Main-Memory Databases 1 / 25

Size: px
Start display at page:

Download "Main-Memory Databases 1 / 25"

Transcription

1 1 / 25

2 Motivation Hardware trends Huge main memory capacity with complex access characteristics (Caches, NUMA) Many-core CPUs SIMD support in CPUs New CPU features (HTM) Also: Graphic cards, FPGAs, low latency networking,... Database system trends Entire database fits into main memory New types of database systems New algorithms, new data structures The End of an Architectural Era. (It s Time for a Complete Rewrite). 2 / 25

3 Recap: Database Workloads Analytics Long-running Access large parts of the database Often use scans Read-only Example: Average order value per year and product group? Transaction processing Short running (Multiple) point queries + simple control flow Insert/Update/Delete/Read data Example: Increment account x by 10, decrement account y by 10 Universal DBMS used for both (but not concurrently). 3 / 25

4 OLTP Universal DBMS were optimized for 1970 s hardware Small fraction of DB in memory buffer Hide and avoid disk access at any cost Today Even enterprises can store entire DB in memory Transaction are often one-shot Transactions execute in a few ms or even µs 4 / 25

5 OLTP (2) Main sources of overhead ARIES-style logging Locking (2PL) Latching Buffer Management Useful work can be as low as 1 60 th of instructions1. Modern systems avoid this overhead (see slide 9). 1 Harizopoulos et al. OLTP Through the Looking Glass, and What We Found There 5 / 25

6 Physical Data Layout in Main Memory Lightweight: Buffer Manager removed No need for segments No need for slotted pages Store data in simple arrays. But: Row-wise or column-wise? EmpId Tuples First Joe Mary Bob Jane Last Salery Doe Jones Black Jones Column Store Row Store Logical Table EmpId First Last 10 Joe Doe 20 Mary Jones 32 Bob Black 25 Jane Jones Salery Joe Doe Mary Jane Jones / 25

7 Physical Data Layout in Main Memory (2) Row Store: Beneficial when accessing many attributes For OLTP Column Store: Excellent cache utilization Sometimes individually sorted Compression potential Vectorized processing For OLAP Hybrid Row/Column Stores possible 7 / 25

8 New Systems (Examples) OLTP-only: VoltDB/H-Store Microsoft Hekaton OLAP-only: Vectorwise MonetDB DB2 BLU Hybrid OLTP and OLAP: SAP HANA HyPer 8 / 25

9 New Systems: OLTP (Examples) Challenge: Avoid overhead Guarantee ACID Approaches: Buffer Management: Removed Logging H-Store/VoltDB: Log shipping to other nodes Hekaton: Lightweight logging (no index structures) Locking: H-Store/VoltDB: Serial execution (on private partitions) Hekaton: Optimistic MVCC Latching H-Store/VoltDB: Not necessary Hekaton: Latch-free data structures 9 / 25

10 New Systems: Hekaton Integrated in SQL Server Code Generation Only access path: Index (Hash or B(w)-Tree) Latch-Free Indexes MVCC Hash index on Name Header Links Payload Begin End Pointer Name City Amount Record format Ordered index on City John London 100 J 15 inf Jane Paris Tx75 John London Old B-tree L Tx75 Inf John London New 30 Tx75 Larry 100 Rome 170 Old Tx75 inf Larry Rome New 10 / 25

11 New Systems: OLAP Vectorwise: Vectorized Processing HyPer: Query Compilation (cf. Chapter Code Generation) 11 / 25

12 New Systems: Hybrid OLTP and OLAP Traditionally: Mixing OLTP and OLAP leads to performance decline ETL architecture 2 systems, stale data New Systems SAP HANA Split DB into read-optimized main and update-friendly delta OLAP queries read main, OLTP transactions read delta and main Periodically merge main and delta HyPer: Virtual memory snapshots 12 / 25

13 HyPer: Virtual Memory Snapshots forked OLAP-Snapshot OLTP Data OLTP Tx A B E F C D G H 13 / 25

14 HyPer: Virtual Memory Snapshots fork forked OLAP-Snapshot OLTP Data OLAP Queries OLTP Tx A B E F C D G H 13 / 25

15 HyPer: Virtual Memory Snapshots forked OLAP-Snapshot OLTP Tx OLTP Data OLAP Queries read C A B E F C D G H 13 / 25

16 HyPer: Virtual Memory Snapshots forked OLAP-Snapshot OLTP Data OLAP Queries OLTP Tx update C to C* A B E F C* D G H C D copy-on-write 13 / 25

17 HyPer: Virtual Memory Snapshots forked OLAP-Snapshot OLTP Data OLAP Queries OLTP Tx A B E F C* D G H C D read C read H 13 / 25

18 In-Memory Index Structures In-memory hash indexes Simple and fast Growing is very expensive Do not support range queries Search Trees BSTs are cache unfriendly B-Trees better (even though designed for disk) Radix-Trees ( Tries ) Support range queries Height is independent from number of entries 14 / 25

19 Radix Trees Properties: Height depends on key length, not number of entries No rebalancing All insertion orders yield same tree Keys are stored in the tree implicitely Search: Node is array of size 2 s s bits (often 8) are used as an index into the array s is a trade-off between lookup-performance and memory consuption Radix Tree Adaptive Radix Tree 15 / 25

20 Adaptive Radix Trees Four node types: Node4: 4 keys and 4 pointers at corresponding positions: key child pointer a b c d Node16: Like Node4, but with 16 keys. SIMD searchable. Node48: Full 256 keys (index offset), point to up to 48 values: child index child pointer b a c d Node256: Regular trie node, i.e. array of size 256 Additionally: Header with node type, number of entries 16 / 25

21 Exploiting HTM for OLTP Intel s Haswell introduced HTM (via cache coherency protocol) Allows to group instructions to transactions Can help to implement DB transactions, but Do not guarantee ACID by themselves Limited in size/time 100% 100% abort probability 75% 50% 25% abort probability 75% 50% 25% 0% 0 8KB 16KB 24KB 32KB transaction size 0% 10K 100K 1M 10M transaction duration in cycles (log scale) Use HTM transactions as building blocks for DB transactions 17 / 25

22 Exploiting HTM for OLTP (2) Goals: As fine-grained as 2PL, but faster As fast as serial execution, but more flexible atomic-elide-lock (lock) { account[from]-=amount; account[to]+=amount; } 18 / 25

23 Implementing DB transactions with HTM Use TSO + HTM for latching: database transaction conflict detection: read/write sets via timestamps elided lock: serial execution timestamp conflict HTM conflict HTM conflict request a new timestamp, record safe timestamp HTM transaction conflict detection: read/write sets in hardware elided lock: latch single tuple access verify/update tuple timestamps HTM transaction release timestamp, update safe timestamp... conflict detection: read/write sets in hardware elided lock: latch single tuple access verify/update tuple timestamps... Relation and index structure layout must avoid conflicts 19 / 25

24 NUMA-Aware Data Processing NUMA architectures: Nehalem EX DRAM DRAM 25.6GB/s Sandy Bridge EP DRAM DRAM 51.2GB/s socket 0 8 cores 24MB L3 socket 1 8 cores 24MB L3 12.8GB/s (bidirectional) socket 0 8 cores 20MB L3 16.0GB/s (bidirectional) socket 1 8 cores 20MB L3 socket 3 socket 2 8 cores 24MB L3 8 cores 24MB L3 socket 3 socket 2 8 cores 20MB L3 8 cores 20MB L3 DRAM DRAM DRAM DRAM Local access cheap Remote access expensive 20 / 25

25 NUMA-Aware Data Processing: Hash Join Phase 1: process T morsel-wise and store NUMA-locally Phase 2: scan NUMA-local storage area and insert pointers into HT scan next morsel Storage area of red core HT(T) global Hash Table Storage area of green core σ...(t) σ...(t) σ...(t) morsel T Insert the pointer into HT Storage area of blue core scan Storage area of blue core Storage area of green core Storage area of red core HT(T) HT(S) next morsel σ...(r) σ...(r) σ...(r) morsel R 21 / 25

26 Compaction OLTP & OLAP share the same physical data model Fast modifications vs scan performance Row store vs column store Modifications require snapshot maintenance Use more memory Congest memory bus Stall transactions 22 / 25

27 Compaction: Hot/Cold Clustering ideal reality compacted Compression is applied asynchronously to cold part: Dictionary encoding Run-length encoding Other schemes possible Compact snapshots through a mix of regular and huge pages Keeps page table small Clustered updates No huge pages need to be replicated 23 / 25

28 Compaction: Hot/Cold Clustering Cooling - Hot & cold items mixed - Uncompressed - Small memory pages Frozen - Cold & compressed data - Huge memory pages - Rarely accessed by OLTP - Immutable: Deleted and updated items are marked "invalid" and copied to Hot Column Hot - Working Set (hot data) - Uncompressed - Small memory pages Small memory page Cold - Cold data items only - Not compressed yet "Invalid frozen items" data structure Huge memory page 24 / 25

29 Compaction: Hot/Cold Clustering How to detect temperature without causing overhead? 1. Software: LRU lists, counters 2. Hardware: mprotect 3. Hardware: dirty and young flags / 25

Big and Fast. Anti-Caching in OLTP Systems. Justin DeBrabant

Big and Fast. Anti-Caching in OLTP Systems. Justin DeBrabant Big and Fast Anti-Caching in OLTP Systems Justin DeBrabant Online Transaction Processing transaction-oriented small footprint write-intensive 2 A bit of history 3 OLTP Through the Years relational model

More information

Hardware Transactional Memory on Haswell

Hardware Transactional Memory on Haswell Hardware Transactional Memory on Haswell Viktor Leis Technische Universität München 1 / 15 Introduction transactional memory is a very elegant programming model transaction { transaction { a = a 10; c

More information

In-Memory Columnar Databases - Hyper (November 2012)

In-Memory Columnar Databases - Hyper (November 2012) 1 In-Memory Columnar Databases - Hyper (November 2012) Arto Kärki, University of Helsinki, Helsinki, Finland, arto.karki@tieto.com Abstract Relational database systems are today the most common database

More information

In-Memory Data Management Jens Krueger

In-Memory Data Management Jens Krueger In-Memory Data Management Jens Krueger Enterprise Platform and Integration Concepts Hasso Plattner Intitute OLTP vs. OLAP 2 Online Transaction Processing (OLTP) Organized in rows Online Analytical Processing

More information

Heckaton. SQL Server's Memory Optimized OLTP Engine

Heckaton. SQL Server's Memory Optimized OLTP Engine Heckaton SQL Server's Memory Optimized OLTP Engine Agenda Introduction to Hekaton Design Consideration High Level Architecture Storage and Indexing Query Processing Transaction Management Transaction Durability

More information

HyPer-sonic Combined Transaction AND Query Processing

HyPer-sonic Combined Transaction AND Query Processing HyPer-sonic Combined Transaction AND Query Processing Thomas Neumann Technische Universität München December 2, 2011 Motivation There are different scenarios for database usage: OLTP: Online Transaction

More information

Data Blocks: Hybrid OLTP and OLAP on Compressed Storage using both Vectorization and Compilation

Data Blocks: Hybrid OLTP and OLAP on Compressed Storage using both Vectorization and Compilation Data Blocks: Hybrid OLTP and OLAP on Compressed Storage using both Vectorization and Compilation Harald Lang 1, Tobias Mühlbauer 1, Florian Funke 2,, Peter Boncz 3,, Thomas Neumann 1, Alfons Kemper 1 1

More information

HyPer-sonic Combined Transaction AND Query Processing

HyPer-sonic Combined Transaction AND Query Processing HyPer-sonic Combined Transaction AND Query Processing Thomas Neumann Technische Universität München October 26, 2011 Motivation - OLTP vs. OLAP OLTP and OLAP have very different requirements OLTP high

More information

In-Memory Data Management

In-Memory Data Management In-Memory Data Management Martin Faust Research Assistant Research Group of Prof. Hasso Plattner Hasso Plattner Institute for Software Engineering University of Potsdam Agenda 2 1. Changed Hardware 2.

More information

Data Blocks: Hybrid OLTP and OLAP on compressed storage

Data Blocks: Hybrid OLTP and OLAP on compressed storage Data Blocks: Hybrid OLTP and OLAP on compressed storage Ben Brümmer Technische Universität München Fürstenfeldbruck, 26. November 208 Ben Brümmer 26..8 Lehrstuhl für Datenbanksysteme Problem HDD/Archive/Tape-Storage

More information

JANUARY 20, 2016, SAN JOSE, CA. Microsoft. Microsoft SQL Hekaton Towards Large Scale Use of PM for In-memory Databases

JANUARY 20, 2016, SAN JOSE, CA. Microsoft. Microsoft SQL Hekaton Towards Large Scale Use of PM for In-memory Databases JANUARY 20, 2016, SAN JOSE, CA PRESENTATION Cristian TITLE Diaconu GOES HERE Microsoft Microsoft SQL Hekaton Towards Large Scale Use of PM for In-memory Databases What this talk is about Trying to answer

More information

FOEDUS: OLTP Engine for a Thousand Cores and NVRAM

FOEDUS: OLTP Engine for a Thousand Cores and NVRAM FOEDUS: OLTP Engine for a Thousand Cores and NVRAM Hideaki Kimura HP Labs, Palo Alto, CA Slides By : Hideaki Kimura Presented By : Aman Preet Singh Next-Generation Server Hardware? HP The Machine UC Berkeley

More information

Data Modeling and Databases Ch 10: Query Processing - Algorithms. Gustavo Alonso Systems Group Department of Computer Science ETH Zürich

Data Modeling and Databases Ch 10: Query Processing - Algorithms. Gustavo Alonso Systems Group Department of Computer Science ETH Zürich Data Modeling and Databases Ch 10: Query Processing - Algorithms Gustavo Alonso Systems Group Department of Computer Science ETH Zürich Transactions (Locking, Logging) Metadata Mgmt (Schema, Stats) Application

More information

Data Modeling and Databases Ch 9: Query Processing - Algorithms. Gustavo Alonso Systems Group Department of Computer Science ETH Zürich

Data Modeling and Databases Ch 9: Query Processing - Algorithms. Gustavo Alonso Systems Group Department of Computer Science ETH Zürich Data Modeling and Databases Ch 9: Query Processing - Algorithms Gustavo Alonso Systems Group Department of Computer Science ETH Zürich Transactions (Locking, Logging) Metadata Mgmt (Schema, Stats) Application

More information

HICAMP Bitmap. A Space-Efficient Updatable Bitmap Index for In-Memory Databases! Bo Wang, Heiner Litz, David R. Cheriton Stanford University DAMON 14

HICAMP Bitmap. A Space-Efficient Updatable Bitmap Index for In-Memory Databases! Bo Wang, Heiner Litz, David R. Cheriton Stanford University DAMON 14 HICAMP Bitmap A Space-Efficient Updatable Bitmap Index for In-Memory Databases! Bo Wang, Heiner Litz, David R. Cheriton Stanford University DAMON 14 Database Indexing Databases use precomputed indexes

More information

Architecture-Conscious Database Systems

Architecture-Conscious Database Systems Architecture-Conscious Database Systems 2009 VLDB Summer School Shanghai Peter Boncz (CWI) Sources Thank You! l l l l Database Architectures for New Hardware VLDB 2004 tutorial, Anastassia Ailamaki Query

More information

CSE 344 Final Review. August 16 th

CSE 344 Final Review. August 16 th CSE 344 Final Review August 16 th Final In class on Friday One sheet of notes, front and back cost formulas also provided Practice exam on web site Good luck! Primary Topics Parallel DBs parallel join

More information

Database Management and Tuning

Database Management and Tuning Database Management and Tuning Concurrency Tuning Johann Gamper Free University of Bozen-Bolzano Faculty of Computer Science IDSE Unit 8 May 10, 2012 Acknowledgements: The slides are provided by Nikolaus

More information

Last Class Carnegie Mellon Univ. Dept. of Computer Science /615 - DB Applications

Last Class Carnegie Mellon Univ. Dept. of Computer Science /615 - DB Applications Last Class Carnegie Mellon Univ. Dept. of Computer Science 15-415/615 - DB Applications C. Faloutsos A. Pavlo Lecture#23: Concurrency Control Part 2 (R&G ch. 17) Serializability Two-Phase Locking Deadlocks

More information

Beyond Relational Databases: MongoDB, Redis & ClickHouse. Marcos Albe - Principal Support Percona

Beyond Relational Databases: MongoDB, Redis & ClickHouse. Marcos Albe - Principal Support Percona Beyond Relational Databases: MongoDB, Redis & ClickHouse Marcos Albe - Principal Support Engineer @ Percona Introduction MySQL everyone? Introduction Redis? OLAP -vs- OLTP Image credits: 451 Research (https://451research.com/state-of-the-database-landscape)

More information

SQL Server 2014 Highlights der wichtigsten Neuerungen In-Memory OLTP (Hekaton)

SQL Server 2014 Highlights der wichtigsten Neuerungen In-Memory OLTP (Hekaton) SQL Server 2014 Highlights der wichtigsten Neuerungen Karl-Heinz Sütterlin Meinrad Weiss March 2014 BASEL BERN BRUGG LAUSANNE ZUERICH DUESSELDORF FRANKFURT A.M. FREIBURG I.BR. HAMBURG MUNICH STUTTGART

More information

Last Class Carnegie Mellon Univ. Dept. of Computer Science /615 - DB Applications

Last Class Carnegie Mellon Univ. Dept. of Computer Science /615 - DB Applications Last Class Carnegie Mellon Univ. Dept. of Computer Science 15-415/615 - DB Applications C. Faloutsos A. Pavlo Lecture#23: Concurrency Control Part 3 (R&G ch. 17) Lock Granularities Locking in B+Trees The

More information

DATABASE COMPRESSION. Pooja Nilangekar [ ] Rohit Agrawal [ ] : Advanced Database Systems

DATABASE COMPRESSION. Pooja Nilangekar [ ] Rohit Agrawal [ ] : Advanced Database Systems DATABASE COMPRESSION Pooja Nilangekar [ poojan@cmu.edu ] Rohit Agrawal [ rohit10@cmu.edu ] 15721 : Advanced Database Systems PROJECT OBJECTIVE Compressing the DBMS :- Use less space to store cold data

More information

High Performance Transactions in Deuteronomy

High Performance Transactions in Deuteronomy High Performance Transactions in Deuteronomy Justin Levandoski, David Lomet, Sudipta Sengupta, Ryan Stutsman, and Rui Wang Microsoft Research Overview Deuteronomy: componentized DB stack Separates transaction,

More information

HyPer on Cloud 9. Thomas Neumann. February 10, Technische Universität München

HyPer on Cloud 9. Thomas Neumann. February 10, Technische Universität München HyPer on Cloud 9 Thomas Neumann Technische Universität München February 10, 2016 HyPer HyPer is the main-memory database system developed in our group a very fast database system with ACID transactions

More information

HYRISE In-Memory Storage Engine

HYRISE In-Memory Storage Engine HYRISE In-Memory Storage Engine Martin Grund 1, Jens Krueger 1, Philippe Cudre-Mauroux 3, Samuel Madden 2 Alexander Zeier 1, Hasso Plattner 1 1 Hasso-Plattner-Institute, Germany 2 MIT CSAIL, USA 3 University

More information

L9: Storage Manager Physical Data Organization

L9: Storage Manager Physical Data Organization L9: Storage Manager Physical Data Organization Disks and files Record and file organization Indexing Tree-based index: B+-tree Hash-based index c.f. Fig 1.3 in [RG] and Fig 2.3 in [EN] Functional Components

More information

Outline. Database Tuning. Ideal Transaction. Concurrency Tuning Goals. Concurrency Tuning. Nikolaus Augsten. Lock Tuning. Unit 8 WS 2013/2014

Outline. Database Tuning. Ideal Transaction. Concurrency Tuning Goals. Concurrency Tuning. Nikolaus Augsten. Lock Tuning. Unit 8 WS 2013/2014 Outline Database Tuning Nikolaus Augsten University of Salzburg Department of Computer Science Database Group 1 Unit 8 WS 2013/2014 Adapted from Database Tuning by Dennis Shasha and Philippe Bonnet. Nikolaus

More information

STEPS Towards Cache-Resident Transaction Processing

STEPS Towards Cache-Resident Transaction Processing STEPS Towards Cache-Resident Transaction Processing Stavros Harizopoulos joint work with Anastassia Ailamaki VLDB 2004 Carnegie ellon CPI OLTP workloads on modern CPUs 6 4 2 L2-I stalls L2-D stalls L1-I

More information

Column Stores vs. Row Stores How Different Are They Really?

Column Stores vs. Row Stores How Different Are They Really? Column Stores vs. Row Stores How Different Are They Really? Daniel J. Abadi (Yale) Samuel R. Madden (MIT) Nabil Hachem (AvantGarde) Presented By : Kanika Nagpal OUTLINE Introduction Motivation Background

More information

Bigtable. A Distributed Storage System for Structured Data. Presenter: Yunming Zhang Conglong Li. Saturday, September 21, 13

Bigtable. A Distributed Storage System for Structured Data. Presenter: Yunming Zhang Conglong Li. Saturday, September 21, 13 Bigtable A Distributed Storage System for Structured Data Presenter: Yunming Zhang Conglong Li References SOCC 2010 Key Note Slides Jeff Dean Google Introduction to Distributed Computing, Winter 2008 University

More information

RAID in Practice, Overview of Indexing

RAID in Practice, Overview of Indexing RAID in Practice, Overview of Indexing CS634 Lecture 4, Feb 04 2014 Slides based on Database Management Systems 3 rd ed, Ramakrishnan and Gehrke 1 Disks and Files: RAID in practice For a big enterprise

More information

COLUMN-STORES VS. ROW-STORES: HOW DIFFERENT ARE THEY REALLY? DANIEL J. ABADI (YALE) SAMUEL R. MADDEN (MIT) NABIL HACHEM (AVANTGARDE)

COLUMN-STORES VS. ROW-STORES: HOW DIFFERENT ARE THEY REALLY? DANIEL J. ABADI (YALE) SAMUEL R. MADDEN (MIT) NABIL HACHEM (AVANTGARDE) COLUMN-STORES VS. ROW-STORES: HOW DIFFERENT ARE THEY REALLY? DANIEL J. ABADI (YALE) SAMUEL R. MADDEN (MIT) NABIL HACHEM (AVANTGARDE) PRESENTATION BY PRANAV GOEL Introduction On analytical workloads, Column

More information

Morsel- Drive Parallelism: A NUMA- Aware Query Evaluation Framework for the Many- Core Age. Presented by Dennis Grishin

Morsel- Drive Parallelism: A NUMA- Aware Query Evaluation Framework for the Many- Core Age. Presented by Dennis Grishin Morsel- Drive Parallelism: A NUMA- Aware Query Evaluation Framework for the Many- Core Age Presented by Dennis Grishin What is the problem? Efficient computation requires distribution of processing between

More information

Data Modeling and Databases Ch 14: Data Replication. Gustavo Alonso, Ce Zhang Systems Group Department of Computer Science ETH Zürich

Data Modeling and Databases Ch 14: Data Replication. Gustavo Alonso, Ce Zhang Systems Group Department of Computer Science ETH Zürich Data Modeling and Databases Ch 14: Data Replication Gustavo Alonso, Ce Zhang Systems Group Department of Computer Science ETH Zürich Database Replication What is database replication The advantages of

More information

SQL Server 2014: In-Memory OLTP for Database Administrators

SQL Server 2014: In-Memory OLTP for Database Administrators SQL Server 2014: In-Memory OLTP for Database Administrators Presenter: Sunil Agarwal Moderator: Angela Henry Session Objectives And Takeaways Session Objective(s): Understand the SQL Server 2014 In-Memory

More information

Trends and Concepts in Software Industry I

Trends and Concepts in Software Industry I Trends and Concepts in Software Industry I Goals Deep technical understanding of column-oriented dictionary-encoded in-memory databases and its application in enterprise computing Foundations of database

More information

SQL Server 2014 In-Memory OLTP: Prepare for Migration. George Li, Program Manager, Microsoft

SQL Server 2014 In-Memory OLTP: Prepare for Migration. George Li, Program Manager, Microsoft SQL Server 2014 In-Memory OLTP: Prepare for Migration George Li, Program Manager, Microsoft Drivers Architectural Pillars Customer Benefits In-Memory OLTP Recap High performance data operations Efficient

More information

Chapter 5B. Large and Fast: Exploiting Memory Hierarchy

Chapter 5B. Large and Fast: Exploiting Memory Hierarchy Chapter 5B Large and Fast: Exploiting Memory Hierarchy One Transistor Dynamic RAM 1-T DRAM Cell word access transistor V REF TiN top electrode (V REF ) Ta 2 O 5 dielectric bit Storage capacitor (FET gate,

More information

Cost of Concurrency in Hybrid Transactional Memory. Trevor Brown (University of Toronto) Srivatsan Ravi (Purdue University)

Cost of Concurrency in Hybrid Transactional Memory. Trevor Brown (University of Toronto) Srivatsan Ravi (Purdue University) Cost of Concurrency in Hybrid Transactional Memory Trevor Brown (University of Toronto) Srivatsan Ravi (Purdue University) 1 Transactional Memory: a history Hardware TM Software TM Hybrid TM 1993 1995-today

More information

Anti-Caching: A New Approach to Database Management System Architecture. Guide: Helly Patel ( ) Dr. Sunnie Chung Kush Patel ( )

Anti-Caching: A New Approach to Database Management System Architecture. Guide: Helly Patel ( ) Dr. Sunnie Chung Kush Patel ( ) Anti-Caching: A New Approach to Database Management System Architecture Guide: Helly Patel (2655077) Dr. Sunnie Chung Kush Patel (2641883) Abstract Earlier DBMS blocks stored on disk, with a main memory

More information

In-Memory Data Structures and Databases Jens Krueger

In-Memory Data Structures and Databases Jens Krueger In-Memory Data Structures and Databases Jens Krueger Enterprise Platform and Integration Concepts Hasso Plattner Intitute What to take home from this talk? 2 Answer to the following questions: What makes

More information

The Case for Heterogeneous HTAP

The Case for Heterogeneous HTAP The Case for Heterogeneous HTAP Raja Appuswamy, Manos Karpathiotakis, Danica Porobic, and Anastasia Ailamaki Data-Intensive Applications and Systems Lab EPFL 1 HTAP the contract with the hardware Hybrid

More information

What the Hekaton? In-memory OLTP Overview. Kalen Delaney

What the Hekaton? In-memory OLTP Overview. Kalen Delaney What the Hekaton? In-memory OLTP Overview Kalen Delaney www.sqlserverinternals.com Kalen Delaney Background: MS in Computer Science from UC Berkeley Working exclusively with SQL Server for 28 years SQL

More information

big picture parallel db (one data center) mix of OLTP and batch analysis lots of data, high r/w rates, 1000s of cheap boxes thus many failures

big picture parallel db (one data center) mix of OLTP and batch analysis lots of data, high r/w rates, 1000s of cheap boxes thus many failures Lecture 20 -- 11/20/2017 BigTable big picture parallel db (one data center) mix of OLTP and batch analysis lots of data, high r/w rates, 1000s of cheap boxes thus many failures what does paper say Google

More information

Datenbanksysteme II: Modern Hardware. Stefan Sprenger November 23, 2016

Datenbanksysteme II: Modern Hardware. Stefan Sprenger November 23, 2016 Datenbanksysteme II: Modern Hardware Stefan Sprenger November 23, 2016 Content of this Lecture Introduction to Modern Hardware CPUs, Cache Hierarchy Branch Prediction SIMD NUMA Cache-Sensitive Skip List

More information

CompSci 516 Database Systems

CompSci 516 Database Systems CompSci 516 Database Systems Lecture 20 NoSQL and Column Store Instructor: Sudeepa Roy Duke CS, Fall 2018 CompSci 516: Database Systems 1 Reading Material NOSQL: Scalable SQL and NoSQL Data Stores Rick

More information

Crescando: Predictable Performance for Unpredictable Workloads

Crescando: Predictable Performance for Unpredictable Workloads Crescando: Predictable Performance for Unpredictable Workloads G. Alonso, D. Fauser, G. Giannikis, D. Kossmann, J. Meyer, P. Unterbrunner Amadeus S.A. ETH Zurich, Systems Group (Funded by Enterprise Computing

More information

Virtual Memory. Motivation:

Virtual Memory. Motivation: Virtual Memory Motivation:! Each process would like to see its own, full, address space! Clearly impossible to provide full physical memory for all processes! Processes may define a large address space

More information

Column-Oriented Database Systems. Liliya Rudko University of Helsinki

Column-Oriented Database Systems. Liliya Rudko University of Helsinki Column-Oriented Database Systems Liliya Rudko University of Helsinki 2 Contents 1. Introduction 2. Storage engines 2.1 Evolutionary Column-Oriented Storage (ECOS) 2.2 HYRISE 3. Database management systems

More information

Low Overhead Concurrency Control for Partitioned Main Memory Databases. Evan P. C. Jones Daniel J. Abadi Samuel Madden"

Low Overhead Concurrency Control for Partitioned Main Memory Databases. Evan P. C. Jones Daniel J. Abadi Samuel Madden Low Overhead Concurrency Control for Partitioned Main Memory Databases Evan P. C. Jones Daniel J. Abadi Samuel Madden" Banks" Payment Processing" Airline Reservations" E-Commerce" Web 2.0" Problem:" Millions

More information

Trekking Through Siberia: Managing Cold Data in a Memory-Optimized Database

Trekking Through Siberia: Managing Cold Data in a Memory-Optimized Database Trekking Through Siberia: Managing Cold Data in a Memory-Optimized Database Ahmed Eldawy* University of Minnesota eldawy@cs.umn.edu Justin Levandoski Microsoft Research justin.levandoski@microsoft.com

More information

Huge market -- essentially all high performance databases work this way

Huge market -- essentially all high performance databases work this way 11/5/2017 Lecture 16 -- Parallel & Distributed Databases Parallel/distributed databases: goal provide exactly the same API (SQL) and abstractions (relational tables), but partition data across a bunch

More information

Advanced Database Systems

Advanced Database Systems Lecture IV Query Processing Kyumars Sheykh Esmaili Basic Steps in Query Processing 2 Query Optimization Many equivalent execution plans Choosing the best one Based on Heuristics, Cost Will be discussed

More information

Mo Money, No Problems: Caches #2...

Mo Money, No Problems: Caches #2... Mo Money, No Problems: Caches #2... 1 Reminder: Cache Terms... Cache: A small and fast memory used to increase the performance of accessing a big and slow memory Uses temporal locality: The tendency to

More information

CMU SCS CMU SCS Who: What: When: Where: Why: CMU SCS

CMU SCS CMU SCS Who: What: When: Where: Why: CMU SCS Carnegie Mellon Univ. Dept. of Computer Science 15-415/615 - DB s C. Faloutsos A. Pavlo Lecture#23: Distributed Database Systems (R&G ch. 22) Administrivia Final Exam Who: You What: R&G Chapters 15-22

More information

SAP IQ - Business Intelligence and vertical data processing with 8 GB RAM or less

SAP IQ - Business Intelligence and vertical data processing with 8 GB RAM or less SAP IQ - Business Intelligence and vertical data processing with 8 GB RAM or less Dipl.- Inform. Volker Stöffler Volker.Stoeffler@DB-TecKnowledgy.info Public Agenda Introduction: What is SAP IQ - in a

More information

Distributed File Systems II

Distributed File Systems II Distributed File Systems II To do q Very-large scale: Google FS, Hadoop FS, BigTable q Next time: Naming things GFS A radically new environment NFS, etc. Independence Small Scale Variety of workloads Cooperation

More information

Memory-Based Cloud Architectures

Memory-Based Cloud Architectures Memory-Based Cloud Architectures ( Or: Technical Challenges for OnDemand Business Software) Jan Schaffner Enterprise Platform and Integration Concepts Group Example: Enterprise Benchmarking -) *%'+,#$)

More information

Oracle Database In-Memory What s New and What s Coming

Oracle Database In-Memory What s New and What s Coming Oracle Database In-Memory What s New and What s Coming Andy Rivenes Product Manager for Database In-Memory Oracle Database Systems DOAG - May 10, 2016 #DBIM12c Safe Harbor Statement The following is intended

More information

Deukyeon Hwang UNIST. Wook-Hee Kim UNIST. Beomseok Nam UNIST. Hanyang Univ.

Deukyeon Hwang UNIST. Wook-Hee Kim UNIST. Beomseok Nam UNIST. Hanyang Univ. Deukyeon Hwang UNIST Wook-Hee Kim UNIST Youjip Won Hanyang Univ. Beomseok Nam UNIST Fast but Asymmetric Access Latency Non-Volatility Byte-Addressability Large Capacity CPU Caches (Volatile) Persistent

More information

Performance in the Multicore Era

Performance in the Multicore Era Performance in the Multicore Era Gustavo Alonso Systems Group -- ETH Zurich, Switzerland Systems Group Enterprise Computing Center Performance in the multicore era 2 BACKGROUND - SWISSBOX SwissBox: An

More information

Outline. Parallel Database Systems. Information explosion. Parallelism in DBMSs. Relational DBMS parallelism. Relational DBMSs.

Outline. Parallel Database Systems. Information explosion. Parallelism in DBMSs. Relational DBMS parallelism. Relational DBMSs. Parallel Database Systems STAVROS HARIZOPOULOS stavros@cs.cmu.edu Outline Background Hardware architectures and performance metrics Parallel database techniques Gamma Bonus: NCR / Teradata Conclusions

More information

Bigtable: A Distributed Storage System for Structured Data. Andrew Hon, Phyllis Lau, Justin Ng

Bigtable: A Distributed Storage System for Structured Data. Andrew Hon, Phyllis Lau, Justin Ng Bigtable: A Distributed Storage System for Structured Data Andrew Hon, Phyllis Lau, Justin Ng What is Bigtable? - A storage system for managing structured data - Used in 60+ Google services - Motivation:

More information

Recent Innovations in Data Storage Technologies Dr Roger MacNicol Software Architect

Recent Innovations in Data Storage Technologies Dr Roger MacNicol Software Architect Recent Innovations in Data Storage Technologies Dr Roger MacNicol Software Architect Copyright 2017, Oracle and/or its affiliates. All rights reserved. Safe Harbor Statement The following is intended to

More information

Kathleen Durant PhD Northeastern University CS Indexes

Kathleen Durant PhD Northeastern University CS Indexes Kathleen Durant PhD Northeastern University CS 3200 Indexes Outline for the day Index definition Types of indexes B+ trees ISAM Hash index Choosing indexed fields Indexes in InnoDB 2 Indexes A typical

More information

Weaving Relations for Cache Performance

Weaving Relations for Cache Performance VLDB 2001, Rome, Italy Best Paper Award Weaving Relations for Cache Performance Anastassia Ailamaki David J. DeWitt Mark D. Hill Marios Skounakis Presented by: Ippokratis Pandis Bottleneck in DBMSs Processor

More information

Schema-Agnostic Indexing with Azure Document DB

Schema-Agnostic Indexing with Azure Document DB Schema-Agnostic Indexing with Azure Document DB Introduction Azure DocumentDB is Microsoft s multi-tenant distributed database service for managing JSON documents at Internet scale Multi-tenancy is an

More information

CS 525: Advanced Database Organization 03: Disk Organization

CS 525: Advanced Database Organization 03: Disk Organization CS 525: Advanced Database Organization 03: Disk Organization Boris Glavic Slides: adapted from a course taught by Hector Garcia-Molina, Stanford InfoLab CS 525 Notes 3 1 Topics for today How to lay out

More information

Adaptive Query Processing on Prefix Trees Wolfgang Lehner

Adaptive Query Processing on Prefix Trees Wolfgang Lehner Adaptive Query Processing on Prefix Trees Wolfgang Lehner Fachgruppentreffen, 22.11.2012 TU München Prof. Dr.-Ing. Wolfgang Lehner > Challenges for Database Systems Three things are important in the database

More information

Effect of memory latency

Effect of memory latency CACHE AWARENESS Effect of memory latency Consider a processor operating at 1 GHz (1 ns clock) connected to a DRAM with a latency of 100 ns. Assume that the processor has two ALU units and it is capable

More information

Goals for Today. CS 133: Databases. Final Exam: Logistics. Why Use a DBMS? Brief overview of course. Course evaluations

Goals for Today. CS 133: Databases. Final Exam: Logistics. Why Use a DBMS? Brief overview of course. Course evaluations Goals for Today Brief overview of course CS 133: Databases Course evaluations Fall 2018 Lec 27 12/13 Course and Final Review Prof. Beth Trushkowsky More details about the Final Exam Practice exercises

More information

Instant Recovery for Main-Memory Databases

Instant Recovery for Main-Memory Databases Instant Recovery for Main-Memory Databases Ismail Oukid*, Wolfgang Lehner*, Thomas Kissinger*, Peter Bumbulis, and Thomas Willhalm + *TU Dresden SAP SE + Intel GmbH CIDR 2015, Asilomar, California, USA,

More information

Recall: Address Space Map. 13: Memory Management. Let s be reasonable. Processes Address Space. Send it to disk. Freeing up System Memory

Recall: Address Space Map. 13: Memory Management. Let s be reasonable. Processes Address Space. Send it to disk. Freeing up System Memory Recall: Address Space Map 13: Memory Management Biggest Virtual Address Stack (Space for local variables etc. For each nested procedure call) Sometimes Reserved for OS Stack Pointer Last Modified: 6/21/2004

More information

systems & research project

systems & research project class 4 systems & research project prof. HTTP://DASLAB.SEAS.HARVARD.EDU/CLASSES/CS265/ index index knows order about the data data filtering data: point/range queries index data A B C sorted A B C initial

More information

Be Fast, Cheap and in Control with SwitchKV. Xiaozhou Li

Be Fast, Cheap and in Control with SwitchKV. Xiaozhou Li Be Fast, Cheap and in Control with SwitchKV Xiaozhou Li Goal: fast and cost-efficient key-value store Store, retrieve, manage key-value objects Get(key)/Put(key,value)/Delete(key) Target: cluster-level

More information

Traditional RDBMS Wisdom is All Wrong -- In Three Acts. Michael Stonebraker

Traditional RDBMS Wisdom is All Wrong -- In Three Acts. Michael Stonebraker Traditional RDBMS Wisdom is All Wrong -- In Three Acts Michael Stonebraker The Stonebraker Says Webinar Series The first three acts: 1. Why main memory is the answer for OLTP Recording available at VoltDB.com

More information

Squall: Fine-Grained Live Reconfiguration for Partitioned Main Memory Databases

Squall: Fine-Grained Live Reconfiguration for Partitioned Main Memory Databases Squall: Fine-Grained Live Reconfiguration for Partitioned Main Memory Databases AARON J. ELMORE, VAIBHAV ARORA, REBECCA TAFT, ANDY PAVLO, DIVY AGRAWAL, AMR EL ABBADI Higher OLTP Throughput Demand for High-throughput

More information

Carnegie Mellon Univ. Dept. of Computer Science /615 - DB Applications. Last Class. Today s Class. Faloutsos/Pavlo CMU /615

Carnegie Mellon Univ. Dept. of Computer Science /615 - DB Applications. Last Class. Today s Class. Faloutsos/Pavlo CMU /615 Carnegie Mellon Univ. Dept. of Computer Science 15-415/615 - DB Applications C. Faloutsos A. Pavlo Lecture#23: Crash Recovery Part 1 (R&G ch. 18) Last Class Basic Timestamp Ordering Optimistic Concurrency

More information

Lock Tuning. Concurrency Control Goals. Trade-off between correctness and performance. Correctness goals. Performance goals.

Lock Tuning. Concurrency Control Goals. Trade-off between correctness and performance. Correctness goals. Performance goals. Lock Tuning Concurrency Control Goals Performance goals Reduce blocking One transaction waits for another to release its locks Avoid deadlocks Transactions are waiting for each other to release their locks

More information

Parser. Select R.text from Report R, Weather W where W.image.rain() and W.city = R.city and W.date = R.date and R.text.

Parser. Select R.text from Report R, Weather W where W.image.rain() and W.city = R.city and W.date = R.date and R.text. Select R.text from Report R, Weather W where W.image.rain() and W.city = R.city and W.date = R.date and R.text. Lifecycle of an SQL Query CSE 190D base System Implementation Arun Kumar Query Query Result

More information

STORING DATA: DISK AND FILES

STORING DATA: DISK AND FILES STORING DATA: DISK AND FILES CS 564- Spring 2018 ACKs: Dan Suciu, Jignesh Patel, AnHai Doan WHAT IS THIS LECTURE ABOUT? How does a DBMS store data? disk, SSD, main memory The Buffer manager controls how

More information

User Perspective. Module III: System Perspective. Module III: Topics Covered. Module III Overview of Storage Structures, QP, and TM

User Perspective. Module III: System Perspective. Module III: Topics Covered. Module III Overview of Storage Structures, QP, and TM Module III Overview of Storage Structures, QP, and TM Sharma Chakravarthy UT Arlington sharma@cse.uta.edu http://www2.uta.edu/sharma base Management Systems: Sharma Chakravarthy Module I Requirements analysis

More information

SQL, NoSQL, MongoDB. CSE-291 (Cloud Computing) Fall 2016 Gregory Kesden

SQL, NoSQL, MongoDB. CSE-291 (Cloud Computing) Fall 2016 Gregory Kesden SQL, NoSQL, MongoDB CSE-291 (Cloud Computing) Fall 2016 Gregory Kesden SQL Databases Really better called Relational Databases Key construct is the Relation, a.k.a. the table Rows represent records Columns

More information

Show Me the $... Performance And Caches

Show Me the $... Performance And Caches Show Me the $... Performance And Caches 1 CPU-Cache Interaction (5-stage pipeline) PCen 0x4 Add bubble PC addr inst hit? Primary Instruction Cache IR D To Memory Control Decode, Register Fetch E A B MD1

More information

Parallel Algorithm Engineering

Parallel Algorithm Engineering Parallel Algorithm Engineering Kenneth S. Bøgh PhD Fellow Based on slides by Darius Sidlauskas Outline Background Current multicore architectures UMA vs NUMA The openmp framework and numa control Examples

More information

Indexing. Jan Chomicki University at Buffalo. Jan Chomicki () Indexing 1 / 25

Indexing. Jan Chomicki University at Buffalo. Jan Chomicki () Indexing 1 / 25 Indexing Jan Chomicki University at Buffalo Jan Chomicki () Indexing 1 / 25 Storage hierarchy Cache Main memory Disk Tape Very fast Fast Slower Slow (nanosec) (10 nanosec) (millisec) (sec) Very small Small

More information

Datenbanksysteme II: Caching and File Structures. Ulf Leser

Datenbanksysteme II: Caching and File Structures. Ulf Leser Datenbanksysteme II: Caching and File Structures Ulf Leser Content of this Lecture Caching Overview Accessing data Cache replacement strategies Prefetching File structure Index Files Ulf Leser: Implementation

More information

Data Blocks: Hybrid OLTP and OLAP on Compressed Storage using both Vectorization and Compilation

Data Blocks: Hybrid OLTP and OLAP on Compressed Storage using both Vectorization and Compilation Data Blocks: Hybrid OLTP and OLAP on Compressed Storage using both Vectorization and Compilation Harald Lang, Tobias Mühlbauer, Florian Funke 2,, Peter Boncz 3,, Thomas Neumann, Alfons Kemper Technical

More information

Oracle 1Z0-515 Exam Questions & Answers

Oracle 1Z0-515 Exam Questions & Answers Oracle 1Z0-515 Exam Questions & Answers Number: 1Z0-515 Passing Score: 800 Time Limit: 120 min File Version: 38.7 http://www.gratisexam.com/ Oracle 1Z0-515 Exam Questions & Answers Exam Name: Data Warehousing

More information

Introduction to parallel computers and parallel programming. Introduction to parallel computersand parallel programming p. 1

Introduction to parallel computers and parallel programming. Introduction to parallel computersand parallel programming p. 1 Introduction to parallel computers and parallel programming Introduction to parallel computersand parallel programming p. 1 Content A quick overview of morden parallel hardware Parallelism within a chip

More information

NFS: Naming indirection, abstraction. Abstraction, abstraction, abstraction! Network File Systems: Naming, cache control, consistency

NFS: Naming indirection, abstraction. Abstraction, abstraction, abstraction! Network File Systems: Naming, cache control, consistency Abstraction, abstraction, abstraction! Network File Systems: Naming, cache control, consistency Local file systems Disks are terrible abstractions: low-level blocks, etc. Directories, files, links much

More information

Distributed Data Management Transactions

Distributed Data Management Transactions Felix Naumann F-2.03/F-2.04, Campus II Hasso Plattner Institut must ensure that interactions succeed consistently An OLTP Topic Motivation Most database interactions consist of multiple, coherent operations

More information

Distributed Data Analytics Transactions

Distributed Data Analytics Transactions Distributed Data Analytics G-3.1.09, Campus III Hasso Plattner Institut must ensure that interactions succeed consistently An OLTP Topic Motivation Most database interactions consist of multiple, coherent

More information

Memory Hierarchies && The New Bottleneck == Cache Conscious Data Access. Martin Grund

Memory Hierarchies && The New Bottleneck == Cache Conscious Data Access. Martin Grund Memory Hierarchies && The New Bottleneck == Cache Conscious Data Access Martin Grund Agenda Key Question: What is the memory hierarchy and how to exploit it? What to take home How is computer memory organized.

More information

Hyrise - a Main Memory Hybrid Storage Engine

Hyrise - a Main Memory Hybrid Storage Engine Hyrise - a Main Memory Hybrid Storage Engine Philippe Cudré-Mauroux exascale Infolab U. of Fribourg - Switzerland & MIT joint work w/ Martin Grund, Jens Krueger, Hasso Plattner, Alexander Zeier (HPI) and

More information

Important Note. Today: Starting at the Bottom. DBMS Architecture. General HeapFile Operations. HeapFile In SimpleDB. CSE 444: Database Internals

Important Note. Today: Starting at the Bottom. DBMS Architecture. General HeapFile Operations. HeapFile In SimpleDB. CSE 444: Database Internals Important Note CSE : base Internals Lectures show principles Lecture storage and buffer management You need to think through what you will actually implement in SimpleDB! Try to implement the simplest

More information

Transaction Management Exercises KEY

Transaction Management Exercises KEY Transaction Management Exercises KEY I/O and CPU activities can be and are overlapped to minimize (disk and processor) idle time and to maximize throughput (units of work per time unit). This motivates

More information

Caches and Memory Hierarchy: Review. UCSB CS240A, Winter 2016

Caches and Memory Hierarchy: Review. UCSB CS240A, Winter 2016 Caches and Memory Hierarchy: Review UCSB CS240A, Winter 2016 1 Motivation Most applications in a single processor runs at only 10-20% of the processor peak Most of the single processor performance loss

More information

Bridging the Processor/Memory Performance Gap in Database Applications

Bridging the Processor/Memory Performance Gap in Database Applications Bridging the Processor/Memory Performance Gap in Database Applications Anastassia Ailamaki Carnegie Mellon http://www.cs.cmu.edu/~natassa Memory Hierarchies PROCESSOR EXECUTION PIPELINE L1 I-CACHE L1 D-CACHE

More information