Master Theorem, Introduction to Graphs

Size: px
Start display at page:

Download "Master Theorem, Introduction to Graphs"

Transcription

1 Master Theorem, Introduction to Graphs CSE21 Winter 2017, Day 10 (B00), Day 6-7 (A00) February 1,

2 Divide & Conquer: General Strategy Divide the problem of size n into a subproblems of size n/b. Recursively solve each subproblem. Conquer the problem of size n by combining solutions of subproblems. Rosen 5.4 has more examples

3 Divide & Conquer: General Strategy Divide the problem of size n into a subproblems of size n/b. Recursively solve each subproblem. Conquer the problem of size n by combining solutions of subproblems. T(n) = time to solve problem of size n T(1)=constant g(n) = time to do the conquer step to solve problem of size n Recurrence for T(n)? A. T(n) = a*t(n/b) + a*g(n) C. T(n) = a*t(n/b) + g(n) B. T(n) = T(a*n/b) + g(n) D. T(n) = g(n)*a*t(n/b)

4 Solving Divide and Conquer Recurrence Relations Divide and conquer algorithms have recurrences of the form T(n) = a*t(n/b) + g(n). If g(n) is a polynomial, there is a nice theorem called the Master Theorem that allows us to quickly estimate the time complexity of many divide and conquer algorithms. T(n) = time to solve problem of size n T(1)=constant g(n) = time to do the conquer step to solve problem of size n

5 Master Theorem

6 Master Theorem a log b n Size 1

7 Master Theorem for Mergesort If T MS (n) is runtime of MergeSort on list of size n, T MS (0) = c 0 T MS (1) = c' T MS (n) = 2T MS (n/2) + cn where c 0, c, c' are some constants a=2, b=2, d=1 so a=b d O(n 1 log n)

8 Master Theorem for Mergesort If T MS (n) is runtime of MergeSort on list of size n, T MS (0) = c 0 T MS (1) = c' T MS (n) = 2T MS (n/2) + cn where c 0, c, c' are some constants Not much work! a=2, b=2, d=1 so a=b d O(n 1 log n)

9 Master Theorem for Binary Search Do one comparison to decide which half to search in. Then repeat on a list of half the size. T(0) = c 0 T(1) = c' T(n) = T(n/2) + c where c 0, c, c' are some constants a=1, b=2, d=0 so a=b d O(n 0 log n) = O(log n)

10 Divide & Conquer Wins Big Mergesort Dividing into two subproblems each with half the size is a big win over other sorting algorithms. Binary Search Dividing into one subproblem with half the size is a big win over linear search. Will this work in other contexts?

11 Multiplication: WHAT Given two n-digit (or bit) integers a = a n-1 a 1 a 0 and b = b n-1 b 1 b 0 return the decimal (or binary) representation of their product. Rosen p x

12 Multiplication: HOW Given two n-digit (or bit) integers a = a n-1 a 1 a 0 and b = b n-1 b 1 b 0 return the decimal (or binary) representation of their product. Rosen p x Compute partial products (using single digit multiplications), shift, then add. How many operations?

13 Multiplication: HOW Given two n-digit (or bit) integers a = a n-1 a 1 a 0 and b = b n-1 b 1 b 0 return the decimal (or binary) representation of their product. Rosen p x Compute partial products (using single digit multiplications), shift, then add. How many operations? O(n 2 )

14 Multiplication: HOW Divide and conquer? Divide n-digit numbers into two n/2-digit numbers. If a = and b = , we can write To multiply: a = (1234) * (5678) b = (2468) * (1357) ((1234) * (5678))((2468) * (1357))= (1234)(2468) * (1234)(1357) * (2468)(5678) * (1357)(5678)

15 One 8-digit multiplication Multiplication: WHEN ( )( )=((1234) * (5678))((2468) * (1357))= (1234)(2468) * (1234)(1357) * (2468)(5678) * (1357)(5678) Four 4-digit multiplications (plus some shifts, sums)

16 One 8-digit multiplication Multiplication: WHEN ( )( )=((1234) * (5678))((2468) * (1357))= (1234)(2468) * (1234)(1357) * (2468)(5678) * (1357)(5678) Four 4-digit multiplications (plus some shifts, sums) A. a = 4, b=4, d=0 C. a=4, b=2, d=1 B. a = 4, b=4, d=1 D. a=4, b=2, d=0

17 Multiplication: WHEN a=4, b=2, d=1 so a>b d O(n log_2(4) ) = O(n 2 )

18 Multiplication: WHEN a=4, b=2, d=1 so a>b d O(n log_2(4) ) = O(n 2 ) A. This is good news! B. This is bad news! C. I m not sure.

19 Enter Anatoly Karatsuba... Rosen p. 528 Insight: replace one (of the 4) multiplications by (linear time) subtraction

20 Karatsuba Multiplication: HOW Rosen p. 528 ( )( )=((1234) * (5678))((2468) * (1357))= (1234)(2468) * (1234)(1357) * (2468)(5678) * (1357)(5678) (1234)(2468) * ( ) + [(1234) - (5678)][ (1357)-(2468) ] * (1357)(5678) * ( ) Insight: replace one (of the 4) multiplications by (linear time) subtraction

21

22 Karatsuba Multiplication: WHEN Instead of T(n) = 4 T(n/2) + cn T K (n) = 3 T K (n/2) + pn with c a constant, now we have with p a constant. Rosen p. 528 a=3, b=2, d=1 so a>b d O(n log_2(3) ) = O(n )

23 Karatsuba Multiplication: WHEN Rosen p. 528 n 1.58 is better than n 2 Progress since then This is good news! 1963: Toom and Cook develop series of algorithms that are time O(n 1+ ). 2007: Furer uses number theory to achieve the best known time for multiplication. 2016: Still open whether there is a linear time algorithm for multiplication.

24 What is a graph? A (directed) graph G is A nonempty set of vertices V, also called nodes and A set of edges E, each pointing from one (tail) vertex to another (head) vertex. (A directed edge is denoted with an arrow ) head tail

25 Variants of graphs Undirected graph: no arrows on edges. Rosen p. 644 If there s an edge between v and w then there's an edge between w and v. (More precisely: an edge e vw connects the unordered pair of vertices {v,w}.) Multigraph: undirected graph that may have multiple edges between a pair of nodes. Such edges are sometimes called parallel edges. Simple graph: undirected graph with no self-loops (edge from v to v) and no parallel edges. Mixed graph: directed graph that may have multiple edges between a pair of nodes as well as self-loops.

26 Graphs are everywhere

27 Graphs are everywhere The internet graph

28 Map coloring Graphs are everywhere

29 Path planning for robots Graphs are everywhere

30 Graphs are everywhere

31 Are these the same graph? A. Yes: the set of vertices is the same. B. Yes: we can rearrange the vertices so that the pictures look the same. C. No: the pictures are different. D. No: the left graph has a crossing and the right one doesn't. E. None of the above.

32 Representing directed graphs Diagrams with vertices and edges How many vertices? For each ordered pair of vertices (v,w) how many edges go from v to w?

33 Representing directed graphs Diagrams with vertices and edges How many vertices? n For each ordered pair of vertices (v,w) how many edges go from v to w? How many ordered pairs of vertices are there? A. n B. 2n C. n 2 D. n(n-1)/2 E. 2 n

34 Representing directed graphs Diagrams with vertices and edges How many vertices? n For each ordered pair of vertices (v,w) how many edges go from v to w? Need to store n 2 ints

35 Representing directed graphs Adjacency matrix n x n matrix: entry in row i and column j is the number of edges from vertex i to vertex j Rosen p. 669

36 Representing directed graphs Adjacency matrix n x n matrix: entry in row i and column j is the number of edges from vertex i to vertex j What can you say about the adjacency matrix of a loopless graph? A. It has all zeros. B. All the elements below the diagonal are 1. C. All the elements are even. D. All the elements on the diagonal are 0. E. None of the above. Rosen p. 669

37 Representing directed graphs Adjacency matrix n x n matrix: entry in row i and column j is the number of edges from vertex i to vertex j What can you say about the adjacency matrix of a graph with no parallel edges? A. It has no zeros. B. It is symmetric. C. All the entries above the diagonal are 0. D. All entries are either 0 or 1. E. None of the above. Rosen p. 669

38 Representing directed graphs Adjacency matrix n x n matrix: entry in row i and column j is the number of edges from vertex i to vertex j What can you say about the adjacency matrix of an undirected graph? A. It has no zeros. B. It is symmetric. C. All the entries above the diagonal are 0. D. All entries are either 0 or 1. E. None of the above. Rosen p. 669

39 Representing undirected graphs Simple undirected graph: * Only need to store the adjacency matrix above diagonal. What's the maximum number of edges a simple undirected graph with n vertices can have? A. n 2 B. n 2 /2 C. n(n-1)/2 D. n(n+1)/2 E. n

40 Efficiency? When is an adjacency matrix an inefficient way to store a graph? When there is a high density of edges compared to number of vertices??? When there is a low density of edges compared to number of vertices???

41 Representing directed graphs Adjacency list (list of lists): for each vertex v, associate list of all neighbors of v. Rosen p. 668

42 Neighbors The neighbors of a vertex v are all the vertices w for which there is an edge whose endpoints are v,w. If two vertices are neighbors then they are called adjacent to one another. Rosen p. 651

43 Degree The degree of a vertex in an undirected graph is the total number of edges incident with it, except that a loop contributes twice. What's the maximum degree of a vertex in this graph? A. 0. B. 1 C. 2 D. 3 E. None of the above. Rosen p. 652

44 What's the degree of vertex 5? A. 5 B. 3 C. 2 D. 1 E. None of the above. Degree

45 What's the degree of vertex 0? A. 5 B. 3 C. 2 D. 1 E. None of the above. Degree

46 Handshakes If there are n people in a room, and each shakes hands with d people, how many handshakes take place? A. n B. d C. nd D. (nd)/2 E. None of the above.

47 Handshakes If there are n people in a room, and each shakes hands with d people, how many handshakes take place? A. n B. d C. nd D. (nd)/2 E. None of the above. Don't double-count each handshake!

48 Handshakes "in" graphs If a simple graph has n vertices and each vertex has degree d, how many edges are there? 2 E = n*d

49 Handshakes in graphs If any graph has n vertices, then 2 E = sum of degrees of all vertices

50 Handshakes "in" graphs If any graph has n vertices, then 2 E = sum of degrees of all vertices What can we conclude? A. Every degree in the graph is even. B. The number of edges is even. C. The number of vertices with odd degree is even. D. The number self loops is even. E. None of the above.

51 Puzzles

52 Tartaglia's Pouring Problem Large cup: contains 8 ounces, can hold more. Medium cup: is empty, has 5 ounce capacity. Small cup: is empty, has 3 ounce capacity You can pour from one cup to another until the first is empty or the second is full. Can we divide the coffee in half? How? A. Yes B. No

53 Tartaglia's Pouring Problem Large cup: contains 8 ounces, can hold more. Medium cup: is empty, has 5 ounce capacity. Small cup: is empty, has 3 ounce capacity You can pour from one cup to another until the first is empty or the second is full. Can we divide the coffee in half? How? Hint: configurations (l,m,s) code # ounces in each cup A. Yes B. No

54 Tartaglia's Pouring Problem

55 Tartaglia's Pouring Problem Rephrasing the problem: Looking for path from (8,0,0) to (4,4,0)

56 Path Sequence (v 0, e 1, v 1, e 2, v 2,, e k, v k ) describes a route through the graph from to start vertex v 0 end vertex v k

57 Tartaglia's Pouring Problem Rephrasing the problem: (1) Is there a path from (8,0,0) to (4,4,0)? (2) If so, what's the best path? "Best" means "shortest length"

58 What's the shortest length of a path from (8,0,0) to (4,4,0)? A. 7 B. 8 C. 14 D. 16 E. None of the above. Tartaglia's Pouring Problem

59 Algorithmic questions related to paths Reachability: // decision Does there exist a path from vertex v to vertex w? Path: // construction Find a path from vertex v to vertex w. Distance: // optimization What s the length of the shortest path from vertex v to vertex w?

60 Seating Chart to be posted on Website Good luck! Exam Announcements Exam on Monday Covers through Day 9 (no graphs) Bring student ID. One handwritten note sheet (8.5 x 11, both sides). Look up seat assignment. No calculators. No blue books. Review Session covering the Practice Midterm Saturday 1-3pm Sunday 12-2pm (selected by Piazza vote)

Introduction to Graphs

Introduction to Graphs Introduction to Graphs CSE21 Winter 2017, Day 10 (B00), Day 6-7 (A00) February 1, 2017 http://vlsicad.ucsd.edu/courses/cse21-w17 What is a graph? A (directed) graph G is A nonempty set of vertices V, also

More information

Introduction to Graphs

Introduction to Graphs Introduction to Graphs Russell Impagliazzo and Miles Jones Thanks to Janine Tiefenbruck http://cseweb.ucsd.edu/classes/sp16/cse21-bd/ April 18, 2016 1 What is a graph? A (directed) graph G is A nonempty

More information

Graphs and Puzzles. Eulerian and Hamiltonian Tours.

Graphs and Puzzles. Eulerian and Hamiltonian Tours. Graphs and Puzzles. Eulerian and Hamiltonian Tours. CSE21 Winter 2017, Day 11 (B00), Day 7 (A00) February 3, 2017 http://vlsicad.ucsd.edu/courses/cse21-w17 Exam Announcements Seating Chart on Website Good

More information

UCSD CSE 21, Spring 2014 [Section B00] Mathematics for Algorithm and System Analysis

UCSD CSE 21, Spring 2014 [Section B00] Mathematics for Algorithm and System Analysis UCSD CSE 21, Spring 2014 [Section B00] Mathematics for Algorithm and System Analysis Lecture 16 Class URL: http://vlsicad.ucsd.edu/courses/cse21-s14/ Lecture 16 Notes Goals for this week Graph basics Types

More information

Notes slides from before lecture. CSE 21, Winter 2017, Section A00. Lecture 10 Notes. Class URL:

Notes slides from before lecture. CSE 21, Winter 2017, Section A00. Lecture 10 Notes. Class URL: Notes slides from before lecture CSE 21, Winter 2017, Section A00 Lecture 10 Notes Class URL: http://vlsicad.ucsd.edu/courses/cse21-w17/ Notes slides from before lecture Notes February 13 (1) HW5 is due

More information

Eulerian Tours and Fleury s Algorithm

Eulerian Tours and Fleury s Algorithm Eulerian Tours and Fleury s Algorithm CSE21 Winter 2017, Day 12 (B00), Day 8 (A00) February 8, 2017 http://vlsicad.ucsd.edu/courses/cse21-w17 Vocabulary Path (or walk):describes a route from one vertex

More information

Eulerian Tours and Fleury s Algorithm

Eulerian Tours and Fleury s Algorithm Eulerian Tours and Fleury s Algorithm CSE21 Winter 2017, Day 12 (B00), Day 8 (A00) February 8, 2017 http://vlsicad.ucsd.edu/courses/cse21-w17 Vocabulary Path (or walk): describes a route from one vertex

More information

Encoding/Decoding, Counting graphs

Encoding/Decoding, Counting graphs Encoding/Decoding, Counting graphs Russell Impagliazzo and Miles Jones Thanks to Janine Tiefenbruck http://cseweb.ucsd.edu/classes/sp16/cse21-bd/ May 13, 2016 11-avoiding binary strings Let s consider

More information

Notes slides from before lecture. CSE 21, Winter 2017, Section A00. Lecture 9 Notes. Class URL:

Notes slides from before lecture. CSE 21, Winter 2017, Section A00. Lecture 9 Notes. Class URL: Notes slides from before lecture CSE 21, Winter 2017, Section A00 Lecture 9 Notes Class URL: http://vlsicad.ucsd.edu/courses/cse21-w17/ Notes slides from before lecture Notes February 8 (1) HW4 is due

More information

CSE 20 DISCRETE MATH WINTER

CSE 20 DISCRETE MATH WINTER CSE 20 DISCRETE MATH WINTER 2016 http://cseweb.ucsd.edu/classes/wi16/cse20-ab/ Today's learning goals Explain the steps in a proof by (strong) mathematical induction Use (strong) mathematical induction

More information

DIVIDE & CONQUER. Problem of size n. Solution to sub problem 1

DIVIDE & CONQUER. Problem of size n. Solution to sub problem 1 DIVIDE & CONQUER Definition: Divide & conquer is a general algorithm design strategy with a general plan as follows: 1. DIVIDE: A problem s instance is divided into several smaller instances of the same

More information

Eulerian tours. Russell Impagliazzo and Miles Jones Thanks to Janine Tiefenbruck. April 20, 2016

Eulerian tours. Russell Impagliazzo and Miles Jones Thanks to Janine Tiefenbruck.  April 20, 2016 Eulerian tours Russell Impagliazzo and Miles Jones Thanks to Janine Tiefenbruck http://cseweb.ucsd.edu/classes/sp16/cse21-bd/ April 20, 2016 Seven Bridges of Konigsberg Is there a path that crosses each

More information

CSE Winter 2015 Quiz 2 Solutions

CSE Winter 2015 Quiz 2 Solutions CSE 101 - Winter 2015 Quiz 2 s January 27, 2015 1. True or False: For any DAG G = (V, E) with at least one vertex v V, there must exist at least one topological ordering. (Answer: True) Fact (from class)

More information

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of MCA

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of MCA INTERNAL ASSESSMENT TEST 2 Date : 30/3/15 Max Marks : 50 Name of faculty : Sabeeha Sultana Subject & Code : ADA(13MCA41) Answer any five full question: 1.Illustrate Mergesort for the dataset 8,3,2,9,7,1,5,4.

More information

CSE 421 Closest Pair of Points, Master Theorem, Integer Multiplication

CSE 421 Closest Pair of Points, Master Theorem, Integer Multiplication CSE 421 Closest Pair of Points, Master Theorem, Integer Multiplication Shayan Oveis Gharan 1 Finding the Closest Pair of Points Closest Pair of Points (non geometric) Given n points and arbitrary distances

More information

Divide and Conquer 1

Divide and Conquer 1 Divide and Conquer A Useful Recurrence Relation Def. T(n) = number of comparisons to mergesort an input of size n. Mergesort recurrence. T(n) if n T n/2 T n/2 solve left half solve right half merging n

More information

CSE 202 Divide-and-conquer algorithms. Fan Chung Graham UC San Diego

CSE 202 Divide-and-conquer algorithms. Fan Chung Graham UC San Diego CSE 22 Divide-and-conquer algorithms Fan Chung Graham UC San Diego Announcements Homework due today before the class. About homework, write your own homework, allowing oral discussion with one fixed partner.

More information

17/05/2018. Outline. Outline. Divide and Conquer. Control Abstraction for Divide &Conquer. Outline. Module 2: Divide and Conquer

17/05/2018. Outline. Outline. Divide and Conquer. Control Abstraction for Divide &Conquer. Outline. Module 2: Divide and Conquer Module 2: Divide and Conquer Divide and Conquer Control Abstraction for Divide &Conquer 1 Recurrence equation for Divide and Conquer: If the size of problem p is n and the sizes of the k sub problems are

More information

Unit-2 Divide and conquer 2016

Unit-2 Divide and conquer 2016 2 Divide and conquer Overview, Structure of divide-and-conquer algorithms, binary search, quick sort, Strassen multiplication. 13% 05 Divide-and- conquer The Divide and Conquer Paradigm, is a method of

More information

Chapter 5. Divide and Conquer. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved.

Chapter 5. Divide and Conquer. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. Chapter 5 Divide and Conquer Slides by Kevin Wayne. Copyright 25 Pearson-Addison Wesley. All rights reserved. Divide-and-Conquer Divide-and-conquer. Break up problem into several parts. Solve each part

More information

Divide-and-Conquer. Combine solutions to sub-problems into overall solution. Break up problem of size n into two equal parts of size!n.

Divide-and-Conquer. Combine solutions to sub-problems into overall solution. Break up problem of size n into two equal parts of size!n. Chapter 5 Divide and Conquer Slides by Kevin Wayne. Copyright 25 Pearson-Addon Wesley. All rights reserved. Divide-and-Conquer Divide-and-conquer. Break up problem into several parts. Solve each part recursively.

More information

Divide-and-Conquer. Dr. Yingwu Zhu

Divide-and-Conquer. Dr. Yingwu Zhu Divide-and-Conquer Dr. Yingwu Zhu Divide-and-Conquer The most-well known algorithm design technique: 1. Divide instance of problem into two or more smaller instances 2. Solve smaller instances independently

More information

CSE 101, Winter Discussion Section Week 1. January 8 - January 15

CSE 101, Winter Discussion Section Week 1. January 8 - January 15 CSE 101, Winter 2018 Discussion Section Week 1 January 8 - January 15 Important Annotations were added (post-lecture) to the tablet slides, to fill in a few gaps (Lecture 1) Look through Additional Resources

More information

CSC Design and Analysis of Algorithms

CSC Design and Analysis of Algorithms CSC 8301- Design and Analysis of Algorithms Lecture 6 Divide and Conquer Algorithm Design Technique Divide-and-Conquer The most-well known algorithm design strategy: 1. Divide a problem instance into two

More information

CSC Design and Analysis of Algorithms. Lecture 6. Divide and Conquer Algorithm Design Technique. Divide-and-Conquer

CSC Design and Analysis of Algorithms. Lecture 6. Divide and Conquer Algorithm Design Technique. Divide-and-Conquer CSC 8301- Design and Analysis of Algorithms Lecture 6 Divide and Conquer Algorithm Design Technique Divide-and-Conquer The most-well known algorithm design strategy: 1. Divide a problem instance into two

More information

UCSD CSE 101 MIDTERM 1, Winter 2008

UCSD CSE 101 MIDTERM 1, Winter 2008 UCSD CSE 101 MIDTERM 1, Winter 2008 Andrew B. Kahng / Evan Ettinger Feb 1, 2008 Name: }{{} Student ID: }{{} Read all of the following information before starting the exam. This test has 3 problems totaling

More information

17 February Given an algorithm, compute its running time in terms of O, Ω, and Θ (if any). Usually the big-oh running time is enough.

17 February Given an algorithm, compute its running time in terms of O, Ω, and Θ (if any). Usually the big-oh running time is enough. Midterm Review CSE 2011 Winter 2011 17 February 2011 1 Algorithm Analysis Given an algorithm, compute its running time in terms of O, Ω, and Θ (if any). Usually the big-oh running time is enough. Given

More information

Parallel Sorting Algorithms

Parallel Sorting Algorithms CSC 391/691: GPU Programming Fall 015 Parallel Sorting Algorithms Copyright 015 Samuel S. Cho Sorting Algorithms Review Bubble Sort: O(n ) Insertion Sort: O(n ) Quick Sort: O(n log n) Heap Sort: O(n log

More information

An Introduction to Graph Theory

An Introduction to Graph Theory An Introduction to Graph Theory CIS008-2 Logic and Foundations of Mathematics David Goodwin david.goodwin@perisic.com 12:00, Friday 17 th February 2012 Outline 1 Graphs 2 Paths and cycles 3 Graphs and

More information

Chapter 4. Divide-and-Conquer. Copyright 2007 Pearson Addison-Wesley. All rights reserved.

Chapter 4. Divide-and-Conquer. Copyright 2007 Pearson Addison-Wesley. All rights reserved. Chapter 4 Divide-and-Conquer Copyright 2007 Pearson Addison-Wesley. All rights reserved. Divide-and-Conquer The most-well known algorithm design strategy: 2. Divide instance of problem into two or more

More information

Notes slides from before lecture. CSE 21, Winter 2017, Section A00. Lecture 4 Notes. Class URL:

Notes slides from before lecture. CSE 21, Winter 2017, Section A00. Lecture 4 Notes. Class URL: Notes slides from before lecture CSE 21, Winter 2017, Section A00 Lecture 4 Notes Class URL: http://vlsicad.ucsd.edu/courses/cse21-w17/ Notes slides from before lecture Notes January 23 (1) HW2 due tomorrow

More information

CS161 - Final Exam Computer Science Department, Stanford University August 16, 2008

CS161 - Final Exam Computer Science Department, Stanford University August 16, 2008 CS161 - Final Exam Computer Science Department, Stanford University August 16, 2008 Name: Honor Code 1. The Honor Code is an undertaking of the students, individually and collectively: a) that they will

More information

CSE 202 Divide-and-conquer algorithms. Fan Chung Graham UC San Diego

CSE 202 Divide-and-conquer algorithms. Fan Chung Graham UC San Diego CSE 22 Divide-and-conquer algorithms Fan Chung Graham UC San Diego A useful fact about trees Any tree on n vertices contains a vertex v whose removal separates the remaining graph into two parts, one of

More information

Solving Linear Recurrence Relations (8.2)

Solving Linear Recurrence Relations (8.2) EECS 203 Spring 2016 Lecture 18 Page 1 of 10 Review: Recurrence relations (Chapter 8) Last time we started in on recurrence relations. In computer science, one of the primary reasons we look at solving

More information

Recursive Algorithms II

Recursive Algorithms II Recursive Algorithms II Margaret M. Fleck 23 October 2009 This lecture wraps up our discussion of algorithm analysis (section 4.4 and 7.1 of Rosen). 1 Recap Last lecture, we started talking about mergesort,

More information

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism CHAPTER 2 Graphs 1. Introduction to Graphs and Graph Isomorphism 1.1. The Graph Menagerie. Definition 1.1.1. A simple graph G = (V, E) consists of a set V of vertices and a set E of edges, represented

More information

Trees and Intro to Counting

Trees and Intro to Counting Trees and Intro to Counting CSE21 Winter 2017, Day 15 (B00), Day 10/11 (A00) February 15, 2017 http://vlsicad.ucsd.edu/courses/cse21-w17 Another Special Type of Graph: Trees (Rooted) Trees: definitions

More information

U.C. Berkeley CS170 : Algorithms, Fall 2013 Midterm 1 Professor: Satish Rao October 10, Midterm 1 Solutions

U.C. Berkeley CS170 : Algorithms, Fall 2013 Midterm 1 Professor: Satish Rao October 10, Midterm 1 Solutions U.C. Berkeley CS170 : Algorithms, Fall 2013 Midterm 1 Professor: Satish Rao October 10, 2013 Midterm 1 Solutions 1 True/False 1. The Mayan base 20 system produces representations of size that is asymptotically

More information

Encoding/Decoding and Lower Bound for Sorting

Encoding/Decoding and Lower Bound for Sorting Encoding/Decoding and Lower Bound for Sorting CSE21 Winter 2017, Day 19 (B00), Day 13 (A00) March 1, 2017 http://vlsicad.ucsd.edu/courses/cse21-w17 Announcements HW #7 assigned Due: Tuesday 2/7 11:59pm

More information

Midterm solutions. n f 3 (n) = 3

Midterm solutions. n f 3 (n) = 3 Introduction to Computer Science 1, SE361 DGIST April 20, 2016 Professors Min-Soo Kim and Taesup Moon Midterm solutions Midterm solutions The midterm is a 1.5 hour exam (4:30pm 6:00pm). This is a closed

More information

Randomized Algorithms: Element Distinctness

Randomized Algorithms: Element Distinctness Randomized Algorithms: Element Distinctness CSE21 Winter 2017, Day 24 (B00), Day 16-17 (A00) March 13, 2017 http://vlsicad.ucsd.edu/courses/cse21-w17 Element Distinctness: WHAT Given list of positive integers

More information

DEFINITION OF GRAPH GRAPH THEORY GRAPHS ACCORDING TO THEIR VERTICES AND EDGES EXAMPLE GRAPHS ACCORDING TO THEIR VERTICES AND EDGES

DEFINITION OF GRAPH GRAPH THEORY GRAPHS ACCORDING TO THEIR VERTICES AND EDGES EXAMPLE GRAPHS ACCORDING TO THEIR VERTICES AND EDGES DEFINITION OF GRAPH GRAPH THEORY Prepared by Engr. JP Timola Reference: Discrete Math by Kenneth H. Rosen A graph G = (V,E) consists of V, a nonempty set of vertices (or nodes) and E, a set of edges. Each

More information

Test 1 Review Questions with Solutions

Test 1 Review Questions with Solutions CS3510 Design & Analysis of Algorithms Section A Test 1 Review Questions with Solutions Instructor: Richard Peng Test 1 in class, Wednesday, Sep 13, 2017 Main Topics Asymptotic complexity: O, Ω, and Θ.

More information

CSE 421 Algorithms: Divide and Conquer

CSE 421 Algorithms: Divide and Conquer CSE 42 Algorithms: Divide and Conquer Larry Ruzzo Thanks to Paul Beame, Kevin Wayne for some slides Outline: General Idea algorithm design paradigms: divide and conquer Review of Merge Sort Why does it

More information

Elements of Graph Theory

Elements of Graph Theory Elements of Graph Theory Quick review of Chapters 9.1 9.5, 9.7 (studied in Mt1348/2008) = all basic concepts must be known New topics we will mostly skip shortest paths (Chapter 9.6), as that was covered

More information

Graphs & Digraphs Tuesday, November 06, 2007

Graphs & Digraphs Tuesday, November 06, 2007 Graphs & Digraphs Tuesday, November 06, 2007 10:34 PM 16.1 Directed Graphs (digraphs) like a tree but w/ no root node & no guarantee of paths between nodes consists of: nodes/vertices - a set of elements

More information

Graphs. Pseudograph: multiple edges and loops allowed

Graphs. Pseudograph: multiple edges and loops allowed Graphs G = (V, E) V - set of vertices, E - set of edges Undirected graphs Simple graph: V - nonempty set of vertices, E - set of unordered pairs of distinct vertices (no multiple edges or loops) Multigraph:

More information

Algorithms: Lecture 7. Chalmers University of Technology

Algorithms: Lecture 7. Chalmers University of Technology Algorithms: Lecture 7 Chalmers University of Technology Today s Lecture Divide & Conquer Counting Inversions Closest Pair of Points Multiplication of large integers Intro to the forthcoming problems Graphs:

More information

CS 61B Summer 2005 (Porter) Midterm 2 July 21, SOLUTIONS. Do not open until told to begin

CS 61B Summer 2005 (Porter) Midterm 2 July 21, SOLUTIONS. Do not open until told to begin CS 61B Summer 2005 (Porter) Midterm 2 July 21, 2005 - SOLUTIONS Do not open until told to begin This exam is CLOSED BOOK, but you may use 1 letter-sized page of notes that you have created. Problem 0:

More information

Outline for Today. How can we speed up operations that work on integer data? A simple data structure for ordered dictionaries.

Outline for Today. How can we speed up operations that work on integer data? A simple data structure for ordered dictionaries. van Emde Boas Trees Outline for Today Data Structures on Integers How can we speed up operations that work on integer data? Tiered Bitvectors A simple data structure for ordered dictionaries. van Emde

More information

Outline for Today. How can we speed up operations that work on integer data? A simple data structure for ordered dictionaries.

Outline for Today. How can we speed up operations that work on integer data? A simple data structure for ordered dictionaries. van Emde Boas Trees Outline for Today Data Structures on Integers How can we speed up operations that work on integer data? Tiered Bitvectors A simple data structure for ordered dictionaries. van Emde

More information

Divide-and-Conquer. The most-well known algorithm design strategy: smaller instances. combining these solutions

Divide-and-Conquer. The most-well known algorithm design strategy: smaller instances. combining these solutions Divide-and-Conquer The most-well known algorithm design strategy: 1. Divide instance of problem into two or more smaller instances 2. Solve smaller instances recursively 3. Obtain solution to original

More information

CS171 Midterm Exam. October 29, Name:

CS171 Midterm Exam. October 29, Name: CS171 Midterm Exam October 29, 2012 Name: You are to honor the Emory Honor Code. This is a closed-book and closed-notes exam. You have 50 minutes to complete this exam. Read each problem carefully, and

More information

Divide and Conquer 4-0

Divide and Conquer 4-0 Divide and Conquer 4-0 Divide-and-Conquer The most-well known algorithm design strategy: 1. Divide instance of problem into two or more smaller instances 2. Solve smaller instances recursively 3. Obtain

More information

Binomial Coefficient Identities and Encoding/Decoding

Binomial Coefficient Identities and Encoding/Decoding Binomial Coefficient Identities and Encoding/Decoding CSE21 Winter 2017, Day 18 (B00), Day 12 (A00) February 24, 2017 http://vlsicad.ucsd.edu/courses/cse21-w17 MT2 Review Sessions Today and Tomorrow! TODAY

More information

Problem 1. Which of the following is true of functions =100 +log and = + log? Problem 2. Which of the following is true of functions = 2 and =3?

Problem 1. Which of the following is true of functions =100 +log and = + log? Problem 2. Which of the following is true of functions = 2 and =3? Multiple-choice Problems: Problem 1. Which of the following is true of functions =100+log and =+log? a) = b) =Ω c) =Θ d) All of the above e) None of the above Problem 2. Which of the following is true

More information

CS61BL. Lecture 5: Graphs Sorting

CS61BL. Lecture 5: Graphs Sorting CS61BL Lecture 5: Graphs Sorting Graphs Graphs Edge Vertex Graphs (Undirected) Graphs (Directed) Graphs (Multigraph) Graphs (Acyclic) Graphs (Cyclic) Graphs (Connected) Graphs (Disconnected) Graphs (Unweighted)

More information

CS583 Lecture 01. Jana Kosecka. some materials here are based on Profs. E. Demaine, D. Luebke A.Shehu, J-M. Lien and Prof. Wang s past lecture notes

CS583 Lecture 01. Jana Kosecka. some materials here are based on Profs. E. Demaine, D. Luebke A.Shehu, J-M. Lien and Prof. Wang s past lecture notes CS583 Lecture 01 Jana Kosecka some materials here are based on Profs. E. Demaine, D. Luebke A.Shehu, J-M. Lien and Prof. Wang s past lecture notes Course Info course webpage: - from the syllabus on http://cs.gmu.edu/

More information

Graph Coloring. Margaret M. Fleck. 3 May This lecture discusses the graph coloring problem (section 9.8 of Rosen).

Graph Coloring. Margaret M. Fleck. 3 May This lecture discusses the graph coloring problem (section 9.8 of Rosen). Graph Coloring Margaret M. Fleck 3 May 2010 This lecture discusses the graph coloring problem (section 9.8 of Rosen). 1 Announcements Makeup quiz last day of classes (at the start of class). Your room

More information

Math.3336: Discrete Mathematics. Chapter 10 Graph Theory

Math.3336: Discrete Mathematics. Chapter 10 Graph Theory Math.3336: Discrete Mathematics Chapter 10 Graph Theory Instructor: Dr. Blerina Xhabli Department of Mathematics, University of Houston https://www.math.uh.edu/ blerina Email: blerina@math.uh.edu Fall

More information

Varying Applications (examples)

Varying Applications (examples) Graph Theory Varying Applications (examples) Computer networks Distinguish between two chemical compounds with the same molecular formula but different structures Solve shortest path problems between cities

More information

COE428 Lecture Notes Week 1 (Week of January 9, 2017)

COE428 Lecture Notes Week 1 (Week of January 9, 2017) COE428 Lecture Notes: Week 1 1 of 10 COE428 Lecture Notes Week 1 (Week of January 9, 2017) Table of Contents COE428 Lecture Notes Week 1 (Week of January 9, 2017)...1 Announcements...1 Topics...1 Informal

More information

7.3 Divide-and-Conquer Algorithm and Recurrence Relations

7.3 Divide-and-Conquer Algorithm and Recurrence Relations 73 Divide-and-Conquer Algorithm and Recurrence Relations Many recursive algorithms take a problem with a given input and divide it into one or more smaller problems This reduction is repeatedly applied

More information

Graphs. The ultimate data structure. graphs 1

Graphs. The ultimate data structure. graphs 1 Graphs The ultimate data structure graphs 1 Definition of graph Non-linear data structure consisting of nodes & links between them (like trees in this sense) Unlike trees, graph nodes may be completely

More information

Sorting Algorithms. + Analysis of the Sorting Algorithms

Sorting Algorithms. + Analysis of the Sorting Algorithms Sorting Algorithms + Analysis of the Sorting Algorithms Insertion Sort What if first k elements of array are already sorted? 4, 7, 12, 5, 19, 16 We can shift the tail of the sorted elements list down and

More information

Lecture 22 Tuesday, April 10

Lecture 22 Tuesday, April 10 CIS 160 - Spring 2018 (instructor Val Tannen) Lecture 22 Tuesday, April 10 GRAPH THEORY Directed Graphs Directed graphs (a.k.a. digraphs) are an important mathematical modeling tool in Computer Science,

More information

1KOd17RMoURxjn2 CSE 20 DISCRETE MATH Fall

1KOd17RMoURxjn2 CSE 20 DISCRETE MATH Fall CSE 20 https://goo.gl/forms/1o 1KOd17RMoURxjn2 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Today's learning goals Explain the steps in a proof by mathematical and/or structural

More information

Graphs. The ultimate data structure. graphs 1

Graphs. The ultimate data structure. graphs 1 Graphs The ultimate data structure graphs 1 Definition of graph Non-linear data structure consisting of nodes & links between them (like trees in this sense) Unlike trees, graph nodes may be completely

More information

1. (a) O(log n) algorithm for finding the logical AND of n bits with n processors

1. (a) O(log n) algorithm for finding the logical AND of n bits with n processors 1. (a) O(log n) algorithm for finding the logical AND of n bits with n processors on an EREW PRAM: See solution for the next problem. Omit the step where each processor sequentially computes the AND of

More information

Lecture 4 CS781 February 3, 2011

Lecture 4 CS781 February 3, 2011 Lecture 4 CS78 February 3, 2 Topics: Data Compression-Huffman Trees Divide-and-Conquer Solving Recurrence Relations Counting Inversions Closest Pair Integer Multiplication Matrix Multiplication Data Compression

More information

Section 8.2 Graph Terminology. Undirected Graphs. Definition: Two vertices u, v in V are adjacent or neighbors if there is an edge e between u and v.

Section 8.2 Graph Terminology. Undirected Graphs. Definition: Two vertices u, v in V are adjacent or neighbors if there is an edge e between u and v. Section 8.2 Graph Terminology Undirected Graphs Definition: Two vertices u, v in V are adjacent or neighbors if there is an edge e between u and v. The edge e connects u and v. The vertices u and v are

More information

Lecture 3: Sorting 1

Lecture 3: Sorting 1 Lecture 3: Sorting 1 Sorting Arranging an unordered collection of elements into monotonically increasing (or decreasing) order. S = a sequence of n elements in arbitrary order After sorting:

More information

Discrete Mathematics for CS Spring 2008 David Wagner Note 13. An Introduction to Graphs

Discrete Mathematics for CS Spring 2008 David Wagner Note 13. An Introduction to Graphs CS 70 Discrete Mathematics for CS Spring 2008 David Wagner Note 13 An Introduction to Graphs Formulating a simple, precise specification of a computational problem is often a prerequisite to writing a

More information

March 20/2003 Jayakanth Srinivasan,

March 20/2003 Jayakanth Srinivasan, Definition : A simple graph G = (V, E) consists of V, a nonempty set of vertices, and E, a set of unordered pairs of distinct elements of V called edges. Definition : In a multigraph G = (V, E) two or

More information

CS 161 Fall 2015 Final Exam

CS 161 Fall 2015 Final Exam CS 161 Fall 2015 Final Exam Name: Student ID: 1: 2: 3: 4: 5: 6: 7: 8: Total: 1. (15 points) Let H = [24, 21, 18, 15, 12, 9, 6, 3] be an array of eight numbers, interpreted as a binary heap with the maximum

More information

Question Points Score TOTAL 50

Question Points Score TOTAL 50 UCSD CSE 101 Section B00, Winter 2015 MIDTERM February 5, 2015 NAME: Student ID: Question Points Score 1 10 2 10 3 10 4 10 5 10 TOTAL 50 INSTRUCTIONS. Be clear and concise. Write your answers in the space

More information

The Matrix-Tree Theorem and Its Applications to Complete and Complete Bipartite Graphs

The Matrix-Tree Theorem and Its Applications to Complete and Complete Bipartite Graphs The Matrix-Tree Theorem and Its Applications to Complete and Complete Bipartite Graphs Frankie Smith Nebraska Wesleyan University fsmith@nebrwesleyan.edu May 11, 2015 Abstract We will look at how to represent

More information

CS171 Final Practice Exam

CS171 Final Practice Exam CS171 Final Practice Exam Name: You are to honor the Emory Honor Code. This is a closed-book and closed-notes exam. You have 150 minutes to complete this exam. Read each problem carefully, and review your

More information

CS Divide and Conquer

CS Divide and Conquer CS483-07 Divide and Conquer Instructor: Fei Li Room 443 ST II Office hours: Tue. & Thur. 1:30pm - 2:30pm or by appointments lifei@cs.gmu.edu with subject: CS483 http://www.cs.gmu.edu/ lifei/teaching/cs483_fall07/

More information

COMP 352 FALL Tutorial 10

COMP 352 FALL Tutorial 10 1 COMP 352 FALL 2016 Tutorial 10 SESSION OUTLINE Divide-and-Conquer Method Sort Algorithm Properties Quick Overview on Sorting Algorithms Merge Sort Quick Sort Bucket Sort Radix Sort Problem Solving 2

More information

n = 1 What problems are interesting when n is just 1?

n = 1 What problems are interesting when n is just 1? What if n=1??? n = 1 What problems are interesting when n is just 1? Sorting? No Median finding? No Addition? How long does it take to add one pair of numbers? Multiplication? How long does it take to

More information

UNIT-2 DIVIDE & CONQUER

UNIT-2 DIVIDE & CONQUER Overview: Divide and Conquer Master theorem Master theorem based analysis for Binary Search Merge Sort Quick Sort Divide and Conquer UNIT-2 DIVIDE & CONQUER Basic Idea: 1. Decompose problems into sub instances.

More information

Second Midterm Exam, CMPSC 465, Spring 2009 Practice problems

Second Midterm Exam, CMPSC 465, Spring 2009 Practice problems Second idterm Exam, S 465, Spring 2009 ractice problems idterm will be on Tuesday, arch 31, 8:15, in 60 and 61 Willard. This will be open book exam, you can also have notes (several sheets or one notebook).

More information

Graphs. Introduction To Graphs: Exercises. Definitions:

Graphs. Introduction To Graphs: Exercises. Definitions: Graphs Eng.Jehad Aldahdooh Introduction To Graphs: Definitions: A graph G = (V, E) consists of V, a nonempty set of vertices (or nodes) and E, a set of edges. Each edge has either one or two vertices associated

More information

CSE 373 Spring 2010: Midterm #1 (closed book, closed notes, NO calculators allowed)

CSE 373 Spring 2010: Midterm #1 (closed book, closed notes, NO calculators allowed) Name: Email address: CSE 373 Spring 2010: Midterm #1 (closed book, closed notes, NO calculators allowed) Instructions: Read the directions for each question carefully before answering. We may give partial

More information

Plotting run-time graphically. Plotting run-time graphically. CS241 Algorithmics - week 1 review. Prefix Averages - Algorithm #1

Plotting run-time graphically. Plotting run-time graphically. CS241 Algorithmics - week 1 review. Prefix Averages - Algorithm #1 CS241 - week 1 review Special classes of algorithms: logarithmic: O(log n) linear: O(n) quadratic: O(n 2 ) polynomial: O(n k ), k 1 exponential: O(a n ), a > 1 Classifying algorithms is generally done

More information

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2 Graph Theory S I I S S I I S Graphs Definition A graph G is a pair consisting of a vertex set V (G), and an edge set E(G) ( ) V (G). x and y are the endpoints of edge e = {x, y}. They are called adjacent

More information

Algorithms Exam TIN093/DIT600

Algorithms Exam TIN093/DIT600 Algorithms Exam TIN093/DIT600 Course: Algorithms Course code: TIN 093 (CTH), DIT 600 (GU) Date, time: 22nd October 2016, 14:00 18:00 Building: M Responsible teacher: Peter Damaschke, Tel. 5405 Examiner:

More information

Introduction to Graphs

Introduction to Graphs Graphs Introduction to Graphs Graph Terminology Directed Graphs Special Graphs Graph Coloring Representing Graphs Connected Graphs Connected Component Reading (Epp s textbook) 10.1-10.3 1 Introduction

More information

Mergesort again. 1. Split the list into two equal parts

Mergesort again. 1. Split the list into two equal parts Quicksort Mergesort again 1. Split the list into two equal parts 5 3 9 2 8 7 3 2 1 4 5 3 9 2 8 7 3 2 1 4 Mergesort again 2. Recursively mergesort the two parts 5 3 9 2 8 7 3 2 1 4 2 3 5 8 9 1 2 3 4 7 Mergesort

More information

Graph Algorithms (part 3 of CSC 282),

Graph Algorithms (part 3 of CSC 282), Graph Algorithms (part of CSC 8), http://www.cs.rochester.edu/~stefanko/teaching/11cs8 Homework problem sessions are in CSB 601, 6:1-7:1pm on Oct. (Wednesday), Oct. 1 (Wednesday), and on Oct. 19 (Wednesday);

More information

CSE 332 Winter 2015: Midterm Exam (closed book, closed notes, no calculators)

CSE 332 Winter 2015: Midterm Exam (closed book, closed notes, no calculators) _ UWNetID: Lecture Section: A CSE 332 Winter 2015: Midterm Exam (closed book, closed notes, no calculators) Instructions: Read the directions for each question carefully before answering. We will give

More information

Discrete Mathematics (2009 Spring) Graphs (Chapter 9, 5 hours)

Discrete Mathematics (2009 Spring) Graphs (Chapter 9, 5 hours) Discrete Mathematics (2009 Spring) Graphs (Chapter 9, 5 hours) Chih-Wei Yi Dept. of Computer Science National Chiao Tung University June 1, 2009 9.1 Graphs and Graph Models What are Graphs? General meaning

More information

Homework 2. Sample Solution. Due Date: Thursday, May 31, 11:59 pm

Homework 2. Sample Solution. Due Date: Thursday, May 31, 11:59 pm Homework Sample Solution Due Date: Thursday, May 31, 11:59 pm Directions: Your solutions should be typed and submitted as a single pdf on Gradescope by the due date. L A TEX is preferred but not required.

More information

CSE 20 DISCRETE MATH. Winter

CSE 20 DISCRETE MATH. Winter CSE 20 DISCRETE MATH Winter 2017 http://cseweb.ucsd.edu/classes/wi17/cse20-ab/ Final exam The final exam is Saturday March 18 8am-11am. Lecture A will take the exam in GH 242 Lecture B will take the exam

More information

Divide & Conquer Design Technique

Divide & Conquer Design Technique Divide & Conquer Design Technique Adnan YAZICI Dept. of Computer Engineering Middle East Technical Univ. Ankara - TURKEY 1 The Divide & Conquer strategy can be described in general terms as follows: A

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Final exam The final exam is Saturday December 16 11:30am-2:30pm. Lecture A will take the exam in Lecture B will take the exam

More information

CSE 332 Spring 2013: Midterm Exam (closed book, closed notes, no calculators)

CSE 332 Spring 2013: Midterm Exam (closed book, closed notes, no calculators) Name: Email address: Quiz Section: CSE 332 Spring 2013: Midterm Exam (closed book, closed notes, no calculators) Instructions: Read the directions for each question carefully before answering. We will

More information

CSC Design and Analysis of Algorithms. Lecture 6. Divide and Conquer Algorithm Design Technique. Divide-and-Conquer

CSC Design and Analysis of Algorithms. Lecture 6. Divide and Conquer Algorithm Design Technique. Divide-and-Conquer CSC 8301- Design and Analysis of Algorithms Lecture 6 Divide and Conuer Algorithm Design Techniue Divide-and-Conuer The most-well known algorithm design strategy: 1. Divide a problem instance into two

More information

(5.2) 151 Math Exercises. Graph Terminology and Special Types of Graphs. Malek Zein AL-Abidin

(5.2) 151 Math Exercises. Graph Terminology and Special Types of Graphs. Malek Zein AL-Abidin King Saud University College of Science Department of Mathematics 151 Math Exercises (5.2) Graph Terminology and Special Types of Graphs Malek Zein AL-Abidin ه Basic Terminology First, we give some terminology

More information