handed out shortly 2 Layer The Layer Let s look at some s (in keeping with top-down) architectures:

More information

TCP: Three-way handshake

TCP: Three-way handshake Sockets in C 1 Sockets in C The slides by themselves will not be sufficient to learn how to write socket code. If you did not attend class, then you will want to review the relevant chapters in Kerrisk

More information

Sockets. Dong-kun Shin Embedded Software Laboratory Sungkyunkwan University Embedded Software Lab.

Sockets. Dong-kun Shin Embedded Software Laboratory Sungkyunkwan University  Embedded Software Lab. 1 Sockets Dong-kun Shin Embedded Software Laboratory Sungkyunkwan University http://nyx.skku.ac.kr Internet Connections (1) 2 Connection Clients and servers communicate by sending streams of bytes over

More information

Christian Tschudin (basierend auf einem Foliensatz von C. Jelger und T. Meyer) Departement Mathematik und Informatik, Universität Basel

Christian Tschudin (basierend auf einem Foliensatz von C. Jelger und T. Meyer) Departement Mathematik und Informatik, Universität Basel Internettechnologien (CS262) Socket Programming in C 4. März 2015 Christian Tschudin (basierend auf einem Foliensatz von C. Jelger und T. Meyer) Departement Mathematik und Informatik, Universität Basel

More information

Application Architecture

Application Architecture CS 4/55231 Internet Engineering Kent State University Dept. of Science LECT-2 Application Architecture 1 2 Class Mechanics Topics to Cover Send email and get listed in class email list. Use "IN2004S" in

More information

Lecture 7. Followup. Review. Communication Interface. Socket Communication. Client-Server Model. Socket Programming January 28, 2005

Lecture 7. Followup. Review. Communication Interface. Socket Communication. Client-Server Model. Socket Programming January 28, 2005 Followup symbolic link (soft link): pathname, can be across file systems, replacement of file will be active on all symbolic links, consumes at least an inode. hard link: pointers to an inode, only in

More information

Outline. Operating Systems. Socket Basics An end-point for a IP network connection. Ports. Network Communication. Sockets and the OS

Outline. Operating Systems. Socket Basics An end-point for a IP network connection. Ports. Network Communication. Sockets and the OS Outline Operating Systems Socket basics Socket details Socket options Final notes Project 3 Sockets Socket Basics An end-point for a IP network connection what the application layer plugs into programmer

More information

CS 351 Week 15. Course Review

CS 351 Week 15. Course Review CS 351 Week 15 Course Review Objectives: 1. To review the contents from different weeks. 2. To have a complete understanding of important concepts from different weeks. Concepts: 1. Important Concepts

More information

Interprocess Communication

Interprocess Communication Interprocess Communication B.Ramamurthy CSE421 11/5/02 B.R 1 Topics Pipes (process level) Sockets (OS level) Distributed System Methods (Java s) Remote Method Invocation (PL Level) Other communication

More information

CSC209H Lecture 9. Dan Zingaro. March 11, 2015

CSC209H Lecture 9. Dan Zingaro. March 11, 2015 CSC209H Lecture 9 Dan Zingaro March 11, 2015 Socket Programming (Kerrisk Ch 56, 57, 59) Pipes and signals are only useful for processes communicating on the same machine Sockets are a general interprocess

More information

Network programming(i) Lenuta Alboaie

Network programming(i) Lenuta Alboaie Network programming(i) Lenuta Alboaie adria@info.uaic.ro 2017 2018 Computer Network http://www.info.uaic.ro/~computernetworks 1 Content Client/server paradigm API for network programming BSD Socket Characteristics

More information

What s an API? Do we need standardization?

What s an API? Do we need standardization? Network Interface z The network protocol stack is a part of the OS z Need an API to interface applications to the protocol stack. What s an API? Do we need standardization? z The socket interface is the

More information

Socket Programming TCP UDP

Socket Programming TCP UDP Socket Programming TCP UDP Introduction Computer Network hosts, routers, communication channels Hosts run applications Routers forward information Packets: sequence of bytes contain control information

More information

SOCKET PROGRAMMING. What is a socket? Using sockets Types (Protocols) Associated functions Styles

SOCKET PROGRAMMING. What is a socket? Using sockets Types (Protocols) Associated functions Styles LABORATORY SOCKET PROGRAMMING What is a socket? Using sockets Types (Protocols) Associated functions Styles 2 WHAT IS A SOCKET? An interface between application and network The application creates a socket

More information

CSE/EE 461 Lecture 14. Connections. Last Time. This Time. We began on the Transport layer. Focus How do we send information reliably?

CSE/EE 461 Lecture 14. Connections. Last Time. This Time. We began on the Transport layer. Focus How do we send information reliably? CSE/EE 461 Lecture 14 Connections Last Time We began on the Transport layer Focus How do we send information reliably? Topics ARQ and sliding windows Application Presentation Session Transport Network

More information

The BSD UNIX Socket Interface (CS 640 Lecture) Assignment 1. Interprocess Communication (IPC) Work Individually (no groups)

The BSD UNIX Socket Interface (CS 640 Lecture) Assignment 1. Interprocess Communication (IPC) Work Individually (no groups) The BSD UNIX Socket Interface (CS 640 Lecture) Assignment 1 Work Individually (no groups) Due Date: in class, Monday, September 19 Robert T Olsen olsen@cswiscedu 7390CS Office Hours: 3-5T, 11-12F - exception

More information

Lecture 2. Outline. Layering and Protocols. Network Architecture. Layering and Protocols. Layering and Protocols. Chapter 1 - Foundation

Lecture 2. Outline. Layering and Protocols. Network Architecture. Layering and Protocols. Layering and Protocols. Chapter 1 - Foundation Lecture 2 Outline Wireshark Project 1 posted, due in a week Lab from a different textbook Work through the lab and answer questions at the end Chapter 1 - Foundation 1.1 Applications 1.2 Requirements 1.3

More information

EEC-484/584 Computer Networks

EEC-484/584 Computer Networks EEC-484/584 Computer Networks Lecture 15 wenbing@ieee.org (Lecture nodes are based on materials supplied by Dr. Louise Moser at UCSB and Prentice-Hall) Outline 2 Review of last lecture The network layer

More information

Review. Preview. Closing a TCP Connection. Closing a TCP Connection. Port Numbers 11/27/2017. Packet Exchange for TCP Connection

Review. Preview. Closing a TCP Connection. Closing a TCP Connection. Port Numbers 11/27/2017. Packet Exchange for TCP Connection Review Preview Algorithms and Issues in Client Software Design Client Architecture Identifying the Location of a Parsing an Address Argument Looking Up a Domain Name Looking Up a Well-Known Port by Name

More information

socketservertcl a Tcl extension for using SCM_RIGHTS By Shannon Noe - FlightAware

socketservertcl a Tcl extension for using SCM_RIGHTS By Shannon Noe - FlightAware socketservertcl a Tcl extension for using SCM_RIGHTS By Shannon Noe - FlightAware Presented at the 24th annual Tcl/Tk conference, Houston Texas, October 2017 Abstract: Horizontal scaling is used to distribute

More information

CSE 124 Discussion Section Sockets Programming 10/10/17

CSE 124 Discussion Section Sockets Programming 10/10/17 CSE 124 Discussion Section Sockets Programming 10/10/17 Topics What s a socket? Creating a socket Connecting a socket Sending data Receiving data Resolving URLs to IPs Advanced socket options Live code

More information

CS 3516: Computer Networks

CS 3516: Computer Networks Welcome to CS 3516: Prof. Yanhua Li Time: 9:00am 9:50am M, T, R, and F Location: AK219 Fall 2018 A-term 1 Some slides are originally from the course materials of the textbook Computer Networking: A Top

More information

UNIT 1 TCP/IP PROGRAMMING CONCEPTS

UNIT 1 TCP/IP PROGRAMMING CONCEPTS UNIT 1 TCP/IP PROGRAMMING CONCEPTS TCP/IP Programming Concepts Structure Page Nos. 1.0 Introduction 5 1.1 Objectives 5 1.2 Client Server Communication 6 1.2.1 Designing Client/Server Programs 7 1.2.2 Socket

More information

Agenda. Before we start: Assignment #1. Routing in a wide area network. Protocols more concepts. Internetworking. Congestion control

Agenda. Before we start: Assignment #1. Routing in a wide area network. Protocols more concepts. Internetworking. Congestion control Agenda Last time (Tues) No class Tuesday Jan 30 (Marty at conference) Will be made up Thurs Feb 8 / Fri Feb 9 This time Continue with Networks (chpt 3) Interprocess Communication (chpt 4) 1 st HW/PA out

More information

System Programming. Sockets

System Programming. Sockets Content : by Dr. B. Boufama School of Computer Science University of Windsor Instructor: Dr. A. Habed adlane@cs.uwindsor.ca http://cs.uwindsor.ca/ adlane/60-256 Content Content 1 Introducing 2 3 Internet

More information

Socket Programming for TCP and UDP

Socket Programming for TCP and UDP CSCI4430 Data Communication and Computer Networks Socket Programming for TCP and UDP ZHANG, Mi Jan. 19, 2017 Outline Socket Programming for TCP Introduction What is TCP What is socket TCP socket programming

More information

UNIX Sockets. COS 461 Precept 1

UNIX Sockets. COS 461 Precept 1 UNIX Sockets COS 461 Precept 1 Socket and Process Communica;on application layer User Process Socket transport layer (TCP/UDP) OS network stack network layer (IP) link layer (e.g. ethernet) Internet Internet

More information

UNIX Network Programming. Overview of Socket API Network Programming Basics

UNIX Network Programming. Overview of Socket API Network Programming Basics UNIX Network Programming Overview of Socket API Network Programming Basics 1 Client-Server Model Client Machine A Network Server Machine B Web browser and server FTP client and server Telnet client and

More information

Unix Network Programming

Unix Network Programming Introduction to Computer Networks Polly Huang EE NTU Unix Network Programming The socket struct and data handling System calls Based on Beej's Guide to Network Programming 1 The Unix Socket A file descriptor

More information

Announcements. CS 5565 Network Architecture and Protocols. Queuing. Demultiplexing. Demultiplexing Issues (1) Demultiplexing Issues (2)

Announcements. CS 5565 Network Architecture and Protocols. Queuing. Demultiplexing. Demultiplexing Issues (1) Demultiplexing Issues (2) Announcements CS 5565 Network Architecture and Protocols Problem Set 1 due Feb 18 Project 1A due Feb 19 Lecture 5 Godmar Back 2 Queuing Demultiplexing send queues Layer k+1 Layer k recv queues End systems

More information

A Socket Example. Haris Andrianakis & Angelos Stavrou George Mason University

A Socket Example. Haris Andrianakis & Angelos Stavrou George Mason University A Socket Example & George Mason University Everything is a file descriptor Most socket system calls operate on file descriptors Server - Quick view socket() bind() listen() accept() send(), recv() close()

More information

Introduction for SPI mapping Service Discovery Interoperability Testing. 20, Sep PWG Fumio Nagasaka

Introduction for SPI mapping Service Discovery Interoperability Testing. 20, Sep PWG Fumio Nagasaka Introduction for SPI mapping Service Discovery Interoperability Testing 20, Sep. 1999 1394 PWG Fumio Nagasaka Open Issues are related to each other requires authorized API specification Interoperability

More information

Interprocess Communication Mechanisms

Interprocess Communication Mechanisms Interprocess Communication 1 Interprocess Communication Mechanisms shared storage These mechanisms have already been covered. examples: shared virtual memory shared files processes must agree on a name

More information

shared storage These mechanisms have already been covered. examples: shared virtual memory message based signals

shared storage These mechanisms have already been covered. examples: shared virtual memory message based signals Interprocess Communication 1 Interprocess Communication Mechanisms shared storage These mechanisms have already been covered. examples: shared virtual memory shared files processes must agree on a name

More information

Simple network applications using sockets (BSD and WinSock) Revision 1 Copyright Clifford Slocombe

Simple network applications using sockets (BSD and WinSock) Revision 1 Copyright Clifford Slocombe Simple network applications using sockets (BSD and WinSock) Revision 1 Copyright 2002 - Clifford Slocombe sockets@slocombe.clara.net COPYRIGHT 2002 - CLIFFORD SLOCOMBE PAGE 1 OF 8 Table of Contents Introduction...3

More information

Department of Computer Science

Department of Computer Science Department of Computer Science Notes on Interprocess Communication in Unix Jean Dollimore,Oct.1990, last revised Feb. 1996 These notes explain how you can write "distributed programs" in C or C++ running

More information

Processes communicating. Network Communication. Sockets. Addressing processes 4/15/2013

Processes communicating. Network Communication. Sockets. Addressing processes 4/15/2013 Processes communicating Network Communication Process: program running within a host. within same host, two processes communicate using inter-process communication (defined by OS). processes in different

More information

Systems software design NETWORK COMMUNICATIONS & RPC SYSTEMS

Systems software design NETWORK COMMUNICATIONS & RPC SYSTEMS Systems software design NETWORK COMMUNICATIONS & RPC SYSTEMS outline network programming BSD/POSIX Socket API RPC systems object-oriented bridges CORBA DCOM RMI WebServices WSDL/SOAP XML-RPC REST network

More information

Sockets. Dong-kun Shin Embedded Software Laboratory Sungkyunkwan University Embedded Software Lab.

Sockets. Dong-kun Shin Embedded Software Laboratory Sungkyunkwan University  Embedded Software Lab. 1 Sockets Dong-kun Shin Embedded Software Laboratory Sungkyunkwan University http://nyx.skku.ac.kr Echo Client (1) 2 #include #include #include #include

More information

Memory-Mapped Files. generic interface: vaddr mmap(file descriptor,fileoffset,length) munmap(vaddr,length)

Memory-Mapped Files. generic interface: vaddr mmap(file descriptor,fileoffset,length) munmap(vaddr,length) File Systems 38 Memory-Mapped Files generic interface: vaddr mmap(file descriptor,fileoffset,length) munmap(vaddr,length) mmap call returns the virtual address to which the file is mapped munmap call unmaps

More information

Introduction to Socket Programming

Introduction to Socket Programming Introduction to Socket Programming (Advanced Computer Networks) By Priyank Shah NET ID : pss160530 A Simple Question What are Sockets? Sockets are communication points on the same or different computers

More information

The Berkeley Sockets API. Networked Systems Architecture 3 Lecture 4

The Berkeley Sockets API. Networked Systems Architecture 3 Lecture 4 The Berkeley Sockets API Networked Systems Architecture 3 Lecture 4 The Berkeley Sockets API Widely used low-level C networking API First introduced in 4.3BSD Unix Now available on most platforms: Linux,

More information

Internet applications

Internet applications CSc 450/550 Computer Networks Worldwide Web Jianping Pan Summer 2006 5/18/06 CSc 450/550 1 Traditionally Internet applications remote login: e.g., telnet file transfer: e.g., FTP electronic mail: e.g.,

More information

STUDY OF SOCKET PROGRAMMING

STUDY OF SOCKET PROGRAMMING STUDY OF SOCKET PROGRAMMING Sockets : An application programming interface(api) used for inter process communication. Sockets allow communication between two different processes on the same or different

More information

Server algorithms and their design

Server algorithms and their design Server algorithms and their design slide 1 many ways that a client/server can be designed each different algorithm has various benefits and problems are able to classify these algorithms by looking at

More information

Motivation of VPN! Overview! VPN addressing and routing! Two basic techniques for VPN! ! How to guarantee privacy of network traffic?!

Motivation of VPN! Overview! VPN addressing and routing! Two basic techniques for VPN! ! How to guarantee privacy of network traffic?! Overview!! Last Lecture!! Daemon processes and advanced I/O functions!! This Lecture!! VPN, NAT, DHCP!! Source: Chapters 19&22 of Comer s book!! Unix domain protocols and non-blocking I/O!! Source: Chapters

More information

Topics for this Week

Topics for this Week Topics for this Week Layered Network Architecture ISO/OSI Reference Model Internet Protocol Suite Overview Application Programming Interface BSD Socket API Readings Sections 1.1-1.5, 6.1.3 (socket programming),

More information

Overview. Last Lecture. This Lecture. Daemon processes and advanced I/O functions

Overview. Last Lecture. This Lecture. Daemon processes and advanced I/O functions Overview Last Lecture Daemon processes and advanced I/O functions This Lecture Unix domain protocols and non-blocking I/O Source: Chapters 15&16&17 of Stevens book Unix domain sockets A way of performing

More information

Introduction to Computer Networks

Introduction to Computer Networks Introduction to Computer Networks Tian Song ( 嵩天 ), Ph.D., Assoc. Prof. songtian@bit.edu.cn Introduction to Computer Networks Socket and Network Programming Tian Song ( 嵩天 ), Ph.D., Assoc. Prof. songtian@bit.edu.cn

More information

Group-A Assignment No. 6

Group-A Assignment No. 6 Group-A Assignment No. 6 R N Oral Total Dated Sign (2) (5) (3) (10) Title : File Transfer using TCP Socket Problem Definition: Use Python for Socket Programming to connect two or more PCs to share a text

More information

Introduction to Client-Server Model

Introduction to Client-Server Model Preview Introduction to Client-Server Model Motivation of Client-Server Model Terminologies and Concepts in Client-Server Model Connectionless vs. Connection-Oriented Stateless vs. Stateful Server Identify

More information

Network Programming in C: The Berkeley Sockets API. Networked Systems 3 Laboratory Sessions

Network Programming in C: The Berkeley Sockets API. Networked Systems 3 Laboratory Sessions Network Programming in C: The Berkeley Sockets API Networked Systems 3 Laboratory Sessions The Berkeley Sockets API Widely used low-level C networking API First introduced in 4.3BSD Unix Now available

More information

CptS 360 (System Programming) Unit 17: Network IPC (Sockets)

CptS 360 (System Programming) Unit 17: Network IPC (Sockets) CptS 360 (System Programming) Unit 17: Network IPC (Sockets) Bob Lewis School of Engineering and Applied Sciences Washington State University Spring, 2018 Motivation Processes need to talk to each other

More information

CSE 333 SECTION 8. Sockets, Network Programming

CSE 333 SECTION 8. Sockets, Network Programming CSE 333 SECTION 8 Sockets, Network Programming Overview Domain Name Service (DNS) Client side network programming steps and calls Server side network programming steps and calls dig and ncat tools Network

More information

MSc Integrated Electronics Networks Assignment. Investigation of TCP/IP Sockets and Ports. Gavin Cameron

MSc Integrated Electronics Networks Assignment. Investigation of TCP/IP Sockets and Ports. Gavin Cameron MSc Integrated Electronics Networks Assignment Investigation of TCP/IP Sockets and Ports Gavin Cameron Introduction TCP and IP (Transmission Control Protocol / Internet Protocol) are two protocols from

More information

Chapter 6. The Transport Layer. Transport Layer 3-1

Chapter 6. The Transport Layer. Transport Layer 3-1 Chapter 6 The Transport Layer Transport Layer 3-1 Transport services and protocols provide logical communication between app processes running on different hosts transport protocols run in end systems

More information

CSE 333 SECTION 7. C++ Virtual Functions and Client-Side Network Programming

CSE 333 SECTION 7. C++ Virtual Functions and Client-Side Network Programming CSE 333 SECTION 7 C++ Virtual Functions and Client-Side Network Programming Overview Virtual functions summary and worksheet Domain Name Service (DNS) Client side network programming steps and calls dig

More information

Network Programming in C. Networked Systems 3 Laboratory Sessions and Problem Sets

Network Programming in C. Networked Systems 3 Laboratory Sessions and Problem Sets Network Programming in C Networked Systems 3 Laboratory Sessions and Problem Sets Lab Timetable, Aims, and Objectives Teaching Week Activity 14 Introduction 15 Warm-up exercise 16 17 Web client 18 19 20

More information

CS 640: Computer Networking

CS 640: Computer Networking CS 640: Computer Networking Yu-Chi Lai Lecture 3 Network Programming Topics Client-server model Sockets interface Socket primitives Example code for echoclient and echoserver Debugging With GDB Programming

More information

Application Programming Interfaces

Application Programming Interfaces Application Programming Interfaces The TCP/IP protocol suite provides only the protocols that can be used by processes to communicate across a network. Though standarized, how these protocols are implemented

More information

Interprocess Communication Mechanisms

Interprocess Communication Mechanisms Interprocess Communication 1 Interprocess Communication Mechanisms shared storage shared virtual memory shared files message-based sockets pipes signals Interprocess Communication 2 Message Passing Indirect

More information

Interprocess Communication Mechanisms

Interprocess Communication Mechanisms Interprocess Communication 1 Interprocess Communication Mechanisms shared storage shared virtual memory shared files message-based sockets pipes signals... Interprocess Communication 2 Message Passing

More information

CS 351 Week Advanced UNIX Programming: Rochkind, Marc J. 1. To learn about System Interprocess Communication (IPC). 2. To learn about Sockets.

CS 351 Week Advanced UNIX Programming: Rochkind, Marc J. 1. To learn about System Interprocess Communication (IPC). 2. To learn about Sockets. CS 351 Week 11 Reading: 1. Advanced UNIX Programming: Rochkind, Marc J. Objectives: 1. To learn about System Interprocess Communication (IPC). 2. To learn about Sockets. Concepts: 1. Interprocess Communication

More information

Computer Network Lab, SS Fachgebiet Technische Informatik, Joachim Zumbrägel. Overview. Sockets. Sockets in C.

Computer Network Lab, SS Fachgebiet Technische Informatik, Joachim Zumbrägel. Overview. Sockets. Sockets in C. Computer Network Lab 2016 Fachgebiet Technische Informatik, Joachim Zumbrägel Overview Sockets Sockets in C Sockets in Delphi 1 Inter process communication There are two possibilities when two processes

More information

IPv4 and ipv6 INTEROPERABILITY

IPv4 and ipv6 INTEROPERABILITY IT2351-NPM/UNIT-4/ 1 IPv4 and ipv6 INTEROPERABILITY Till the time, IPv6 is established all over the world, there is a need for one to host dual stacks that is both IPv4 and IPv6 are running concurrently

More information

CSc 450/550 Computer Networks Network Architectures & Client-Server Model

CSc 450/550 Computer Networks Network Architectures & Client-Server Model CSc 450/550 Computer Networks Network Architectures & Client-Server Model Jianping Pan Summer 2007 5/17/07 CSc 450/550 1 Last lectures So far, nuts and bolts views of the Internet Internet evolution and

More information

Writing Network Applications using the TCP/IP Protocol Stack: Socket Programming

Writing Network Applications using the TCP/IP Protocol Stack: Socket Programming Writing Network Applications using the TCP/IP Protocol Stack: Socket Programming 1 Web Browser Network - Applications Paradigm Communicating TCP UDP IP LL PL Real Player Typical network app has two pieces:

More information

(Refer Slide Time: 1:09)

(Refer Slide Time: 1:09) Computer Networks Prof. S. Ghosh Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecturer # 30 UDP and Client Server Good day, today we will start our discussion

More information

Interprocess Communication Mechanisms

Interprocess Communication Mechanisms Interprocess Communication 1 Interprocess Communication Mechanisms shared storage These mechanisms have already been covered. examples: shared virtual memory shared files processes must agree on a name

More information

UNIT IV- SOCKETS Part A

UNIT IV- SOCKETS Part A 1. Define sockets - SOCKETS Part A A socket is a construct to provide a communication between computers. It hides the underlying networking concepts and provides us with an interface to communicate between

More information