Publicly-verifiable proof of storage: a modular construction. Federico Giacon

Size: px
Start display at page:

Download "Publicly-verifiable proof of storage: a modular construction. Federico Giacon"

Transcription

1 Publicly-verifiable proof of storage: a modular construction Federico Giacon Ruhr-Universita t Bochum federico.giacon@rub.de 6th BunnyTN, Trent 17 December 2015

2 Proof of Storage Proof of Storage (PoS) A Proofs of Storage protocol allows a client to verify that a server is correctly storing a user s file. A PoS protocol is publicly-verifiable when the verification doesn t require any secret parameter. The parties involved are: The server, who stores the file. The user, who wants to store the file. A verifier, who checks that the file is being stored by the server. Federico Giacon Publicly-verifiable proof of storage: a modular construction 1 / 16

3 Proof of Storage Proof of Storage (PoS) A Proofs of Storage protocol allows a client to verify that a server is correctly storing a user s file. A PoS protocol is publicly-verifiable when the verification doesn t require any secret parameter. The parties involved are: The server, who stores the file. The user, who wants to store the file. A verifier, who checks that the file is being stored by the server. Federico Giacon Publicly-verifiable proof of storage: a modular construction 1 / 16

4 Proof of Storage Proof of Storage (PoS) A Proofs of Storage protocol allows a client to verify that a server is correctly storing a user s file. A PoS protocol is publicly-verifiable when the verification doesn t require any secret parameter. The parties involved are: The server, who stores the file. The user, who wants to store the file. A verifier, who checks that the file is being stored by the server. Federico Giacon Publicly-verifiable proof of storage: a modular construction 1 / 16

5 What PoS is NOT Three different problems: Secrecy of the stored file. The server can read any part of the file: a user must encrypt the file to maintain privacy. Retrieving the file. The server can refuse to give back the file to the user but still pass the verification, because it is actually storing the file. Recovering a partially corrupted file. Part of the stored file can become corrupted. The PoS protocol detects the problem, but doesn t restore the file. Federico Giacon Publicly-verifiable proof of storage: a modular construction 2 / 16

6 What PoS is NOT Three different problems: Secrecy of the stored file. The server can read any part of the file: a user must encrypt the file to maintain privacy. Retrieving the file. The server can refuse to give back the file to the user but still pass the verification, because it is actually storing the file. Recovering a partially corrupted file. Part of the stored file can become corrupted. The PoS protocol detects the problem, but doesn t restore the file. Federico Giacon Publicly-verifiable proof of storage: a modular construction 2 / 16

7 What PoS is NOT Three different problems: Secrecy of the stored file. The server can read any part of the file: a user must encrypt the file to maintain privacy. Retrieving the file. The server can refuse to give back the file to the user but still pass the verification, because it is actually storing the file. Recovering a partially corrupted file. Part of the stored file can become corrupted. The PoS protocol detects the problem, but doesn t restore the file. Federico Giacon Publicly-verifiable proof of storage: a modular construction 2 / 16

8 What PoS is NOT Three different problems: Secrecy of the stored file. The server can read any part of the file: a user must encrypt the file to maintain privacy. Retrieving the file. The server can refuse to give back the file to the user but still pass the verification, because it is actually storing the file. Recovering a partially corrupted file. Part of the stored file can become corrupted. The PoS protocol detects the problem, but doesn t restore the file. Federico Giacon Publicly-verifiable proof of storage: a modular construction 2 / 16

9 Proof of Storage Additional requirement We can trivially obtain a PoS protocol if the user stores a hash h of its file f and the server sends back the whole file, f. Verify(f ): if H(f ) == h return true; else return false; We require the protocol be efficient in term of bandwidth: the communication complexity must be much lower than the size of the file. Federico Giacon Publicly-verifiable proof of storage: a modular construction 3 / 16

10 Applications Cloud storage: the user can verify that their files are correctly stored by the cloud provider: otherwise the server might remove files that are unlikely to be accessed (e.g., old backups). Automated, trustless payment for file storage: with public verifiability a trusted third party (or a smart contract) can verify that the server is storing the file and authorize the payment, without requiring any trust between the user and the server. Federico Giacon Publicly-verifiable proof of storage: a modular construction 4 / 16

11 Proof of Storage The protocol (f, st) Encode sk (f ) c π Prove pk (f, c) (pk, sk, st) (pk, f ) b = Verify pk (st, c, π) Federico Giacon Publicly-verifiable proof of storage: a modular construction 5 / 16

12 Security The protocol is correct: The server knows f = the verification succeeds. The protocol is secure: A can verify = we can extract the file f from A. Federico Giacon Publicly-verifiable proof of storage: a modular construction 6 / 16

13 The result Ateniese, Kamara, Katz ASIACRYPT 2009 We can build a correct and secure publicly-verifiable PoS protocol based on the hardness of factoring in the random oracle model. Federico Giacon Publicly-verifiable proof of storage: a modular construction 7 / 16

14 Additional properties Unlimited challenges. Public verifiability. And with respect to the file size: Communication complexity: O (1). Server storage: the file f and a overhead O (1). Client storage: O (1). Federico Giacon Publicly-verifiable proof of storage: a modular construction 8 / 16

15 Modular construction Proof of Storage Homomorphic Linear Authentication Homomorphic Identification Protocol Hardness of factoring Federico Giacon Publicly-verifiable proof of storage: a modular construction 9 / 16

16 Modular construction Proof of Storage Pseudo-random functions Homomorphic Linear Authentication Homomorphic Identification Protocol Hardness of factoring Federico Giacon Publicly-verifiable proof of storage: a modular construction 9 / 16

17 Modular construction Proof of Storage Pseudo-random functions Homomorphic Linear Authentication Random Oracle Model Homomorphic Identification Protocol Hardness of factoring Federico Giacon Publicly-verifiable proof of storage: a modular construction 9 / 16

18 Proof of Storage Proof of Storage Homomorphic Linear Authentication Homomorphic Identification Protocol Hardness of factoring Federico Giacon Publicly-verifiable proof of storage: a modular construction 10 / 16

19 Homomorphic Linear Authentication f = (f 1,..., f N ) ( t, st) Tag sk ( f ) c τ Auth pk ( f, t, c) b = Verify pk (st, µ, c, τ) Federico Giacon Publicly-verifiable proof of storage: a modular construction 10 / 16

20 Homomorphic Linear Authentication b = Verify pk (st, µ, c, τ) Correctness ) Verify pk (st, c i f i, c, τ = 1 i Security A polynomial adversary cannot forge a valid authentication proof for µ i c i f i. Federico Giacon Publicly-verifiable proof of storage: a modular construction 11 / 16

21 HLA PoS The file is split: f = (f 1,..., f N ), with f i Z p. The server stores a file with HLA tags: f = ( f, t). The request procedure consists in: Share a key K for the pseudo-random function F : the commitment is c i = F K (i) Z p. Using the HLA protocol we compute τ Auth pk ( f, t, c) and set µ = i f i c i. The PoS proof is π = (µ, τ). To verify we use Verify of the HLA protocol. Federico Giacon Publicly-verifiable proof of storage: a modular construction 12 / 16

22 Homomorphic Linear Authentication Proof of Storage Homomorphic Linear Authentication Homomorphic Identification Protocol Hardness of factoring Federico Giacon Publicly-verifiable proof of storage: a modular construction 13 / 16

23 Identification Protocol Verify that the user knows the secret key sk without revealing additional information. α Commit pk (r) β γ Respond pk (sk, r, β) (pk, sk) pk b = Verify pk (α, β, γ) Federico Giacon Publicly-verifiable proof of storage: a modular construction 13 / 16

24 Homomorphic Identification Protocol For an homomorphic protocol we add Combine 1 and Combine 3. Correctness If {(α i, β i, γ i )} n i=1 is a set of valid IP transcript (Verify = 1) and c is a vector: ) Verify pk (Combine 1 ( c, α), c i β i, Combine 3 ( c, γ). i Security A polynomial adversary A has negligible probability to output a string ( c, µ, γ ) such that: µ i c i β i. Verify pk (Combine 1 ( c, α), µ, γ ) = 1. Federico Giacon Publicly-verifiable proof of storage: a modular construction 14 / 16

25 HIP HLA The file is split: f = (f 1,..., f N ), with f i Z p. Implicitly β i = f i. Tag sk ( f ): We take a random element st and we fix r i = H(st, i) and α i = Commit pk (r i ). We compute γ i = Respond pk (sk, r i, f i ). The tag is t = (γ 1,..., γ n). Auth pk ( f, t, c): Output the combined tag τ = Combine 3 ( c, t). Verify pk (st, µ, c, τ): Output the combined verification Verify pk (Combine 1 ( c, α), µ, τ). Federico Giacon Publicly-verifiable proof of storage: a modular construction 15 / 16

26 Homomorphic Identification Protocol Proof of Storage Homomorphic Linear Authentication Homomorphic Identification Protocol Hardness of factoring Federico Giacon Publicly-verifiable proof of storage: a modular construction 16 / 16

27 Instantiation Quadratic residuosity: N = pq, J +1 N is the set of element in Z N with Jacobi symbol +1, and QR N is the set of quadratic residues mod N. y $ QR N ; pk = (N, y); sk = (p, q). Commit pk (r): output α = r as element of J +1 N. Respond pk (sk, r, β): output γ, a random 2 3k -th root of ±ry β. Verify pk (α, β, γ): output 1 if and only if γ 23k = ±αy β and β < 2 3k. Combine( c, x): output i x c i i. Federico Giacon Publicly-verifiable proof of storage: a modular construction 16 / 16

28 Thank you for your attention.

Cryptographic protocols

Cryptographic protocols Cryptographic protocols Lecture 3: Zero-knowledge protocols for identification 6/16/03 (c) Jussipekka Leiwo www.ialan.com Overview of ZK Asymmetric identification techniques that do not rely on digital

More information

A Mathematical Proof. Zero Knowledge Protocols. Interactive Proof System. Other Kinds of Proofs. When referring to a proof in logic we usually mean:

A Mathematical Proof. Zero Knowledge Protocols. Interactive Proof System. Other Kinds of Proofs. When referring to a proof in logic we usually mean: A Mathematical Proof When referring to a proof in logic we usually mean: 1. A sequence of statements. 2. Based on axioms. Zero Knowledge Protocols 3. Each statement is derived via the derivation rules.

More information

Zero Knowledge Protocols. c Eli Biham - May 3, Zero Knowledge Protocols (16)

Zero Knowledge Protocols. c Eli Biham - May 3, Zero Knowledge Protocols (16) Zero Knowledge Protocols c Eli Biham - May 3, 2005 442 Zero Knowledge Protocols (16) A Mathematical Proof When referring to a proof in logic we usually mean: 1. A sequence of statements. 2. Based on axioms.

More information

Cryptographic Primitives and Protocols for MANETs. Jonathan Katz University of Maryland

Cryptographic Primitives and Protocols for MANETs. Jonathan Katz University of Maryland Cryptographic Primitives and Protocols for MANETs Jonathan Katz University of Maryland Fundamental problem(s) How to achieve secure message authentication / transmission in MANETs, when: Severe resource

More information

Digital Signatures. Sven Laur University of Tartu

Digital Signatures. Sven Laur University of Tartu Digital Signatures Sven Laur swen@math.ut.ee University of Tartu Formal Syntax Digital signature scheme pk (sk, pk) Gen (m, s) (m,s) m M 0 s Sign sk (m) Ver pk (m, s)? = 1 To establish electronic identity,

More information

CSC 5930/9010 Modern Cryptography: Digital Signatures

CSC 5930/9010 Modern Cryptography: Digital Signatures CSC 5930/9010 Modern Cryptography: Digital Signatures Professor Henry Carter Fall 2018 Recap Implemented public key schemes in practice commonly encapsulate a symmetric key for the rest of encryption KEM/DEM

More information

Proofs for Key Establishment Protocols

Proofs for Key Establishment Protocols Information Security Institute Queensland University of Technology December 2007 Outline Key Establishment 1 Key Establishment 2 3 4 Purpose of key establishment Two or more networked parties wish to establish

More information

APPLICATIONS AND PROTOCOLS. Mihir Bellare UCSD 1

APPLICATIONS AND PROTOCOLS. Mihir Bellare UCSD 1 APPLICATIONS AND PROTOCOLS Mihir Bellare UCSD 1 Some applications and protocols Internet Casino Commitment Shared coin flips Threshold cryptography Forward security Program obfuscation Zero-knowledge Certified

More information

Study Guide for the Final Exam

Study Guide for the Final Exam YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE CPSC 467b: Cryptography and Computer Security Handout #22 Professor M. J. Fischer April 30, 2005 1 Exam Coverage Study Guide for the Final Exam The final

More information

Secure digital certificates with a blockchain protocol

Secure digital certificates with a blockchain protocol Secure digital certificates with a blockchain protocol Federico Pintore 1 Trento, 10 th February 2017 1 University of Trento Federico Pintore Blockchain and innovative applications Trento, 10 th February

More information

Crypto-systems all around us ATM machines Remote logins using SSH Web browsers (https invokes Secure Socket Layer (SSL))

Crypto-systems all around us ATM machines Remote logins using SSH Web browsers (https invokes Secure Socket Layer (SSL)) Introduction (Mihir Bellare Text/Notes: http://cseweb.ucsd.edu/users/mihir/cse207/) Cryptography provides: Data Privacy Data Integrity and Authenticity Crypto-systems all around us ATM machines Remote

More information

Relaxing IND-CCA: Indistinguishability Against Chosen. Chosen Ciphertext Verification Attack

Relaxing IND-CCA: Indistinguishability Against Chosen. Chosen Ciphertext Verification Attack Relaxing IND-CCA: Indistinguishability Against Chosen Ciphertext Verification Attack Indian Statistical Institute Kolkata January 14, 2012 Outline 1 Definitions Encryption Scheme IND-CPA IND-CCA IND-CCVA

More information

Lecture 10, Zero Knowledge Proofs, Secure Computation

Lecture 10, Zero Knowledge Proofs, Secure Computation CS 4501-6501 Topics in Cryptography 30 Mar 2018 Lecture 10, Zero Knowledge Proofs, Secure Computation Lecturer: Mahmoody Scribe: Bella Vice-Van Heyde, Derrick Blakely, Bobby Andris 1 Introduction Last

More information

Proofs of Storage SENY KAMARA MICROSOFT RESEARCH

Proofs of Storage SENY KAMARA MICROSOFT RESEARCH Proofs of Storage SENY KAMARA MICROSOFT RESEARCH Computing as a Service 2 Computing is a vital resource Enterprises, governments, scientists, consumers, Computing is manageable at small scales e.g., PCs,

More information

STRONGER SECURITY NOTIONS FOR DECENTRALIZED TRACEABLE ATTRIBUTE-BASED SIGNATURES AND MORE EFFICIENT CONSTRUCTIONS

STRONGER SECURITY NOTIONS FOR DECENTRALIZED TRACEABLE ATTRIBUTE-BASED SIGNATURES AND MORE EFFICIENT CONSTRUCTIONS STRONGER SECURITY NOTIONS FOR DECENTRALIZED TRACEABLE ATTRIBUTE-BASED SIGNATURES AND MORE EFFICIENT CONSTRUCTIONS Essam Ghadafi University College London e.ghadafi@ucl.ac.uk CT-RSA 2015 STRONGER SECURITY

More information

MTAT Cryptology II. Entity Authentication. Sven Laur University of Tartu

MTAT Cryptology II. Entity Authentication. Sven Laur University of Tartu MTAT.07.003 Cryptology II Entity Authentication Sven Laur University of Tartu Formal Syntax Entity authentication pk (sk, pk) Gen α 1 β 1 β i V pk (α 1,...,α i 1 ) α i P sk (β 1,...,β i 1 ) Is it Charlie?

More information

Introduction. CSE 5351: Introduction to cryptography Reading assignment: Chapter 1 of Katz & Lindell

Introduction. CSE 5351: Introduction to cryptography Reading assignment: Chapter 1 of Katz & Lindell Introduction CSE 5351: Introduction to cryptography Reading assignment: Chapter 1 of Katz & Lindell 1 Cryptography Merriam-Webster Online Dictionary: 1. secret writing 2. the enciphering and deciphering

More information

Identification Schemes

Identification Schemes Identification Schemes Lecture Outline Identification schemes passwords one-time passwords challenge-response zero knowledge proof protocols Authentication Data source authentication (message authentication):

More information

More crypto and security

More crypto and security More crypto and security CSE 199, Projects/Research Individual enrollment Projects / research, individual or small group Implementation or theoretical Weekly one-on-one meetings, no lectures Course grade

More information

Publicly Verifiable Secret Sharing for Cloud-based Key Management

Publicly Verifiable Secret Sharing for Cloud-based Key Management Publicly Verifiable Secret Sharing for Cloud-based Key Management Roy D Souza, David Jao, Ilya Mironov and Omkant Pandey Microsoft Corporation and University of Waterloo December 13, 2011 Overview Motivation:

More information

Remote Data Checking for Network Codingbased. Distributed Storage Systems

Remote Data Checking for Network Codingbased. Distributed Storage Systems CCSW 0 Remote Data Checking for Network Coding-based Bo Chen, Reza Curtmola, Giuseppe Ateniese, Randal Burns New Jersey Institute of Technology Johns Hopkins University Motivation Cloud storage can release

More information

Advanced Topics in Cryptography

Advanced Topics in Cryptography Advanced Topics in Cryptography Lecture 9: Identity based encryption (IBE), Cocks scheme. Benny Pinkas page 1 1 Related papers Lecture notes from MIT http://crypto.csail.mit.edu/classes/6.876/lecture-notes.html

More information

Cryptography. Lecture 12. Arpita Patra

Cryptography. Lecture 12. Arpita Patra Cryptography Lecture 12 Arpita Patra Digital Signatures q In PK setting, privacy is provided by PKE q Integrity/authenticity is provided by digital signatures (counterpart of MACs in PK world) q Definition:

More information

DECENTRALIZED TRACEABLE ATTRIBUTE-BASED SIGNATURES

DECENTRALIZED TRACEABLE ATTRIBUTE-BASED SIGNATURES DECENTRALIZED TRACEABLE ATTRIBUTE-BASED SIGNATURES Essam Ghadafi 1 Ali El Kaafarani 2 Dalia Khader 3 1 University of Bristol, 2 University of Bath, 3 University of Luxembourg ghadafi@cs.bris.ac.uk CT-RSA

More information

Introduction to Cryptography Lecture 7

Introduction to Cryptography Lecture 7 Introduction to Cryptography Lecture 7 El Gamal Encryption RSA Encryption Benny Pinkas page 1 1 Public key encryption Alice publishes a public key PK Alice. Alice has a secret key SK Alice. Anyone knowing

More information

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2017

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2017 COS433/Math 473: Cryptography Mark Zhandry Princeton University Spring 2017 Previously Exchanging keys and public key encryption Public Key Encryption pk sk Public Key Encryption pk cß Enc(pk,m) sk m Public

More information

Computer Security CS 426 Lecture 35. CS426 Fall 2010/Lecture 35 1

Computer Security CS 426 Lecture 35. CS426 Fall 2010/Lecture 35 1 Computer Security CS 426 Lecture 35 Commitment & Zero Knowledge Proofs 1 Readings for This Lecture Optional: Haveli and Micali: Practical and Privably-Secure Commitment Schemes from Collision-Free Hashing

More information

Practical Threshold Signatures with Linear Secret Sharing Schemes

Practical Threshold Signatures with Linear Secret Sharing Schemes Practical Threshold Signatures with Linear Secret Sharing Schemes İlker Nadi Bozkurt, Kamer Kaya, Ali Aydın Selçuk Department of Computer Engineering Bilkent University Ankara, 06800, Turkey {bozkurti,kamer,selcuk}@cs.bilkent.edu.tr

More information

Secure Computation of Functionalities based on Hamming Distance and its Application to Computing Document Similarity

Secure Computation of Functionalities based on Hamming Distance and its Application to Computing Document Similarity Secure Computation of Functionalities based on Hamming Distance and its Application to Computing Document Similarity Ayman Jarrous 1 and Benny Pinkas 2,* 1 University of Haifa, Israel. 2 Bar Ilan University,

More information

CRYPTOGRAPHIC PROTOCOLS: PRACTICAL REVOCATION AND KEY ROTATION

CRYPTOGRAPHIC PROTOCOLS: PRACTICAL REVOCATION AND KEY ROTATION #RSAC SESSION ID: CRYP-W04 CRYPTOGRAPHIC PROTOCOLS: PRACTICAL REVOCATION AND KEY ROTATION Adam Shull Recent Ph.D. Graduate Indiana University Access revocation on the cloud #RSAC sk sk Enc Pub Sym pk k

More information

Zero Knowledge Protocol

Zero Knowledge Protocol Akash Patel (SJSU) Zero Knowledge Protocol Zero knowledge proof or protocol is method in which a party A can prove that given statement X is certainly true to party B without revealing any additional information

More information

Lecture 07: Private-key Encryption. Private-key Encryption

Lecture 07: Private-key Encryption. Private-key Encryption Lecture 07: Three algorithms Key Generation: Generate the secret key sk Encryption: Given the secret key sk and a message m, it outputs the cipher-text c (Note that the encryption algorithm can be a randomized

More information

Improving data integrity on cloud storage services

Improving data integrity on cloud storage services International Journal of Engineering Science Invention Volume 2 Issue 2 ǁ February. 2013 Improving data integrity on cloud storage services Miss. M.Sowparnika 1, Prof. R. Dheenadayalu 2 1 (Department of

More information

CSCI 454/554 Computer and Network Security. Topic 5.2 Public Key Cryptography

CSCI 454/554 Computer and Network Security. Topic 5.2 Public Key Cryptography CSCI 454/554 Computer and Network Security Topic 5.2 Public Key Cryptography Outline 1. Introduction 2. RSA 3. Diffie-Hellman Key Exchange 4. Digital Signature Standard 2 Introduction Public Key Cryptography

More information

Introduction to Cryptography Lecture 10

Introduction to Cryptography Lecture 10 Introduction to Cryptography Lecture 10 Digital signatures, Public Key Infrastructure (PKI) Benny Pinkas January 1, 2012 page 1 Non Repudiation Prevent signer from denying that it signed the message I.e.,

More information

Digital Signatures 1

Digital Signatures 1 Digital Signatures 1 Outline [1] Introduction [2] Security Requirements for Signature Schemes [3] The ElGamal Signature Scheme [4] Variants of the ElGamal Signature Scheme The Digital Signature Algorithm

More information

Auditing-as-a-Service for Cloud Storage

Auditing-as-a-Service for Cloud Storage Auditing-as-a-Service for Cloud Storage Alshaimaa Abo-alian, N. L. Badr, M. F. Tolba, Faculty of Information and Computer Sciences, Ain shams University, Cairo, Egypt shimo.fcis83@gmail.com, dr.nagwabadr@gmail.com,

More information

Outline. CSCI 454/554 Computer and Network Security. Introduction. Topic 5.2 Public Key Cryptography. 1. Introduction 2. RSA

Outline. CSCI 454/554 Computer and Network Security. Introduction. Topic 5.2 Public Key Cryptography. 1. Introduction 2. RSA CSCI 454/554 Computer and Network Security Topic 5.2 Public Key Cryptography 1. Introduction 2. RSA Outline 3. Diffie-Hellman Key Exchange 4. Digital Signature Standard 2 Introduction Public Key Cryptography

More information

Notes for Lecture 24

Notes for Lecture 24 U.C. Berkeley CS276: Cryptography Handout N24 Luca Trevisan April 21, 2009 Notes for Lecture 24 Scribed by Milosh Drezgich, posted May 11, 2009 Summary Today we introduce the notion of zero knowledge proof

More information

Homomorphic Encryption

Homomorphic Encryption Homomorphic Encryption Travis Mayberry Cloud Computing Cloud Computing Cloud Computing Cloud Computing Cloud Computing Northeastern saves money on infrastructure and gets the benefit of redundancy and

More information

Strong Privacy for RFID Systems from Plaintext-Aware Encryption

Strong Privacy for RFID Systems from Plaintext-Aware Encryption Strong Privacy for RFID Systems from Plaintext-Aware Encryption Khaled Ouafi and Serge Vaudenay ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE http://lasec.epfl.ch/ supported by the ECRYPT project SV strong

More information

ISSN: [Shubhangi* et al., 6(8): August, 2017] Impact Factor: 4.116

ISSN: [Shubhangi* et al., 6(8): August, 2017] Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY DE-DUPLICABLE EFFECTIVE VALIDATION of CAPACITY for DYNAMIC USER ENVIRONMENT Dr. Shubhangi D C *1 & Pooja 2 *1 HOD, Department

More information

Outline. Public Key Cryptography. Applications of Public Key Crypto. Applications (Cont d)

Outline. Public Key Cryptography. Applications of Public Key Crypto. Applications (Cont d) Outline AIT 682: Network and Systems Security 1. Introduction 2. RSA 3. Diffie-Hellman Key Exchange 4. Digital Signature Standard Topic 5.2 Public Key Cryptography Instructor: Dr. Kun Sun 2 Public Key

More information

Ideal Security Protocol. Identify Friend or Foe (IFF) MIG in the Middle 4/2/2012

Ideal Security Protocol. Identify Friend or Foe (IFF) MIG in the Middle 4/2/2012 Ideal Security Protocol Satisfies security requirements Requirements must be precise Efficient Small computational requirement Small bandwidth usage, network delays Not fragile Works when attacker tries

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security Outline ZKIP Other IP CPSC 467b: Cryptography and Computer Security Lecture 19 Michael J. Fischer Department of Computer Science Yale University March 31, 2010 Michael J. Fischer CPSC 467b, Lecture 19

More information

Direct Anonymous Attestation

Direct Anonymous Attestation Direct Anonymous Attestation Revisited Jan Camenisch IBM Research Zurich Joint work with Ernie Brickell, Liqun Chen, Manu Drivers, Anja Lehmann. jca@zurich.ibm.com, @JanCamenisch, ibm.biz/jancamenisch

More information

Lecture 22 - Oblivious Transfer (OT) and Private Information Retrieval (PIR)

Lecture 22 - Oblivious Transfer (OT) and Private Information Retrieval (PIR) Lecture 22 - Oblivious Transfer (OT) and Private Information Retrieval (PIR) Boaz Barak December 8, 2005 Oblivious Transfer We are thinking of the following situation: we have a server and a client (or

More information

Remote E-Voting System

Remote E-Voting System Remote E-Voting System Crypto2-Spring 2013 Benjamin Kaiser Jacob Shedd Jeremy White Phases Initialization Registration Voting Verifying Activities Trusted Authority (TA) distributes 4 keys to Registrar,

More information

Cryptography: More Primitives

Cryptography: More Primitives Design and Analysis of Algorithms May 8, 2015 Massachusetts Institute of Technology 6.046J/18.410J Profs. Erik Demaine, Srini Devadas and Nancy Lynch Recitation 11 Cryptography: More Primitives 1 Digital

More information

CSC 5930/9010 Modern Cryptography: Public-Key Infrastructure

CSC 5930/9010 Modern Cryptography: Public-Key Infrastructure CSC 5930/9010 Modern Cryptography: Public-Key Infrastructure Professor Henry Carter Fall 2018 Recap Digital signatures provide message authenticity and integrity in the public-key setting As well as public

More information

Relaxing IND-CCA: Indistinguishability Against Chosen Ciphertext Verification Attack

Relaxing IND-CCA: Indistinguishability Against Chosen Ciphertext Verification Attack Relaxing IND-CCA: Indistinguishability Against Chosen Ciphertext Verification Attack Sumit Kumar Pandey, Santanu Sarkar and Mahavir Prasad Jhanwar CR Rao AIMSCS Hyderabad November 2, 2012 Outline 1 Definitions

More information

Leakage-Resilient Chosen-Ciphertext Secure Public-Key Encryption from Hash Proof System and One-Time Lossy Filter

Leakage-Resilient Chosen-Ciphertext Secure Public-Key Encryption from Hash Proof System and One-Time Lossy Filter Leakage-Resilient Chosen-Ciphertext Secure Public-Key Encryption from Hash Proof System and One-Time Lossy Filter Baodong Qin and Shengli Liu Shanghai Jiao Tong University ASIACRYPT 2013 Dec 5, Bangalore,

More information

Security Analysis and Modification of ID-Based Encryption with Equality Test from ACISP 2017

Security Analysis and Modification of ID-Based Encryption with Equality Test from ACISP 2017 Security Analysis and Modification of ID-Based Encryption with Equality Test from ACISP 2017 Hyung Tae Lee 1, Huaxiong Wang 2, Kai Zhang 3, 4 1 Chonbuk National University, Republic of Korea 2 Nanyang

More information

Analysis of Partially and Fully Homomorphic Encryption

Analysis of Partially and Fully Homomorphic Encryption Analysis of Partially and Fully Homomorphic Encryption Liam Morris lcm1115@rit.edu Department of Computer Science, Rochester Institute of Technology, Rochester, New York May 10, 2013 1 Introduction Homomorphic

More information

Security of Cryptosystems

Security of Cryptosystems Security of Cryptosystems Sven Laur swen@math.ut.ee University of Tartu Formal Syntax Symmetric key cryptosystem m M 0 c Enc sk (m) sk Gen c sk m Dec sk (c) A randomised key generation algorithm outputs

More information

An Efficient System for Non-transferable Anonymous Credentials with Optional Anonymity Revocation

An Efficient System for Non-transferable Anonymous Credentials with Optional Anonymity Revocation An Efficient System for Non-transferable Anonymous Credentials with ptional Anonymity Revocation Jan Camenisch IBM Research Zurich Research Laboratory CH 8803 Rüschlikon jca@zurich.ibm.com Anna Lysyanskaya

More information

PassBio: Privacy-Preserving User-Centric Biometric Authentication

PassBio: Privacy-Preserving User-Centric Biometric Authentication 1 PassBio: Privacy-Preserving User-Centric Biometric Authentication Kai Zhou and Jian Ren arxiv:1711.04902v1 [cs.cr] 14 Nov 2017 Abstract The proliferation of online biometric authentication has necessitated

More information

Secure Multi-party Computation

Secure Multi-party Computation Secure Multi-party Computation What it is, and why you d care Manoj Prabhakaran University of Illinois, Urbana-Champaign SMC SMC SMC conceived more than 30 years back SMC SMC conceived more than 30 years

More information

Store, Forget & Check: Using Algebraic Signatures to Check Remotely Administered Storage

Store, Forget & Check: Using Algebraic Signatures to Check Remotely Administered Storage Store, Forget & Check: Using Algebraic Signatures to Check Remotely Administered Storage Ethan L. Miller & Thomas J. E. Schwarz Storage Systems Research Center University of California, Santa Cruz What

More information

Cryptography Today. Ali El Kaafarani. Mathematical Institute Oxford University. 1 of 44

Cryptography Today. Ali El Kaafarani. Mathematical Institute Oxford University. 1 of 44 Cryptography Today Ali El Kaafarani Mathematical Institute Oxford University 1 of 44 About the Course Regular classes with worksheets so you can work with some concrete examples (every Friday at 1pm).

More information

SAS-Based Group Authentication and Key Agreement Protocols

SAS-Based Group Authentication and Key Agreement Protocols SAS-Based Group Authentication and Key Agreement Protocols Sven Laur 1,2 and Sylvain Pasini 3 2 University of Tartu 1 Helsinki University of Technology 3 Ecole Polytechnique Fédérale de Lausanne User-aided

More information

Public Verifiability of Stored Data in Cloud using Disassembly of Data Segment

Public Verifiability of Stored Data in Cloud using Disassembly of Data Segment Public Verifiability of Stored Data in Cloud using Disassembly of Data Segment Adhikrao.Y.Jadhav Department of Computer Science & Engg. Sachin P. Patil Department of Information Technology, Annasaheb Dange

More information

COMS W4995 Introduction to Cryptography November 13, Lecture 21: Multiple Use Signature Schemes

COMS W4995 Introduction to Cryptography November 13, Lecture 21: Multiple Use Signature Schemes COMS W4995 Introduction to Cryptography November 13, 2003 Lecture 21: Multiple Use Signature Schemes Lecturer: Tal Malkin Scribes: M. Niccolai, M. Raibert Summary In this lecture, we use the one time secure

More information

Cryptography V: Digital Signatures

Cryptography V: Digital Signatures Cryptography V: Digital Signatures Computer Security Lecture 10 David Aspinall School of Informatics University of Edinburgh 10th February 2011 Outline Basics Constructing signature schemes Security of

More information

Multi-Theorem Preprocessing NIZKs from Lattices

Multi-Theorem Preprocessing NIZKs from Lattices Multi-Theorem Preprocessing NIZKs from Lattices Sam Kim and David J. Wu Stanford University Soundness: x L, P Pr P, V (x) = accept = 0 No prover can convince honest verifier of false statement Proof Systems

More information

Authenticating compromisable storage systems

Authenticating compromisable storage systems Authenticating compromisable storage systems Jiangshan Yu Interdisciplinary Center for Security, Reliability and Trust University of Luxembourg Email: jiangshan.yu@uni.lu Mark Ryan School of Computer Science

More information

Comparative Study of Private Information Retrieval Protocols

Comparative Study of Private Information Retrieval Protocols Comparative Study of Private Information Retrieval Protocols Wisam Eltarjaman, Prasad Annadata Department of Computer Science, University of Denver Denver, CO 80210, USA ABSTRACT Private Information Retrieval

More information

CS 395T. Formal Model for Secure Key Exchange

CS 395T. Formal Model for Secure Key Exchange CS 395T Formal Model for Secure Key Exchange Main Idea: Compositionality Protocols don t run in a vacuum Security protocols are typically used as building blocks in a larger secure system For example,

More information

Foundations of Cryptography CS Shweta Agrawal

Foundations of Cryptography CS Shweta Agrawal Foundations of Cryptography CS 6111 Shweta Agrawal Course Information 4-5 homeworks (20% total) A midsem (25%) A major (35%) A project (20%) Attendance required as per institute policy Challenge questions

More information

Securing Distributed Computation via Trusted Quorums. Yan Michalevsky, Valeria Nikolaenko, Dan Boneh

Securing Distributed Computation via Trusted Quorums. Yan Michalevsky, Valeria Nikolaenko, Dan Boneh Securing Distributed Computation via Trusted Quorums Yan Michalevsky, Valeria Nikolaenko, Dan Boneh Setting Distributed computation over data contributed by users Communication through a central party

More information

Anonymous Signature Schemes

Anonymous Signature Schemes Anonymous Signature Schemes Guomin Yang 1, Duncan S. Wong 1, Xiaotie Deng 1, and Huaxiong Wang 2 1 Department of Computer Science City University of Hong Kong Hong Kong, China {csyanggm,duncan,deng}@cs.cityu.edu.hk

More information

1 Defining Message authentication

1 Defining Message authentication ISA 562: Information Security, Theory and Practice Lecture 3 1 Defining Message authentication 1.1 Defining MAC schemes In the last lecture we saw that, even if our data is encrypted, a clever adversary

More information

Reminder: Homework 4. Due: Friday at the beginning of class

Reminder: Homework 4. Due: Friday at the beginning of class Reminder: Homework 4 Due: Friday at the beginning of class 1 Cryptography CS 555 Topic 33: Digital Signatures Part 2 2 Recap El-Gamal/RSA-OAEP Digital Signatures Similarities and differences with MACs

More information

Indistinguishable Proofs of Work or Knowledge

Indistinguishable Proofs of Work or Knowledge Indistinguishable Proofs of Work or Knowledge Foteini Baldimtsi, Aggelos Kiayias, Thomas Zacharias, Bingsheng Zhang ASIACRYPT 2016 8th December, Hanoi, Vietnam Motivation (ZK) Proofs of Knowledge - PoK

More information

How to (not) Share a Password:

How to (not) Share a Password: How to (not) Share a Password: Privacy preserving protocols for finding heavy hitters with adversarial behavior Moni Naor Benny Pinkas Eyal Ronen Passwords First modern use in MIT's CTSS (1961) Passwords

More information

Deniable Unique Group Authentication CS380S Project Report

Deniable Unique Group Authentication CS380S Project Report Deniable Unique Group Authentication CS380S Project Report Matteo Pontecorvi, Subhashini Venugopalan Abstract Deniable unique authentication is desirable in a number of scenarios. Electronic voting would

More information

RADIO Frequency Identification (RFID) technology [1], [2] enables wireless identification of objects

RADIO Frequency Identification (RFID) technology [1], [2] enables wireless identification of objects 1 Destructive Privacy and Mutual Authentication in Vaudenay s RFID Model Cristian Hristea and Ferucio Laurenţiu Ţiplea Abstract With the large scale adoption of the Radio Frequency Identification (RFID)

More information

TANDEM: Securing Keys by Using a Central Server While Preserving Privacy

TANDEM: Securing Keys by Using a Central Server While Preserving Privacy TANDEM: Securing Keys by Using a Central Server While Preserving Privacy Wouter Lueks SPRING Lab, EPFL wouter.lueks@epfl.ch Brinda Hampiholi Radboud University brinda@cs.ru.nl Greg Alpár Open University

More information

Decentralized Blacklistable Anonymous Credentials with Reputation

Decentralized Blacklistable Anonymous Credentials with Reputation Decentralized Blacklistable Anonymous Credentials with Reputation Rupeng Yang 1,2, Man Ho Au 2, Qiuliang Xu 1, and Zuoxia Yu 2 1 School of Computer Science and Technology, Shandong University, Jinan, 250101,

More information

Authentication and Key Distribution

Authentication and Key Distribution Authentication and Key Distribution Breno de Medeiros Department of Computer Science Florida State University Authentication and Key Distribution p.1 Authentication protocols Authentication and key-exchange

More information

DAA: Fixing the pairing based protocols

DAA: Fixing the pairing based protocols DAA: Fixing the pairing based protocols Liqun Chen 1, Paul Morrissey 2 and Nigel P. Smart 2 1 Hewlett-Packard Laboratories, Filton Road, Stoke Gifford, Bristol, BS34 8QZ, United Kingdom. liqun.chen@hp.com

More information

Secure Multiparty Computation

Secure Multiparty Computation CS573 Data Privacy and Security Secure Multiparty Computation Problem and security definitions Li Xiong Outline Cryptographic primitives Symmetric Encryption Public Key Encryption Secure Multiparty Computation

More information

Message Authentication ( 消息认证 )

Message Authentication ( 消息认证 ) Message Authentication ( 消息认证 ) Sheng Zhong Yuan Zhang Computer Science and Technology Department Nanjing University 2017 Fall Sheng Zhong, Yuan Zhang (CS@NJU) Message Authentication ( 消息认证 ) 2017 Fall

More information

Introduction to Cryptography Lecture 7

Introduction to Cryptography Lecture 7 Introduction to Cryptography Lecture 7 Public-Key Encryption: El-Gamal, RSA Benny Pinkas page 1 1 Public key encryption Alice publishes a public key PK Alice. Alice has a secret key SK Alice. Anyone knowing

More information

Digital Signatures. KG November 3, Introduction 1. 2 Digital Signatures 2

Digital Signatures. KG November 3, Introduction 1. 2 Digital Signatures 2 Digital Signatures KG November 3, 2017 Contents 1 Introduction 1 2 Digital Signatures 2 3 Hash Functions 3 3.1 Attacks.................................... 4 3.2 Compression Functions............................

More information

CS408 Cryptography & Internet Security

CS408 Cryptography & Internet Security CS408 Cryptography & Internet Security Lectures 16, 17: Security of RSA El Gamal Cryptosystem Announcement Final exam will be on May 11, 2015 between 11:30am 2:00pm in FMH 319 http://www.njit.edu/registrar/exams/finalexams.php

More information

Authenticated encryption

Authenticated encryption Authenticated encryption Mac forgery game M {} k R 0,1 s m t M M {m } t mac k (m ) Repeat as many times as the adversary wants (m, t) Wins if m M verify m, t = 1 Mac forgery game Allow the adversary to

More information

Crypto for Cloud and Blockchain

Crypto for Cloud and Blockchain Crypto for Cloud and Blockchain Sushmita Ruj Indian Statistical Institute, Kolkata http://www.isical.ac.in/~sush Email: sush@isical.ac.in Sushmita.ruj@gmail.com Outline of today s talk Cloud security and

More information

Lecture 8: Cryptography in the presence of local/public randomness

Lecture 8: Cryptography in the presence of local/public randomness Randomness in Cryptography Febuary 25, 2013 Lecture 8: Cryptography in the presence of local/public randomness Lecturer: Yevgeniy Dodis Scribe: Hamidreza Jahanjou So far we have only considered weak randomness

More information

CSA E0 312: Secure Computation October 14, Guest Lecture 2-3

CSA E0 312: Secure Computation October 14, Guest Lecture 2-3 CSA E0 312: Secure Computation October 14, 2015 Guest Lecture 2-3 Guest Instructor: C. Pandu Rangan Submitted by: Cressida Hamlet 1 Introduction Till now we have seen only semi-honest parties. From now

More information

MTAT Research Seminar in Cryptography IND-CCA2 secure cryptosystems

MTAT Research Seminar in Cryptography IND-CCA2 secure cryptosystems MTAT.07.006 Research Seminar in Cryptography IND-CCA2 secure cryptosystems Dan Bogdanov October 31, 2005 Abstract Standard security assumptions (IND-CPA, IND- CCA) are explained. A number of cryptosystems

More information

ALIKE: Authenticated Lightweight Key Exchange. Sandrine Agagliate, GEMALTO Security Labs

ALIKE: Authenticated Lightweight Key Exchange. Sandrine Agagliate, GEMALTO Security Labs ALIKE: Authenticated Lightweight Key Exchange Sandrine Agagliate, GEMALTO Security Labs Outline: Context Description of ALIKE Generic description Full specification Security properties Chip Unforgeability

More information

Homomorphic encryption (whiteboard)

Homomorphic encryption (whiteboard) Crypto Tutorial Homomorphic encryption Proofs of retrievability/possession Attribute based encryption Hidden vector encryption, predicate encryption Identity based encryption Zero knowledge proofs, proofs

More information

Lecture 19 - Oblivious Transfer (OT) and Private Information Retrieval (PIR)

Lecture 19 - Oblivious Transfer (OT) and Private Information Retrieval (PIR) Lecture 19 - Oblivious Transfer (OT) and Private Information Retrieval (PIR) Boaz Barak November 29, 2007 Oblivious Transfer We are thinking of the following situation: we have a server and a client (or

More information

Symmetric Encryption 2: Integrity

Symmetric Encryption 2: Integrity http://wwmsite.wpengine.com/wp-content/uploads/2011/12/integrity-lion-300x222.jpg Symmetric Encryption 2: Integrity With material from Dave Levin, Jon Katz, David Brumley 1 Summing up (so far) Computational

More information

CSC 5930/9010 Cloud S & P: Cloud Primitives

CSC 5930/9010 Cloud S & P: Cloud Primitives CSC 5930/9010 Cloud S & P: Cloud Primitives Professor Henry Carter Spring 2017 Methodology Section This is the most important technical portion of a research paper Methodology sections differ widely depending

More information

Publicly Verifiable Secure Cloud Storage for Dynamic Data Using Secure Network Coding

Publicly Verifiable Secure Cloud Storage for Dynamic Data Using Secure Network Coding Publicly Verifiable Secure Cloud Storage for Dynamic Data Using Secure Network Coding Binanda Sengupta Indian Statistical Institute Kolkata, India binanda_r@isical.ac.in Sushmita Ruj Indian Statistical

More information

Using Level-1 Homomorphic Encryption To Improve Threshold DSA Signatures For Bitcoin Wallet Security

Using Level-1 Homomorphic Encryption To Improve Threshold DSA Signatures For Bitcoin Wallet Security Using Level-1 Homomorphic Encryption To Improve Threshold DSA Signatures For Bitcoin Wallet Security Dan Boneh 1, Rosario Gennaro 2, and Steven Goldfeder 3 1 Stanford University dabo@cs.stanford.edu 2

More information

Introduction. Cambridge University Press Mathematics of Public Key Cryptography Steven D. Galbraith Excerpt More information

Introduction. Cambridge University Press Mathematics of Public Key Cryptography Steven D. Galbraith Excerpt More information 1 Introduction Cryptography is an interdisciplinary field of great practical importance. The subfield of public key cryptography has notable applications, such as digital signatures. The security of a

More information

ASYMMETRIC (PUBLIC-KEY) ENCRYPTION. Mihir Bellare UCSD 1

ASYMMETRIC (PUBLIC-KEY) ENCRYPTION. Mihir Bellare UCSD 1 ASYMMETRIC (PUBLIC-KEY) ENCRYPTION Mihir Bellare UCSD 1 Recommended Book Steven Levy. Crypto. Penguin books. 2001. A non-technical account of the history of public-key cryptography and the colorful characters

More information