Integer Programming as Projection

Size: px
Start display at page:

Download "Integer Programming as Projection"

Transcription

1 Integer Programming as Projection H. P. Williams London School of Economics John Hooker Carnegie Mellon University INFORMS 2015, Philadelphia USA

2 A Different Perspective on IP Projection of an IP onto a subset of variables is not an IP. It is an IP plus congruence relations. 2

3 A Different Perspective on IP Projection of an IP onto a subset of variables is not an IP. It is an IP plus congruence relations. So let s view an IP as inequalities + congruence relations. Then projection of an IP is an IP. 3

4 A Different Perspective on IP This perspective leads to an alternative theory of IP that parallels the traditional theory. Cutting planes. Branching. Duality. 4

5 A Different Perspective on IP Traditional Theory Theory Based on Projection Chvatál-Gomory cuts Linear combination + rounding Unbounded rank Congruence cuts Linear combination + congruences Rank bounded by number of variables 5

6 A Different Perspective on IP Traditional Theory Theory Based on Projection Chvatál-Gomory cuts Linear combination + rounding Unbounded rank Branching on integer variables Unbounded depth Congruence cuts Linear combination + congruences Rank bounded by number of variables Branching on auxiliary variables Depth bounded by number of variables 6

7 A Different Perspective on IP Traditional Theory Theory Based on Projection Chvatál-Gomory cuts Linear combination + rounding Unbounded rank Branching on integer variables Unbounded depth IP dual based on a Gomory function Nested rounding to integer Unbounded nesting depth Congruence cuts Linear combination + congruences Rank bounded by number of variables Branching on auxiliary variables Depth bounded by number of variables IP dual based on min over Gomory functions Nested rounding to multiple of integer Nesting depth bounded by number of variables. 7

8 IP Example Optimal integer solution 8

9 IP Example To project out x 1, pair inequalities as in Fourier-Motzkin elimination. For example, pair C1 and C2: 9

10 IP Example To project out x 1, pair inequalities as in Fourier-Motzkin elimination. For example, pair C1 and C2: Add auxiliary variable u 1 to increase LHS to multiple of 2: 10

11 IP Example To project out x 1, pair inequalities as in Fourier-Motzkin elimination. For example, pair C1 and C2: Add auxiliary variable u 1 to increase LHS to multiple of 2: A congruence relation forces LHS to a multiple of 2: 11

12 IP Example We now have the system which simplifies to 12

13 IP Example After pairing C1 and C3 as well, we get the projected system: This is an IP in the more general sense. 13

14 The projection defines disjunction of 2 inequality systems on 2 integer sublattices (i.e., disjunction of scenarios) u 1 = 0 solution is (9,9) optimal u 1 = 1 solution is (10,10) 14

15 IP Example To project out x 2, we again pair inequalities. For example, if we pair C0 and C13, we get with new auxiliary variable u

16 IP Example To project out x 2, we again pair inequalities. For example, if we pair C0 and C13, we get with new auxiliary variable u 13. Since x 2 1 (mod 2), we have 3x 2 3 (mod 6) and can write 16

17 IP Example To project out x 2, we again pair inequalities. For example, if we pair C0 and C13, we get with new auxiliary variable u 13. Since x 2 1 (mod 2), we have 3x 2 3 (mod 6) and can write If x 2 occurs in more than 1 congruence, we use a generalized Chinese remainder theorem to combine congruences. 17

18 IP Example After pairing C0 and C12, we get the projected system We now have only z and 2 auxiliary variables with a finite domain. 18

19 IP Example After pairing C0 and C12, we get the projected system We now have only z and 2 auxiliary variables with a finite domain. The solutions (u 1,u 2 ) = (0,4), (1,0) of the congruence define 2 scenarios. The optimization problem is trivial in each scenario: z = 9 and z = 10. The better solution z = 9 is the optimal value. Recovery of the optimal solution (x 1,x 2 ) = (2,9) is straightforward. 19

20 Congruence Cuts Recursive generation of Chvátal-Gomory cuts suffices to solve any IP. 20

21 Congruence Cuts Recursive generation of Chvátal-Gomory cuts suffices to solve any IP. To obtain a C-G cut, take a linear combination of constraints and strengthen the result by rounding. 21

22 Congruence Cuts Recursive generation of Chvátal-Gomory cuts suffices to solve any IP. To obtain a C-G cut, take a linear combination of constraints and strengthen the result by rounding. However, there is no bound on the Chvátal rank as a function of the number of variables. 22

23 Congruence Cuts Recursive generation of Chvátal-Gomory cuts suffices to solve any IP. Recursive generation of congruence cuts suffices to solve for the optimal value. To obtain a C-G cut, take a linear combination of constraints and strengthen the result by rounding. However, there is no bound on the Chvátal rank as a function of the number of variables. 23

24 Congruence Cuts Recursive generation of Chvátal-Gomory cuts suffices to solve any IP. To obtain a C-G cut, take a linear combination of constraints and strengthen the result by rounding. However, there is no bound on the Chvátal rank as a function of the number of variables. Recursive generation of congruence cuts suffices to solve for the optimal value. To obtain a congruence cut, take a linear combination of constraints and strengthen the result with a congruence relation. 24

25 Congruence Cuts Recursive generation of Chvátal-Gomory cuts suffices to solve any IP. To obtain a C-G cut, take a linear combination of constraints and strengthen the result by rounding. However, there is no bound on the Chvátal rank as a function of the number of variables. Recursive generation of congruence cuts suffices to solve for the optimal value. To obtain a congruence cut, take a linear combination of constraints and strengthen the result with a congruence relation. The rank is bounded by the number of variables. 25

26 Example of Congruence Cut Take linear combination of C1 and C3 using (say) multipliers 1 and 1 and the congruence x 1 0 (mod 1). First add an auxiliary variable to C1: The linear combination is 26

27 Example of Congruence Cut Take linear combination of C1 and C3 using (say) multipliers 1 and 1 and the congruence x 1 0 (mod 1). First add an auxiliary variable to C1: The linear combination is Now strengthen it with the congruence relation where the mod 2 is based on the coefficient of x 1. 27

28 Congruence Cuts In general, congruence cuts are defined: Given a set S of inequalities and set C of congruence relations, a rank 1 congruence cut is the result of: Selecting any inequality in S and congruence relation in C Taking any nonnegative linear combination of and another inequality in S. The resulting cut is associated with congruence relation 28

29 Congruence Cuts How to find the cuts that solve a problem? The necessary C-G cuts are obtained by taking multipliers from Gomory s cutting plane method. The necessary congruence cuts are obtained by taking multipliers from projection operations that eliminate all the variables. 29

30 Example of Congruence Cuts Multipliers from the projection operations result in congruence cuts: 30

31 Example of Congruence Cuts Multipliers from the projection operations result in congruence cuts: The congruences define 2 integer sublattices: (u 1, u 13 ) = (1,0), (0,4). 31

32 Example of Congruence Cuts Multipliers from the projection operations result in congruence cuts: The congruences define 2 integer sublattices: (u 1, u 13 ) = (1,0), (0,4). Solving this LP in each sublattice yields the optimal IP solution in that sublattice. The inequalities cut off suboptimal values of z. 32

33 Example of Congruence Cuts Multipliers from the projection operations result in congruence cuts: However, these inequalities may not cut off all fractional solutions (x 1,x 2 ) if the LP is dual degenerate. 33

34 Example of Congruence Cuts Multipliers from the projection operations result in congruence cuts: For example, the LP in sublattice (u 1,u 13 ) = (0,4) has optimal solutions (x 1,x 2,z) = (2, 9, 9), (2.4, 9, 9). The latter cannot be cut off by congruence cuts alone. 34

35 Example of Congruence Cuts Multipliers from the projection operations result in congruence cuts: However, the integer solution (x 1,x 2,z) = (2,9,9) can be recovered by retracing the projection steps. 35

36 A New Branching Strategy At each node of the branching tree, solve LP relaxation. Project out a variable x j that violates its congruence relation (even if it is integer). Branch on values of new auxiliary variables that solve the congruence relations. The problems at nodes of the branching tree therefore contain no auxiliary variables. 36

37 Branching Example 37

38 Branching Example Project out x 1 u1 = 0 u! = 1 38

39 Branching Example Project out x 1 u1 = 0 u! = 1 Project out x 2 Project out x 2 (u 12,u 13 ) = (0,4) (u 12,u 13 ) = (0,0) Solution z = 9 Solution z = 10 39

40 Branching The depth of the tree is bounded by the number of variables. Can also use LP values for branch-and-bound. 40

41 IP Duality We can solve an IP dual by constructing a value function that yields the optimal value for all perturbations in RHS. 41

42 IP Duality Traditional value function is a Gomory function. The function is obtained from Gomory s cutting plane method. It contains nested roundings to integers. There is no bound on the nesting depth. 42

43 IP Duality Traditional value function is a Gomory function. The function is obtained from Gomory s cutting plane method. It contains nested roundings to integers. There is no bound on the nesting depth. Proposed value function is a minimum over Gomory functions. The function is obtained from projection operations in integer sublattices. It contains nested roundings to multiple of an integer. Nesting depth is bounded by number of variables. 43

44 Example of Value Function First pair perturbed constraints C1 and C2: Add this to LHS rather than simply the auxiliary variable u 1, where is rounded up to nearest multiple of m. 44

45 Example of Value Function First pair perturbed constraints C1 and C2: Add this to LHS rather than simply the auxiliary variable u 1, where is rounded up to nearest multiple of m. This yields 45

46 Example of Value Function After projecting out x 1 and x 2, we get Note that the congruence relation doesn t depend on perturbations! 46

47 Example of Value Function After projecting out x 1 and x 2, we get Note that the congruence relation doesn t depend on perturbations! Now we have the value function where (u 1,u 13 ) ranges over the solutions of the congruence relation, namely (1,0) and (0,4) 47

48 Example of Value Function These are Chvátal functions (with special kind of rounding). The depth of nested rounding is bounded by number of variables. 48

49 Example of Value Function This is a Gomory function (max over Chvátal functions). The traditional value function is a Gomory function, but with unbounded nesting depth. 49

50 Example of Value Function This is the value function based on projection. A min over Gomory functions with bounded nesting depth. 50

51 Example of Value Function The value functions v( i ) are shift periodic for sufficiently large i All the Gomory functions in the min have the same periodicity. So it is unnecessary to solve the congruence relations to determine the periodicity. 51

52 Example of Value Function Value function v( 1 ) 52

53 Example of Value Function Value function v( 2 ) 53

54 Example of Value Function Value function v( 3 ) 54

5.3 Cutting plane methods and Gomory fractional cuts

5.3 Cutting plane methods and Gomory fractional cuts 5.3 Cutting plane methods and Gomory fractional cuts (ILP) min c T x s.t. Ax b x 0integer feasible region X Assumption: a ij, c j and b i integer. Observation: The feasible region of an ILP can be described

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms

MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms Ann-Brith Strömberg 2018 04 24 Lecture 9 Linear and integer optimization with applications

More information

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming algorithms Ann-Brith Strömberg 2009 04 15 Methods for ILP: Overview (Ch. 14.1) Enumeration Implicit enumeration: Branch and bound Relaxations Decomposition methods:

More information

THEORY OF LINEAR AND INTEGER PROGRAMMING

THEORY OF LINEAR AND INTEGER PROGRAMMING THEORY OF LINEAR AND INTEGER PROGRAMMING ALEXANDER SCHRIJVER Centrum voor Wiskunde en Informatica, Amsterdam A Wiley-Inter science Publication JOHN WILEY & SONS^ Chichester New York Weinheim Brisbane Singapore

More information

Linear Programming. Course review MS-E2140. v. 1.1

Linear Programming. Course review MS-E2140. v. 1.1 Linear Programming MS-E2140 Course review v. 1.1 Course structure Modeling techniques Linear programming theory and the Simplex method Duality theory Dual Simplex algorithm and sensitivity analysis Integer

More information

Large-Scale Optimization and Logical Inference

Large-Scale Optimization and Logical Inference Large-Scale Optimization and Logical Inference John Hooker Carnegie Mellon University October 2014 University College Cork Research Theme Large-scale optimization and logical inference. Optimization on

More information

3 INTEGER LINEAR PROGRAMMING

3 INTEGER LINEAR PROGRAMMING 3 INTEGER LINEAR PROGRAMMING PROBLEM DEFINITION Integer linear programming problem (ILP) of the decision variables x 1,..,x n : (ILP) subject to minimize c x j j n j= 1 a ij x j x j 0 x j integer n j=

More information

Finite Math Linear Programming 1 May / 7

Finite Math Linear Programming 1 May / 7 Linear Programming Finite Math 1 May 2017 Finite Math Linear Programming 1 May 2017 1 / 7 General Description of Linear Programming Finite Math Linear Programming 1 May 2017 2 / 7 General Description of

More information

Integer Programming ISE 418. Lecture 7. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 7. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 7 Dr. Ted Ralphs ISE 418 Lecture 7 1 Reading for This Lecture Nemhauser and Wolsey Sections II.3.1, II.3.6, II.4.1, II.4.2, II.5.4 Wolsey Chapter 7 CCZ Chapter 1 Constraint

More information

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs Introduction to Mathematical Programming IE496 Final Review Dr. Ted Ralphs IE496 Final Review 1 Course Wrap-up: Chapter 2 In the introduction, we discussed the general framework of mathematical modeling

More information

LARGE SCALE LINEAR AND INTEGER OPTIMIZATION: A UNIFIED APPROACH

LARGE SCALE LINEAR AND INTEGER OPTIMIZATION: A UNIFIED APPROACH LARGE SCALE LINEAR AND INTEGER OPTIMIZATION: A UNIFIED APPROACH Richard Kipp Martin Graduate School of Business University of Chicago % Kluwer Academic Publishers Boston/Dordrecht/London CONTENTS Preface

More information

Introduction to Mathematical Programming IE406. Lecture 20. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 20. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 20 Dr. Ted Ralphs IE406 Lecture 20 1 Reading for This Lecture Bertsimas Sections 10.1, 11.4 IE406 Lecture 20 2 Integer Linear Programming An integer

More information

Integer Programming: Algorithms - 2

Integer Programming: Algorithms - 2 Week 8 Integer Programming: Algorithms - 2 OPR 992 Applied Mathematical Programming OPR 992 - Applied Mathematical Programming - p. 1/13 Introduction Valid Inequalities Chvatal-Gomory Procedure Gomory

More information

Solvers for Mixed Integer Programming /425 Declarative Methods - J. Eisner 1

Solvers for Mixed Integer Programming /425 Declarative Methods - J. Eisner 1 Solvers for Mixed Integer Programming 600.325/425 Declarative Methods - J. Eisner 1 Relaxation: A general optimization technique Want: x* = argmin x f(x) subject to x S S is the feasible set Start by getting:

More information

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers Isil Dillig, Thomas Dillig, and Alex Aiken Computer Science Department Stanford University Linear Arithmetic

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Prof. Tapio Elomaa tapio.elomaa@tut.fi Course Basics A 4 credit unit course Part of Theoretical Computer Science courses at the Laboratory of Mathematics There will be 4 hours

More information

A List Heuristic for Vertex Cover

A List Heuristic for Vertex Cover A List Heuristic for Vertex Cover Happy Birthday Vasek! David Avis McGill University Tomokazu Imamura Kyoto University Operations Research Letters (to appear) Online: http://cgm.cs.mcgill.ca/ avis revised:

More information

Target Cuts from Relaxed Decision Diagrams

Target Cuts from Relaxed Decision Diagrams Target Cuts from Relaxed Decision Diagrams Christian Tjandraatmadja 1, Willem-Jan van Hoeve 1 1 Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA {ctjandra,vanhoeve}@andrew.cmu.edu

More information

Optimization Methods in Management Science

Optimization Methods in Management Science Problem Set Rules: Optimization Methods in Management Science MIT 15.053, Spring 2013 Problem Set 6, Due: Thursday April 11th, 2013 1. Each student should hand in an individual problem set. 2. Discussing

More information

Unit.9 Integer Programming

Unit.9 Integer Programming Unit.9 Integer Programming Xiaoxi Li EMS & IAS, Wuhan University Dec. 22-29, 2016 (revised) Operations Research (Li, X.) Unit.9 Integer Programming Dec. 22-29, 2016 (revised) 1 / 58 Organization of this

More information

From final point cuts to!-polyhedral cuts

From final point cuts to!-polyhedral cuts AUSSOIS 2017 From final point cuts to!-polyhedral cuts Egon Balas, Aleksandr M. Kazachkov, François Margot Tepper School of Business, Carnegie Mellon University Overview Background Generalized intersection

More information

Linear programming and duality theory

Linear programming and duality theory Linear programming and duality theory Complements of Operations Research Giovanni Righini Linear Programming (LP) A linear program is defined by linear constraints, a linear objective function. Its variables

More information

Lecture 3. Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets. Tepper School of Business Carnegie Mellon University, Pittsburgh

Lecture 3. Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets. Tepper School of Business Carnegie Mellon University, Pittsburgh Lecture 3 Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets Gérard Cornuéjols Tepper School of Business Carnegie Mellon University, Pittsburgh January 2016 Mixed Integer Linear Programming

More information

Outline. CS38 Introduction to Algorithms. Linear programming 5/21/2014. Linear programming. Lecture 15 May 20, 2014

Outline. CS38 Introduction to Algorithms. Linear programming 5/21/2014. Linear programming. Lecture 15 May 20, 2014 5/2/24 Outline CS38 Introduction to Algorithms Lecture 5 May 2, 24 Linear programming simplex algorithm LP duality ellipsoid algorithm * slides from Kevin Wayne May 2, 24 CS38 Lecture 5 May 2, 24 CS38

More information

lpsymphony - Integer Linear Programming in R

lpsymphony - Integer Linear Programming in R lpsymphony - Integer Linear Programming in R Vladislav Kim October 30, 2017 Contents 1 Introduction 2 2 lpsymphony: Quick Start 2 3 Integer Linear Programming 5 31 Equivalent and Dual Formulations 5 32

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Prof. Tapio Elomaa tapio.elomaa@tut.fi Course Basics A new 4 credit unit course Part of Theoretical Computer Science courses at the Department of Mathematics There will be 4 hours

More information

Math Models of OR: The Simplex Algorithm: Practical Considerations

Math Models of OR: The Simplex Algorithm: Practical Considerations Math Models of OR: The Simplex Algorithm: Practical Considerations John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA September 2018 Mitchell Simplex Algorithm: Practical Considerations

More information

February 19, Integer programming. Outline. Problem formulation. Branch-andbound

February 19, Integer programming. Outline. Problem formulation. Branch-andbound Olga Galinina olga.galinina@tut.fi ELT-53656 Network Analysis and Dimensioning II Department of Electronics and Communications Engineering Tampere University of Technology, Tampere, Finland February 19,

More information

Selected Topics in Column Generation

Selected Topics in Column Generation Selected Topics in Column Generation February 1, 2007 Choosing a solver for the Master Solve in the dual space(kelly s method) by applying a cutting plane algorithm In the bundle method(lemarechal), a

More information

DM515 Spring 2011 Weekly Note 7

DM515 Spring 2011 Weekly Note 7 Institut for Matematik og Datalogi Syddansk Universitet May 18, 2011 JBJ DM515 Spring 2011 Weekly Note 7 Stuff covered in Week 20: MG sections 8.2-8,3 Overview of the course Hints for the exam Note that

More information

DETERMINISTIC OPERATIONS RESEARCH

DETERMINISTIC OPERATIONS RESEARCH DETERMINISTIC OPERATIONS RESEARCH Models and Methods in Optimization Linear DAVID J. RADER, JR. Rose-Hulman Institute of Technology Department of Mathematics Terre Haute, IN WILEY A JOHN WILEY & SONS,

More information

Split-Cuts and the Stable Set Polytope of Quasi-Line Graphs

Split-Cuts and the Stable Set Polytope of Quasi-Line Graphs Split-Cuts and the Stable Set Polytope of Quasi-Line Graphs Friedrich Eisenbrand Joint work with G. Oriolo, P. Ventura and G. Stauffer Gomory cutting planes P = {x n Ax b} polyhedron, c T x δ, c n valid

More information

The MIP-Solving-Framework SCIP

The MIP-Solving-Framework SCIP The MIP-Solving-Framework SCIP Timo Berthold Zuse Institut Berlin DFG Research Center MATHEON Mathematics for key technologies Berlin, 23.05.2007 What Is A MIP? Definition MIP The optimization problem

More information

Systems of Inequalities

Systems of Inequalities Systems of Inequalities 1 Goals: Given system of inequalities of the form Ax b determine if system has an integer solution enumerate all integer solutions 2 Running example: Upper bounds for x: (2)and

More information

Department of Mathematics Oleg Burdakov of 30 October Consider the following linear programming problem (LP):

Department of Mathematics Oleg Burdakov of 30 October Consider the following linear programming problem (LP): Linköping University Optimization TAOP3(0) Department of Mathematics Examination Oleg Burdakov of 30 October 03 Assignment Consider the following linear programming problem (LP): max z = x + x s.t. x x

More information

Integer Programming Theory

Integer Programming Theory Integer Programming Theory Laura Galli October 24, 2016 In the following we assume all functions are linear, hence we often drop the term linear. In discrete optimization, we seek to find a solution x

More information

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach Basic approaches I. Primal Approach - Feasible Direction

More information

Integer and Combinatorial Optimization

Integer and Combinatorial Optimization Integer and Combinatorial Optimization GEORGE NEMHAUSER School of Industrial and Systems Engineering Georgia Institute of Technology Atlanta, Georgia LAURENCE WOLSEY Center for Operations Research and

More information

Linear Programming Duality and Algorithms

Linear Programming Duality and Algorithms COMPSCI 330: Design and Analysis of Algorithms 4/5/2016 and 4/7/2016 Linear Programming Duality and Algorithms Lecturer: Debmalya Panigrahi Scribe: Tianqi Song 1 Overview In this lecture, we will cover

More information

Design and Analysis of Algorithms (V)

Design and Analysis of Algorithms (V) Design and Analysis of Algorithms (V) An Introduction to Linear Programming Guoqiang Li School of Software, Shanghai Jiao Tong University Homework Assignment 2 is announced! (deadline Apr. 10) Linear Programming

More information

Some Advanced Topics in Linear Programming

Some Advanced Topics in Linear Programming Some Advanced Topics in Linear Programming Matthew J. Saltzman July 2, 995 Connections with Algebra and Geometry In this section, we will explore how some of the ideas in linear programming, duality theory,

More information

Linear Programming. Linear Programming. Linear Programming. Example: Profit Maximization (1/4) Iris Hui-Ru Jiang Fall Linear programming

Linear Programming. Linear Programming. Linear Programming. Example: Profit Maximization (1/4) Iris Hui-Ru Jiang Fall Linear programming Linear Programming 3 describes a broad class of optimization tasks in which both the optimization criterion and the constraints are linear functions. Linear Programming consists of three parts: A set of

More information

3 No-Wait Job Shops with Variable Processing Times

3 No-Wait Job Shops with Variable Processing Times 3 No-Wait Job Shops with Variable Processing Times In this chapter we assume that, on top of the classical no-wait job shop setting, we are given a set of processing times for each operation. We may select

More information

1 Linear programming relaxation

1 Linear programming relaxation Cornell University, Fall 2010 CS 6820: Algorithms Lecture notes: Primal-dual min-cost bipartite matching August 27 30 1 Linear programming relaxation Recall that in the bipartite minimum-cost perfect matching

More information

11 Linear Programming

11 Linear Programming 11 Linear Programming 11.1 Definition and Importance The final topic in this course is Linear Programming. We say that a problem is an instance of linear programming when it can be effectively expressed

More information

Discrete Mathematics SECOND EDITION OXFORD UNIVERSITY PRESS. Norman L. Biggs. Professor of Mathematics London School of Economics University of London

Discrete Mathematics SECOND EDITION OXFORD UNIVERSITY PRESS. Norman L. Biggs. Professor of Mathematics London School of Economics University of London Discrete Mathematics SECOND EDITION Norman L. Biggs Professor of Mathematics London School of Economics University of London OXFORD UNIVERSITY PRESS Contents PART I FOUNDATIONS Statements and proofs. 1

More information

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture 18 All-Integer Dual Algorithm We continue the discussion on the all integer

More information

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture 16 Cutting Plane Algorithm We shall continue the discussion on integer programming,

More information

Primal Heuristics in SCIP

Primal Heuristics in SCIP Primal Heuristics in SCIP Timo Berthold Zuse Institute Berlin DFG Research Center MATHEON Mathematics for key technologies Berlin, 10/11/2007 Outline 1 Introduction Basics Integration Into SCIP 2 Available

More information

Array Dependence Analysis as Integer Constraints. Array Dependence Analysis Example. Array Dependence Analysis as Integer Constraints, cont

Array Dependence Analysis as Integer Constraints. Array Dependence Analysis Example. Array Dependence Analysis as Integer Constraints, cont Theory of Integers CS389L: Automated Logical Reasoning Omega Test Işıl Dillig Earlier, we talked aout the theory of integers T Z Signature of T Z : Σ Z : {..., 2, 1, 0, 1, 2,..., 3, 2, 2, 3,..., +,, =,

More information

LP-Modelling. dr.ir. C.A.J. Hurkens Technische Universiteit Eindhoven. January 30, 2008

LP-Modelling. dr.ir. C.A.J. Hurkens Technische Universiteit Eindhoven. January 30, 2008 LP-Modelling dr.ir. C.A.J. Hurkens Technische Universiteit Eindhoven January 30, 2008 1 Linear and Integer Programming After a brief check with the backgrounds of the participants it seems that the following

More information

Lecture 9: Linear Programming

Lecture 9: Linear Programming Lecture 9: Linear Programming A common optimization problem involves finding the maximum of a linear function of N variables N Z = a i x i i= 1 (the objective function ) where the x i are all non-negative

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Frédéric Giroire FG Simplex 1/11 Motivation Goal: Find good solutions for difficult problems (NP-hard). Be able to quantify the goodness of the given solution. Presentation of

More information

Motivation for Heuristics

Motivation for Heuristics MIP Heuristics 1 Motivation for Heuristics Why not wait for branching? Produce feasible solutions as quickly as possible Often satisfies user demands Avoid exploring unproductive sub trees Better reduced

More information

Fundamentals of Integer Programming

Fundamentals of Integer Programming Fundamentals of Integer Programming Di Yuan Department of Information Technology, Uppsala University January 2018 Outline Definition of integer programming Formulating some classical problems with integer

More information

Lesson 11: Duality in linear programming

Lesson 11: Duality in linear programming Unit 1 Lesson 11: Duality in linear programming Learning objectives: Introduction to dual programming. Formulation of Dual Problem. Introduction For every LP formulation there exists another unique linear

More information

4 Integer Linear Programming (ILP)

4 Integer Linear Programming (ILP) TDA6/DIT37 DISCRETE OPTIMIZATION 17 PERIOD 3 WEEK III 4 Integer Linear Programg (ILP) 14 An integer linear program, ILP for short, has the same form as a linear program (LP). The only difference is that

More information

Solutions for Operations Research Final Exam

Solutions for Operations Research Final Exam Solutions for Operations Research Final Exam. (a) The buffer stock is B = i a i = a + a + a + a + a + a 6 + a 7 = + + + + + + =. And the transportation tableau corresponding to the transshipment problem

More information

Graph Coloring Facets from a Constraint Programming Formulation

Graph Coloring Facets from a Constraint Programming Formulation Graph Coloring Facets from a Constraint Programming Formulation David Bergman J. N. Hooker Carnegie Mellon University INFORMS 2011 Motivation 0-1 variables often encode choices that can be represented

More information

12 Introduction to LP-Duality

12 Introduction to LP-Duality 12 Introduction to LP-Duality A large fraction of the theory of approximation algorithms, as we know it today, is built around linear programming (LP). In Section 12.1 we will review some key concepts

More information

The University of Jordan Department of Mathematics. Branch and Cut

The University of Jordan Department of Mathematics. Branch and Cut The University of Jordan Department of Mathematics Heythem Marhoune Amina-Zahra Rezazgui Hanaa Kerim Sara Chabbi Branch and Cut Prepared and presented by : Sid Ahmed Benchiha Ibtissem Ben Kemache Lilia

More information

Graphs that have the feasible bases of a given linear

Graphs that have the feasible bases of a given linear Algorithmic Operations Research Vol.1 (2006) 46 51 Simplex Adjacency Graphs in Linear Optimization Gerard Sierksma and Gert A. Tijssen University of Groningen, Faculty of Economics, P.O. Box 800, 9700

More information

5. DUAL LP, SOLUTION INTERPRETATION, AND POST-OPTIMALITY

5. DUAL LP, SOLUTION INTERPRETATION, AND POST-OPTIMALITY 5. DUAL LP, SOLUTION INTERPRETATION, AND POST-OPTIMALITY 5.1 DUALITY Associated with every linear programming problem (the primal) is another linear programming problem called its dual. If the primal involves

More information

Theory of Integers. CS389L: Automated Logical Reasoning. Lecture 13: The Omega Test. Overview of Techniques. Geometric Description

Theory of Integers. CS389L: Automated Logical Reasoning. Lecture 13: The Omega Test. Overview of Techniques. Geometric Description Theory of ntegers This lecture: Decision procedure for qff theory of integers CS389L: Automated Logical Reasoning Lecture 13: The Omega Test şıl Dillig As in previous two lectures, we ll consider T Z formulas

More information

SUBSTITUTING GOMORY CUTTING PLANE METHOD TOWARDS BALAS ALGORITHM FOR SOLVING BINARY LINEAR PROGRAMMING

SUBSTITUTING GOMORY CUTTING PLANE METHOD TOWARDS BALAS ALGORITHM FOR SOLVING BINARY LINEAR PROGRAMMING Bulletin of Mathematics Vol. 06, No. 0 (20), pp.. SUBSTITUTING GOMORY CUTTING PLANE METHOD TOWARDS BALAS ALGORITHM FOR SOLVING BINARY LINEAR PROGRAMMING Eddy Roflin, Sisca Octarina, Putra B. J Bangun,

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 36 CS 473: Algorithms, Spring 2018 LP Duality Lecture 20 April 3, 2018 Some of the

More information

Linear Programming Problems

Linear Programming Problems Linear Programming Problems Two common formulations of linear programming (LP) problems are: min Subject to: 1,,, 1,2,,;, max Subject to: 1,,, 1,2,,;, Linear Programming Problems The standard LP problem

More information

A Verification Based Method to Generate Cutting Planes for IPs

A Verification Based Method to Generate Cutting Planes for IPs A Verification Based Method to Generate Cutting Planes for IPs Santanu S. Dey Sebastian Pokutta Georgia Institute of Technology, USA. Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany. SIAM Conference

More information

Computing the Integer Points of a Polyhedron

Computing the Integer Points of a Polyhedron Computing the Integer Points of a Polyhedron Complexity Estimates Rui-Juan Jing 1,2 and Marc Moreno Maza 2,3 1 Key Laboratoty of Mathematics Mechnization, Academy of Mathematics and Systems Science, Chinese

More information

MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS

MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS GRADO EN A.D.E. GRADO EN ECONOMÍA GRADO EN F.Y.C. ACADEMIC YEAR 2011-12 INDEX UNIT 1.- AN INTRODUCCTION TO OPTIMIZATION 2 UNIT 2.- NONLINEAR PROGRAMMING

More information

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini DM545 Linear and Integer Programming Lecture 2 The Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 3. 4. Standard Form Basic Feasible Solutions

More information

SUBSTITUTING GOMORY CUTTING PLANE METHOD TOWARDS BALAS ALGORITHM FOR SOLVING BINARY LINEAR PROGRAMMING

SUBSTITUTING GOMORY CUTTING PLANE METHOD TOWARDS BALAS ALGORITHM FOR SOLVING BINARY LINEAR PROGRAMMING ASIAN JOURNAL OF MATHEMATICS AND APPLICATIONS Volume 2014, Article ID ama0156, 11 pages ISSN 2307-7743 http://scienceasia.asia SUBSTITUTING GOMORY CUTTING PLANE METHOD TOWARDS BALAS ALGORITHM FOR SOLVING

More information

Section Notes 5. Review of Linear Programming. Applied Math / Engineering Sciences 121. Week of October 15, 2017

Section Notes 5. Review of Linear Programming. Applied Math / Engineering Sciences 121. Week of October 15, 2017 Section Notes 5 Review of Linear Programming Applied Math / Engineering Sciences 121 Week of October 15, 2017 The following list of topics is an overview of the material that was covered in the lectures

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Group Members: 1. Geng Xue (A0095628R) 2. Cai Jingli (A0095623B) 3. Xing Zhe (A0095644W) 4. Zhu Xiaolu (A0109657W) 5. Wang Zixiao (A0095670X) 6. Jiao Qing (A0095637R) 7. Zhang

More information

Read: H&L chapters 1-6

Read: H&L chapters 1-6 Viterbi School of Engineering Daniel J. Epstein Department of Industrial and Systems Engineering ISE 330: Introduction to Operations Research Fall 2006 (Oct 16): Midterm Review http://www-scf.usc.edu/~ise330

More information

Algorithms II MIP Details

Algorithms II MIP Details Algorithms II MIP Details What s Inside Gurobi Optimizer Algorithms for continuous optimization Algorithms for discrete optimization Automatic presolve for both LP and MIP Algorithms to analyze infeasible

More information

Practice Final Exam 2: Solutions

Practice Final Exam 2: Solutions lgorithm Design Techniques Practice Final Exam 2: Solutions 1. The Simplex lgorithm. (a) Take the LP max x 1 + 2x 2 s.t. 2x 1 + x 2 3 x 1 x 2 2 x 1, x 2 0 and write it in dictionary form. Pivot: add x

More information

Computational Integer Programming. Lecture 12: Branch and Cut. Dr. Ted Ralphs

Computational Integer Programming. Lecture 12: Branch and Cut. Dr. Ted Ralphs Computational Integer Programming Lecture 12: Branch and Cut Dr. Ted Ralphs Computational MILP Lecture 12 1 Reading for This Lecture Wolsey Section 9.6 Nemhauser and Wolsey Section II.6 Martin Computational

More information

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 14: Combinatorial Problems as Linear Programs I. Instructor: Shaddin Dughmi

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 14: Combinatorial Problems as Linear Programs I. Instructor: Shaddin Dughmi CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 14: Combinatorial Problems as Linear Programs I Instructor: Shaddin Dughmi Announcements Posted solutions to HW1 Today: Combinatorial problems

More information

The Heuristic (Dark) Side of MIP Solvers. Asja Derviskadic, EPFL Vit Prochazka, NHH Christoph Schaefer, EPFL

The Heuristic (Dark) Side of MIP Solvers. Asja Derviskadic, EPFL Vit Prochazka, NHH Christoph Schaefer, EPFL The Heuristic (Dark) Side of MIP Solvers Asja Derviskadic, EPFL Vit Prochazka, NHH Christoph Schaefer, EPFL 1 Table of content [Lodi], The Heuristic (Dark) Side of MIP Solvers, Hybrid Metaheuristics, 273-284,

More information

Intersection Cuts with Infinite Split Rank

Intersection Cuts with Infinite Split Rank Intersection Cuts with Infinite Split Rank Amitabh Basu 1,2, Gérard Cornuéjols 1,3,4 François Margot 1,5 April 2010; revised April 2011; revised October 2011 Abstract We consider mixed integer linear programs

More information

Experiments On General Disjunctions

Experiments On General Disjunctions Experiments On General Disjunctions Some Dumb Ideas We Tried That Didn t Work* and Others We Haven t Tried Yet *But that may provide some insight Ted Ralphs, Serdar Yildiz COR@L Lab, Department of Industrial

More information

Integer Programming! Using linear programming to solve discrete problems

Integer Programming! Using linear programming to solve discrete problems Integer Programming! Using linear programming to solve discrete problems Solving Discrete Problems Linear programming solves continuous problem! problems over the reai numbers.! For the remainder of the

More information

Lesson 17. Geometry and Algebra of Corner Points

Lesson 17. Geometry and Algebra of Corner Points SA305 Linear Programming Spring 2016 Asst. Prof. Nelson Uhan 0 Warm up Lesson 17. Geometry and Algebra of Corner Points Example 1. Consider the system of equations 3 + 7x 3 = 17 + 5 = 1 2 + 11x 3 = 24

More information

Improved Gomory Cuts for Primal Cutting Plane Algorithms

Improved Gomory Cuts for Primal Cutting Plane Algorithms Improved Gomory Cuts for Primal Cutting Plane Algorithms S. Dey J-P. Richard Industrial Engineering Purdue University INFORMS, 2005 Outline 1 Motivation The Basic Idea Set up the Lifting Problem How to

More information

Integer Programming. Xi Chen. Department of Management Science and Engineering International Business School Beijing Foreign Studies University

Integer Programming. Xi Chen. Department of Management Science and Engineering International Business School Beijing Foreign Studies University Integer Programming Xi Chen Department of Management Science and Engineering International Business School Beijing Foreign Studies University Xi Chen (chenxi0109@bfsu.edu.cn) Integer Programming 1 / 42

More information

7KH9HKLFOH5RXWLQJSUREOHP

7KH9HKLFOH5RXWLQJSUREOHP 7K9KO5RXWJSUREOP Given a set of vehicles with a certain capacity located at a depot and a set of customers with different demands at various locations, the vehicle routing problem (VRP) is how to satisfy

More information

Math 5490 Network Flows

Math 5490 Network Flows Math 590 Network Flows Lecture 7: Preflow Push Algorithm, cont. Stephen Billups University of Colorado at Denver Math 590Network Flows p./6 Preliminaries Optimization Seminar Next Thursday: Speaker: Ariela

More information

Algorithms for Integer Programming

Algorithms for Integer Programming Algorithms for Integer Programming Laura Galli November 9, 2016 Unlike linear programming problems, integer programming problems are very difficult to solve. In fact, no efficient general algorithm is

More information

Stable sets, corner polyhedra and the Chvátal closure

Stable sets, corner polyhedra and the Chvátal closure Stable sets, corner polyhedra and the Chvátal closure Manoel Campêlo Departamento de Estatística e Matemática Aplicada, Universidade Federal do Ceará, Brazil, mcampelo@lia.ufc.br. Gérard Cornuéjols Tepper

More information

OPERATIONS RESEARCH. Linear Programming Problem

OPERATIONS RESEARCH. Linear Programming Problem OPERATIONS RESEARCH Chapter 1 Linear Programming Problem Prof. Bibhas C. Giri Department of Mathematics Jadavpur University Kolkata, India Email: bcgiri.jumath@gmail.com 1.0 Introduction Linear programming

More information

Pure Cutting Plane Methods for ILP: a computational perspective

Pure Cutting Plane Methods for ILP: a computational perspective Pure Cutting Plane Methods for ILP: a computational perspective Matteo Fischetti, DEI, University of Padova Rorschach test for OR disorders: can you see the tree? 1 Outline 1. Pure cutting plane methods

More information

Nonlinear Programming

Nonlinear Programming Nonlinear Programming SECOND EDITION Dimitri P. Bertsekas Massachusetts Institute of Technology WWW site for book Information and Orders http://world.std.com/~athenasc/index.html Athena Scientific, Belmont,

More information

AM 121: Intro to Optimization Models and Methods Fall 2017

AM 121: Intro to Optimization Models and Methods Fall 2017 AM 121: Intro to Optimization Models and Methods Fall 2017 Lecture 10: Dual Simplex Yiling Chen SEAS Lesson Plan Interpret primal simplex in terms of pivots on the corresponding dual tableau Dictionaries

More information

Advanced Algorithms Linear Programming

Advanced Algorithms Linear Programming Reading: Advanced Algorithms Linear Programming CLRS, Chapter29 (2 nd ed. onward). Linear Algebra and Its Applications, by Gilbert Strang, chapter 8 Linear Programming, by Vasek Chvatal Introduction to

More information

Linear Programming. Meaning of Linear Programming. Basic Terminology

Linear Programming. Meaning of Linear Programming. Basic Terminology Linear Programming Linear Programming (LP) is a versatile technique for assigning a fixed amount of resources among competing factors, in such a way that some objective is optimized and other defined conditions

More information

Discrete Optimization. Lecture Notes 2

Discrete Optimization. Lecture Notes 2 Discrete Optimization. Lecture Notes 2 Disjunctive Constraints Defining variables and formulating linear constraints can be straightforward or more sophisticated, depending on the problem structure. The

More information

The Generalized Simplex Method for Minimizing a Linear Form under Linear Inequality Restraints

The Generalized Simplex Method for Minimizing a Linear Form under Linear Inequality Restraints CS601: Great Works in Computer Science 11 April 2013 Wei Wang The Generalized Simplex Method for Minimizing a Linear Form under Linear Inequality Restraints George B. Dantzig, Alex Orden, Philip Wolfe

More information

Improving Dual Bound for Stochastic MILP Models Using Sensitivity Analysis

Improving Dual Bound for Stochastic MILP Models Using Sensitivity Analysis Improving Dual Bound for Stochastic MILP Models Using Sensitivity Analysis Vijay Gupta Ignacio E. Grossmann Department of Chemical Engineering Carnegie Mellon University, Pittsburgh Bora Tarhan ExxonMobil

More information

Gurobi Guidelines for Numerical Issues February 2017

Gurobi Guidelines for Numerical Issues February 2017 Gurobi Guidelines for Numerical Issues February 2017 Background Models with numerical issues can lead to undesirable results: slow performance, wrong answers or inconsistent behavior. When solving a model

More information