Karaoke. Distributed Private Messaging Immune to Passive Traffic Analysis. David Lazar, Yossi Gilad, Nickolai Zeldovich

Size: px
Start display at page:

Download "Karaoke. Distributed Private Messaging Immune to Passive Traffic Analysis. David Lazar, Yossi Gilad, Nickolai Zeldovich"

Transcription

1 Karaoke Distributed Private Messaging Immune to Passive Traffic Analysis David Lazar, Yossi Gilad, Nickolai Zeldovich 1

2 Motivation: Report a crime without getting fired You re Fired if you talk to the journalist! Bob Journalist Govt. Boss (Adversary) Govt. Employees!2

3 Goal: Metadata-Private Text Messaging Text Messaging App Bob!3

4 Threat Model: Global Adversary Watches the network Runs some of the servers Can we prevent him from learning who Bob is chatting with? Bob!4

5 Prior Approaches Vuvuzela [SOSP 15] Stadium [SOSP 17] Pung [OSDI 16] Dissent [OSDI 14] Privacy No Privacy Guarantee Differential Privacy Cryptographic Privacy!5

6 Prior Approaches Vuvuzela [SOSP 15] Stadium [SOSP 17] Pung [OSDI 16] Dissent [OSDI 14] Privacy No Privacy Guarantee Differential Privacy Cryptographic Privacy Scalability!6

7 Scalability is critical for security Bob Whistleblower Journalist!7

8 App must scale to everyone, so it isn t suspicious when Bob joins Bob Whistleblower Journalist!8

9 Contributions Karaoke: a distributed metadata-private messaging system that scales to more users Cryptographic privacy against passive attackers. Differential privacy against active attackers. 8s end-to-end latency with 4M users. 5x to 11x faster than prior work.!9

10 Insight: treat passive and active attackers separately Privacy No Privacy Differential Privacy Cryptographic Privacy active attacker Karaoke passive attacker Scalability!10

11 Global Passive Adversary Watches the network Runs some of the servers!11

12 Observations by Adversary Inputs Server State + Network Links Outputs!12

13 Observations by Adversary Inputs!13

14 Hiding inputs: constant cover traffic in rounds Round 1 Round 2!14

15 Hiding outputs Outputs!15

16 Hiding outputs with dead drops [Vuvuzela] Dead drop: designated location to exchange messages. Named by pseudorandom ID, so reveals nothing about the users. When two users access the same dead drop, their messages are exchanged. Idle users result in dead drop with one access.!16 Dead drops

17 Dead drops alone are insufficient Chatting Not Chatting Alice Bob Obvious from outputs if Alice and Bob are chatting.!17

18 Vuvuzela generates dummy accesses (noise) Chatting Not Chatting Differential privacy: no single round reveals much, but many rounds of observation might reveal a pattern.!18

19 Karaoke dead drops are always doubles Chatting Not Chatting!19

20 Message doubling provides cryptographic privacy Chatting Not Chatting Cryptographic privacy: adversary can t distinguish whether Alice and Bob are chatting!20

21 Observations by Adversary Inputs Server State + Network links Outputs!21

22 Mixnet Review Dead drops Guarantee: if one server is honest, adversary can not tell which users accessed which dead drops!22

23 Distributed Mixnet: each server processes subset of messages !23

24 Users pick random paths through the network Hop 1 Hop 2 Hop 3 Hop 4!24

25 Servers decrypt and shuffle incoming messages at each hop Hop 1 Hop 2 Hop 3 Hop 4!25

26 Last hop does the dead drop exchanges Dead drops Hop 1 Hop 2 Hop 3 Hop 4!26

27 Challenge: network links between hops show Alice is talking to Bob! Hop 1 Hop 2 Hop 3 Hop 4!27

28 Karaoke s message doubling gives us some hope! Hop 1 Hop 2 Hop 3 Hop 4!28

29 Possible cases for the last hop Chatting Not Chatting Goal: make these cases indistinguishable so the rest of the links don t matter.!29

30 Tangled Messages = OR!30

31 Tangling one of Alice s and one of Bob s messages achieves our goal Tangled Messages = OR Last hop!31

32 An honest server tangles messages Last hop!32

33 Problem: Alice and Bob s messages might not intersect at an honest server Last hop!33

34 Problem: Alice and Bob s messages might not intersect at an honest server Assume the paths of Alice s and Bob s other messages are completely compromised.!34

35 Karaoke servers generate dummy messages that can be used for tangling 1 3 noise 2 4 Bob!35

36 Bob s message is now tangled with noise 1 3 noise 2 4 Bob!36

37 Similarly, Alice s message can tangle with noise Alice 1 3 noise 2 4!37

38 Is it possible that the noise messages swapped places? !38

39 As a result, Alice s and Bob s messages could also have switched places !39

40 Tangling with high probability The shape we just saw is a bit complicated, but it enables Alice and Bob to get tangled with high probability Assuming 80% of the servers are honest 14 hops results in tangling with high probability Servers need to add a small amount of noise messages per outgoing link!40

41 Karaoke Summary Inputs Server State + Network links Dead drops!41

42 Defending against a global active adversary Karaoke provides differential privacy against a global active adversary Karaoke adds additional noise messages to protect against message drops Due to message doubling, active attacks (message drops) are rare and detectable, so Karaoke needs far less noise compared to prior work. We use bloom filters to ensure malicious servers don t discard the noise. (See paper)!42

43 Implementation 4000 lines of Go code Major CPU cost is onion decryption Configured to resist 200 active attacks per user (see paper)!43

44 Evaluation Does Karaoke support a large number of users with good end-to-end latency? How does Karaoke s performance compare to prior work? Does it scale? (i.e., does Karaoke support more users by adding more servers?)!44

45 Experimental Setup 50 to 200 Amazon EC2 instances c4.8xlarge (36 cores) instances for comparison to Vuvuzela and Stadium c5.8xlarge instances for all other experiments 10 Gbps links 100 ms of simulated network latency between instances!45

46 Karaoke achieves low latency for many users 160 s 140 s 120 s 136s Karaoke Vuvuzela Stadium Latency for user messages 100 s 80 s 60 s 40 s 20 s 0 s 68s 55s 37s 10s 6s 8s 10s 39s 35s 27s 22s 16s 2M 4M 6M 8M 10M 12M 14M 16M Number of users!46

47 Karaoke is CPU bound 160 s 140 s 120 s 136s Karaoke (c5) Karaoke (c4) Vuvuzela Stadium Latency for user messages 100 s 80 s 60 s 40 s 20 s 0 s 68s 55s 37s 16s 10s 6s 8s 10s 6s 6s 7s 8s 39s 35s 27s 22s 27s 28s 18s 16s 2M 4M 6M 8M 10M 12M 14M 16M Number of users!47

48 Karaoke supports more users by adding servers Latency for user messages 12 s 10 s 8 s 6 s 4 s 2 s 0 s 25K users/server Number of servers!48

49 Conclusion Karaoke: distributed metadata-private messaging system that scales to more people Cryptographic privacy against passive attackers Technique: message doubling + message tangling 8 seconds end-to-end latency for 4 million users 5x-11x faster than Vuvuzela/Stadium!49

50

Stadium. A Distributed Metadata-private Messaging System. Matei Zaharia Nickolai Zeldovich SOSP 2017

Stadium. A Distributed Metadata-private Messaging System. Matei Zaharia Nickolai Zeldovich SOSP 2017 Stadium A Distributed Metadata-private Messaging System Nirvan Tyagi Yossi Gilad Derek Leung Matei Zaharia Nickolai Zeldovich SOSP 2017 Previous talk: Anonymous broadcast This talk: Private messaging Alice

More information

Vuvuzela: Scalable Private Messaging Resistant to Traffic Analysis

Vuvuzela: Scalable Private Messaging Resistant to Traffic Analysis Vuvuzela: Scalable Private Messaging Resistant to Traffic Analysis Jelle van den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich MIT CSAIL Abstract Private messaging over the Internet has proven

More information

Karaoke: Distributed Private Messaging Immune to Passive Traffic Analysis

Karaoke: Distributed Private Messaging Immune to Passive Traffic Analysis Karaoke: Distriuted Private Messaging Immune to Passive Traffic Analysis David Lazar, Yossi Gilad, and Nickolai Zeldovich MIT CSAIL Astract Karaoke is a system for low-latency metadata-private communication.

More information

The Loopix Anonymity System

The Loopix Anonymity System The Loopix Anonymity System Ania M. Piotrowska 1 Jamie Hayes 1 Tariq Elahi 2 Sebastian Meiser 1 George Danezis 1 1 University College London, UK 2 KU Leuven 1 / 19 Mixnets Background A set of cryptographic

More information

A SIMPLE INTRODUCTION TO TOR

A SIMPLE INTRODUCTION TO TOR A SIMPLE INTRODUCTION TO TOR The Onion Router Fabrizio d'amore May 2015 Tor 2 Privacy on Public Networks Internet is designed as a public network Wi-Fi access points, network routers see all traffic that

More information

0x1A Great Papers in Computer Security

0x1A Great Papers in Computer Security CS 380S 0x1A Great Papers in Computer Security Vitaly Shmatikov http://www.cs.utexas.edu/~shmat/courses/cs380s/ Privacy on Public Networks Internet is designed as a public network Wi-Fi access points,

More information

CS526: Information security

CS526: Information security Cristina Nita-Rotaru CS526: Information security Anonymity systems. Based on slides by Chi Bun Chan 1: Terminology. Anonymity Anonymity (``without name ) means that a person is not identifiable within

More information

How Alice and Bob meet if they don t like onions

How Alice and Bob meet if they don t like onions How Alice and Bob meet if they don t like onions Survey of Network Anonymisation Techniques Erik Sy 34th Chaos Communication Congress, Leipzig Agenda 1. Introduction to Anonymity Networks Anonymity Strategies

More information

Network Security: Anonymity. Tuomas Aura T Network security Aalto University, Nov-Dec 2012

Network Security: Anonymity. Tuomas Aura T Network security Aalto University, Nov-Dec 2012 Network Security: Anonymity Tuomas Aura T-110.5241 Network security Aalto University, Nov-Dec 2012 Outline 1. Anonymity and privacy 2. High-latency anonymous routing 3. Low-latency anonymous routing Tor

More information

ENEE 459-C Computer Security. Security protocols

ENEE 459-C Computer Security. Security protocols ENEE 459-C Computer Security Security protocols Key Agreement: Diffie-Hellman Protocol Key agreement protocol, both A and B contribute to the key Setup: p prime and g generator of Z p *, p and g public.

More information

ENEE 459-C Computer Security. Security protocols (continued)

ENEE 459-C Computer Security. Security protocols (continued) ENEE 459-C Computer Security Security protocols (continued) Key Agreement: Diffie-Hellman Protocol Key agreement protocol, both A and B contribute to the key Setup: p prime and g generator of Z p *, p

More information

Network Security: Anonymity. Tuomas Aura T Network security Aalto University, Nov-Dec 2010

Network Security: Anonymity. Tuomas Aura T Network security Aalto University, Nov-Dec 2010 Network Security: Anonymity Tuomas Aura T-110.5240 Network security Aalto University, Nov-Dec 2010 Outline 1. Anonymity and privacy 2. High-latency anonymous routing 3. Low-latency anonymous routing Tor

More information

Atom. Horizontally Scaling Strong Anonymity. Albert Kwon Henry Corrigan-Gibbs 10/30/17, SOSP 17

Atom. Horizontally Scaling Strong Anonymity. Albert Kwon Henry Corrigan-Gibbs 10/30/17, SOSP 17 Atom Horizontally Scaling Strong Anonymity Albert Kwon Henry Corrigan-Gibbs MIT Stanford Srinivas Devadas Bryan Ford MIT EPFL 10/30/17, SOSP 17 Motivation Anonymous bulletin board (broadcast) in the face

More information

DIY Hosting for Online Privacy

DIY Hosting for Online Privacy DIY Hosting for Online Privacy Shoumik Palkar and Matei Zaharia Stanford University Appeared at HotNets 2017 Before: A Federated Internet The Internet and its protocols were designed to be federated Organizations

More information

CS Paul Krzyzanowski

CS Paul Krzyzanowski Computer Security 17. Tor & Anonymous Connectivity Anonymous Connectivity Paul Krzyzanowski Rutgers University Spring 2018 1 2 Anonymity on the Internet Often considered bad Only criminals need to hide

More information

Protocols for Anonymous Communication

Protocols for Anonymous Communication 18734: Foundations of Privacy Protocols for Anonymous Communication Anupam Datta CMU Fall 2016 Privacy on Public Networks } Internet is designed as a public network } Machines on your LAN may see your

More information

communication Claudia Díaz Katholieke Universiteit Leuven Dept. Electrical Engineering g ESAT/COSIC October 9, 2007 Claudia Diaz (K.U.

communication Claudia Díaz Katholieke Universiteit Leuven Dept. Electrical Engineering g ESAT/COSIC October 9, 2007 Claudia Diaz (K.U. Introduction to anonymous communication Claudia Díaz Katholieke Universiteit Leuven Dept. Electrical Engineering g ESAT/COSIC October 9, 2007 Claudia Diaz (K.U.Leuven) 1 a few words on the scope of the

More information

Computer Security. 15. Tor & Anonymous Connectivity. Paul Krzyzanowski. Rutgers University. Spring 2017

Computer Security. 15. Tor & Anonymous Connectivity. Paul Krzyzanowski. Rutgers University. Spring 2017 Computer Security 15. Tor & Anonymous Connectivity Paul Krzyzanowski Rutgers University Spring 2017 April 24, 2017 CS 419 2017 Paul Krzyzanowski 1 Private Browsing Browsers offer a "private" browsing modes

More information

Private Browsing. Computer Security. Is private browsing private? Goal. Tor & The Tor Browser. History. Browsers offer a "private" browsing modes

Private Browsing. Computer Security. Is private browsing private? Goal. Tor & The Tor Browser. History. Browsers offer a private browsing modes Private Browsing Computer Security 16. Tor & Anonymous Connectivity Paul Krzyzanowski Rutgers University Spring 2017 Browsers offer a "private" browsing modes Apple Private Browsing, Mozilla Private Browsing,

More information

Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms. EJ Jung

Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms. EJ Jung Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms EJ Jung Goals 1. Hide what you wrote encryption of any kind symmetric/asymmetric/stream 2. Hide to whom you sent and when pseudonym?

More information

Network Security: Anonymity. Tuomas Aura T Network security Aalto University, autumn 2015

Network Security: Anonymity. Tuomas Aura T Network security Aalto University, autumn 2015 Network Security: Anonymity Tuomas Aura T-110.5241 Network security Aalto University, autumn 2015 Outline 1. Anonymity and privacy 2. High-latency anonymous routing 3. Low-latency anonymous routing Tor

More information

P 5 : A Protocol for Scalable Anonymous Communications

P 5 : A Protocol for Scalable Anonymous Communications P 5 : A Protocol for Scalable Anonymous Communications 1 P 5 : A Protocol for Scalable Anonymous Communications Rob Sherwood, Bobby Bhattacharjee, Aravind Srinivasan University of Maryland, College Park

More information

DIY Hosting for Online Privacy. Shoumik Palkar and Matei Zaharia Stanford University

DIY Hosting for Online Privacy. Shoumik Palkar and Matei Zaharia Stanford University DIY Hosting for Online Privacy Shoumik Palkar and Matei Zaharia Stanford University Before: A Federated Internet The Internet and its protocols were designed to be federated Organizations would host own

More information

CS 134 Winter Privacy and Anonymity

CS 134 Winter Privacy and Anonymity CS 134 Winter 2016 Privacy and Anonymity 1 Privacy Privacy and Society Basic individual right & desire Relevant to corporations & government agencies Recently increased awareness However, general public

More information

Onion Routing. Submitted By, Harikrishnan S Ramji Nagariya Sai Sambhu J

Onion Routing. Submitted By, Harikrishnan S Ramji Nagariya Sai Sambhu J Onion Routing Submitted By, Harikrishnan S Ramji Nagariya Sai Sambhu J Motivation Public Network Encryption does not hide Routing Information Traffic Analysis Who is Talking to Whom? by analyzing the traffic

More information

1 Introduction. Albert Kwon*, David Lazar, Srinivas Devadas, and Bryan Ford Riffle. An Efficient Communication System With Strong Anonymity

1 Introduction. Albert Kwon*, David Lazar, Srinivas Devadas, and Bryan Ford Riffle. An Efficient Communication System With Strong Anonymity Proceedings on Privacy Enhancing Technologies ; 2016 (2):115 134 Albert Kwon*, David Lazar, Srinivas Devadas, and Bryan Ford Riffle An Efficient Communication System With Strong Anonymity Abstract: Existing

More information

DISSENT: Accountable, Anonymous Communication

DISSENT: Accountable, Anonymous Communication DISSENT: Accountable, Anonymous Communication Joan Feigenbaum http://www.cs.yale.edu/homes/jf/ Joint work with Bryan Ford (PI), Henry Corrigan Gibbs, Ramakrishna Gummadi, Aaron Johnson (NRL), Vitaly Shmatikov

More information

Definition. Quantifying Anonymity. Anonymous Communication. How can we calculate how anonymous we are? Who you are from the communicating party

Definition. Quantifying Anonymity. Anonymous Communication. How can we calculate how anonymous we are? Who you are from the communicating party Definition Anonymous Communication Hiding identities of parties involved in communications from each other, or from third-parties Who you are from the communicating party Who you are talking to from everyone

More information

Algorand: Scaling Byzantine Agreements for Cryptocurrencies

Algorand: Scaling Byzantine Agreements for Cryptocurrencies Algorand: Scaling Byzantine Agreements for Cryptocurrencies Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, Nickolai Zeldovich Presented by: Preet Patel and Umang Lathia Outline Overview of Distributed

More information

CNT Computer and Network Security: Privacy/Anonymity

CNT Computer and Network Security: Privacy/Anonymity CNT 5410 - Computer and Network Security: Privacy/Anonymity Professor Kevin Butler Fall 2015 When Confidentiality is Insufficient 2 Privacy!= Confidentiality Confidentiality refers to the property of the

More information

Tor: An Anonymizing Overlay Network for TCP

Tor: An Anonymizing Overlay Network for TCP Tor: An Anonymizing Overlay Network for TCP Roger Dingledine The Free Haven Project http://tor.freehaven.net/ http://tor.eff.org/ December 28, 21C3 2004 Talk Outline Motivation: Why anonymous communication?

More information

Circuit Fingerprinting Attack: Passive Deanonymization of Tor Hidden Services

Circuit Fingerprinting Attack: Passive Deanonymization of Tor Hidden Services Circuit Fingerprinting Attack: Passive Deanonymization of Tor Hidden Services Albert Kwon 1 Mashael Saad Al-Sabah 123 David Lazar 1 Marc Dacier 2 Srinivas Devadas 1 1 CSAIL/MIT 2 Qatar Computing Research

More information

WAVE: A decentralised authorization system for IoT via blockchain smart contracts

WAVE: A decentralised authorization system for IoT via blockchain smart contracts WAVE: A decentralised authorization system for IoT via blockchain smart contracts Michael P Andersen, John Kolb, Kaifei Chen, Gabe Fierro, David E. Culler, Raluca Ada Popa The problem Authorization mechanisms

More information

Anonymity With material from: Dave Levin

Anonymity With material from: Dave Levin Anonymity With material from: Dave Levin http://www.sogosurvey.com/static/sogo_resp_images/tat_resp_images/designimg/guaranteed-anonymous-survey.png What is anonymity? Dining cryptographers Mixnets and

More information

Onion Routing. 1) Introduction. 2) Operations. by Harikrishnan S (M.Tech CSE) Ramji Nagariya (M.S CSE), Sai Sambhu J (M.Tech CSE).

Onion Routing. 1) Introduction. 2) Operations. by Harikrishnan S (M.Tech CSE) Ramji Nagariya (M.S CSE), Sai Sambhu J (M.Tech CSE). Onion Routing by Harikrishnan S (M.Tech CSE) Ramji Nagariya (M.S CSE), Sai Sambhu J (M.Tech CSE). 1) Introduction Onion routing is an infrastructure for private communication over a public network. Traffic

More information

arxiv: v3 [cs.cr] 2 Oct 2017

arxiv: v3 [cs.cr] 2 Oct 2017 Atom: Horizontally Scaling Strong Anonymity Albert Kwon MIT Henry Corrigan-Gibbs Stanford Srinivas Devadas MIT Bryan Ford EPFL arxiv:1612.07841v3 [cs.cr] 2 Oct 2017 Abstract Atom is an anonymous messaging

More information

Anonymous Communications

Anonymous Communications Anonymous Communications Andrew Lewman andrew@torproject.org December 05, 2012 Andrew Lewman andrew@torproject.org () Anonymous Communications December 05, 2012 1 / 45 Who is this guy? 501(c)(3) non-profit

More information

Using Chains for what They re Good For

Using Chains for what They re Good For Using Chains for what They re Good For Andrew Poelstra usingchainsfor@wpsoftware.net Scaling Bitcoin, November 5, 2017 1 / 14 On-Chain Smart Contracting Bitcoin (and Ethereum, etc.) uses a scripting language

More information

Anonymity. With material from: Dave Levin and Michelle Mazurek

Anonymity. With material from: Dave Levin and Michelle Mazurek http://www.sogosurvey.com/static/sogo_resp_images/tat_resp_images/designimg/guaranteed-anonymous-survey.png Anonymity With material from: Dave Levin and Michelle Mazurek What is anonymity? Dining cryptographers

More information

THE SECOND GENERATION ONION ROUTER. Roger Dingledine Nick Mathewson Paul Syverson. -Presented by Arindam Paul

THE SECOND GENERATION ONION ROUTER. Roger Dingledine Nick Mathewson Paul Syverson. -Presented by Arindam Paul THE SECOND GENERATION ONION ROUTER Roger Dingledine Nick Mathewson Paul Syverson 1 -Presented by Arindam Paul Menu Motivation: Why do we need Onion Routing? Introduction : What is TOR? Basic TOR Design

More information

MTAT Research Seminar in Cryptography Building a secure aggregation database

MTAT Research Seminar in Cryptography Building a secure aggregation database MTAT.07.006 Research Seminar in Cryptography Building a secure aggregation database Dan Bogdanov University of Tartu, Institute of Computer Science 22.10.2006 1 Introduction This paper starts by describing

More information

1 A Tale of Two Lovers

1 A Tale of Two Lovers CS 120/ E-177: Introduction to Cryptography Salil Vadhan and Alon Rosen Dec. 12, 2006 Lecture Notes 19 (expanded): Secure Two-Party Computation Recommended Reading. Goldreich Volume II 7.2.2, 7.3.2, 7.3.3.

More information

CPSC 467: Cryptography and Computer Security

CPSC 467: Cryptography and Computer Security CPSC 467: Cryptography and Computer Michael J. Fischer Lecture 4 September 11, 2017 CPSC 467, Lecture 4 1/23 Analyzing Confidentiality of Cryptosystems Secret ballot elections Information protection Adversaries

More information

Secure Multiparty Computation: Introduction. Ran Cohen (Tel Aviv University)

Secure Multiparty Computation: Introduction. Ran Cohen (Tel Aviv University) Secure Multiparty Computation: Introduction Ran Cohen (Tel Aviv University) Scenario 1: Private Dating Alice and Bob meet at a pub If both of them want to date together they will find out If Alice doesn

More information

Onion services. Philipp Winter Nov 30, 2015

Onion services. Philipp Winter Nov 30, 2015 Onion services Philipp Winter pwinter@cs.princeton.edu Nov 30, 2015 Quick introduction to Tor An overview of Tor Tor is a low-latency anonymity network Based on Syverson's onion routing......which is based

More information

Bitcoin, Security for Cloud & Big Data

Bitcoin, Security for Cloud & Big Data Bitcoin, Security for Cloud & Big Data CS 161: Computer Security Prof. David Wagner April 18, 2013 Bitcoin Public, distributed, peer-to-peer, hash-chained audit log of all transactions ( block chain ).

More information

Putting the P back in VPN: An Overlay Network to Resist Traffic Analysis

Putting the P back in VPN: An Overlay Network to Resist Traffic Analysis Putting the P back in VPN: An Overlay Network to Resist Traffic Analysis Roger Dingledine The Free Haven Project http://freehaven.net/ Black Hat 2004 July 29, 2004 Talk Outline Motivation: Why anonymous

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security CPSC 467b: Cryptography and Computer Security Instructor: Michael Fischer Lecture by Ewa Syta Lecture 25 April 18, 2012 CPSC 467b, Lecture 25 1/44 Anonymous Communication DISSENT- Accountable Anonymous

More information

CSE 484 / CSE M 584: Computer Security and Privacy. Anonymity Mobile. Autumn Tadayoshi (Yoshi) Kohno

CSE 484 / CSE M 584: Computer Security and Privacy. Anonymity Mobile. Autumn Tadayoshi (Yoshi) Kohno CSE 484 / CSE M 584: Computer Security and Privacy Anonymity Mobile Autumn 2018 Tadayoshi (Yoshi) Kohno yoshi@cs.washington.edu Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Ada Lerner, John Manferdelli,

More information

CSE 127: Computer Security Cryptography. Kirill Levchenko

CSE 127: Computer Security Cryptography. Kirill Levchenko CSE 127: Computer Security Cryptography Kirill Levchenko October 24, 2017 Motivation Two parties want to communicate securely Secrecy: No one else can read messages Integrity: messages cannot be modified

More information

Tor, a quick overview

Tor, a quick overview Tor, a quick overview Linus Nordberg The Tor Project https://torproject.org/ 1 What is Tor Online anonymity: 1. software, 2. network, 3. protocol Open source, freely available Community

More information

Privacy Enhancing Technologies CSE 701 Fall 2017

Privacy Enhancing Technologies CSE 701 Fall 2017 Privacy Enhancing Technologies Lecture 2: Anonymity Applications Department of Computer Science and Engineering University at Buffalo 1 Lecture Outline Anonymous communication mixes, anonymizing proxies,

More information

Secure Multi-Party Computation. Lecture 13

Secure Multi-Party Computation. Lecture 13 Secure Multi-Party Computation Lecture 13 Must We Trust? Can we have an auction without an auctioneer?! Declared winning bid should be correct Only the winner and winning bid should be revealed Using data

More information

Secure Multiparty Computation

Secure Multiparty Computation Secure Multiparty Computation Li Xiong CS573 Data Privacy and Security Outline Secure multiparty computation Problem and security definitions Basic cryptographic tools and general constructions Yao s Millionnare

More information

Anonymity. Assumption: If we know IP address, we know identity

Anonymity. Assumption: If we know IP address, we know identity 03--4 Anonymity Some degree of anonymity from using pseudonyms However, anonymity is always limited by address TCP will reveal your address address together with ISP cooperation Anonymity is broken We

More information

Introduction to Secure Multi-Party Computation

Introduction to Secure Multi-Party Computation Introduction to Secure Multi-Party Computation Many thanks to Vitaly Shmatikov of the University of Texas, Austin for providing these slides. slide 1 Motivation General framework for describing computation

More information

Design and Implementation of Privacy-Preserving Surveillance. Aaron Segal

Design and Implementation of Privacy-Preserving Surveillance. Aaron Segal 1 Design and Implementation of Privacy-Preserving Surveillance Aaron Segal Yale University May 11, 2016 Advisor: Joan Feigenbaum 2 Overview Introduction Surveillance and Privacy Privacy Principles for

More information

Analyzing Tor s Anonymity with Machine Learning. Sanjit Bhat, David Lu May 21 st, 2017 Mentor: Albert Kwon

Analyzing Tor s Anonymity with Machine Learning. Sanjit Bhat, David Lu May 21 st, 2017 Mentor: Albert Kwon Analyzing Tor s Anonymity with Machine Learning Sanjit Bhat, David Lu May 21 st, 2017 Mentor: Albert Kwon Acknowledgements Thank you to Albert Kwon for mentoring us Thank you to Prof. Srini Devadas for

More information

Anonymous Connections and Onion Routing

Anonymous Connections and Onion Routing Anonymous Connections and Onion Routing David Goldschlag, Michael Reed, and Paul Syverson Center for High Assurance Computer Systems Naval Research Laboratory Washington, D.C. 1 Who is Talking to Whom?

More information

Metrics for Security and Performance in Low-Latency Anonymity Systems

Metrics for Security and Performance in Low-Latency Anonymity Systems Metrics for Security and Performance in Low-Latency Anonymity Systems Tor user Entry node Tor Network Middle node Exit node Bandwidth per node (kb/s) (log scale) 1e+01 1e+03 1e+05 Encrypted tunnel Web

More information

Tor: The Second-Generation Onion Router. Roger Dingledine, Nick Mathewson, Paul Syverson

Tor: The Second-Generation Onion Router. Roger Dingledine, Nick Mathewson, Paul Syverson Tor: The Second-Generation Onion Router Roger Dingledine, Nick Mathewson, Paul Syverson Introduction Second Generation of Onion Routing Focus on deployability Perfect forward secrecy Separation of protocol

More information

I Know Where You are and What You are Sharing

I Know Where You are and What You are Sharing I Know Where You are and What You are Sharing Exploiting P2P Communications to Invade Users Privacy Stevens Le Blond, Chao Zhang, Arnaud Legout, Keith Ross, Walid Babbous CS558 Presentation Natasa Ntagianta

More information

Notes for Lecture 14

Notes for Lecture 14 COS 533: Advanced Cryptography Lecture 14 (November 6, 2017) Lecturer: Mark Zhandry Princeton University Scribe: Fermi Ma Notes for Lecture 14 1 Applications of Pairings 1.1 Recap Consider a bilinear e

More information

Dissent: Accountable Anonymous Group Communication

Dissent: Accountable Anonymous Group Communication Dissent: Accountable Anonymous Group Communication Bryan Ford Joan Feigenbaum, David Wolinsky, Henry Corrigan-Gibbs, Shu-Chun Weng, Ewa Syta Yale University Vitaly Shmatikov, Aaron Johnson University of

More information

1 Identification protocols

1 Identification protocols ISA 562: Information Security, Theory and Practice Lecture 4 1 Identification protocols Now that we know how to authenticate messages using MACs, a natural question is, how can we use MACs to prove that

More information

Scalable privacy-enhanced traffic monitoring in vehicular ad hoc networks

Scalable privacy-enhanced traffic monitoring in vehicular ad hoc networks Scalable privacy-enhanced traffic monitoring in vehicular ad hoc networks Yi Liu1,2,3 Jie Ling 1 Qianhong Wu4,6 Bo Qin5 Presented By Khaled Rabieh Introduction & Problem Statement In traffic monitoring

More information

CS573 Data Privacy and Security. Cryptographic Primitives and Secure Multiparty Computation. Li Xiong

CS573 Data Privacy and Security. Cryptographic Primitives and Secure Multiparty Computation. Li Xiong CS573 Data Privacy and Security Cryptographic Primitives and Secure Multiparty Computation Li Xiong Outline Cryptographic primitives Symmetric Encryption Public Key Encryption Secure Multiparty Computation

More information

SECRET SHARING SECRET SPLITTING

SECRET SHARING SECRET SPLITTING Clemens H. Cap Universität Rostock clemens.cap (at) uni-rostock (dot) de SECRET SHARING SECRET SPLITTING BaSoTI 2012, Tartu Anecdotal Problem Trent wants to give Alice and Bob access to the safe Trent

More information

Security (and finale) Dan Ports, CSEP 552

Security (and finale) Dan Ports, CSEP 552 Security (and finale) Dan Ports, CSEP 552 Today Security: what if parts of your distributed system are malicious? BFT: state machine replication Bitcoin: peer-to-peer currency Course wrap-up Security Too

More information

Anonymity and Privacy

Anonymity and Privacy Computer Security Spring 2008 Anonymity and Privacy Aggelos Kiayias University of Connecticut Anonymity in networks Anonymous Credentials Anonymous Payments Anonymous E-mail and Routing E-voting Group,

More information

Covert Channels Towards a Qual Project

Covert Channels Towards a Qual Project Covert Channels Towards a Qual Project Rachel Greenstadt Harvard University Covert Channels p.1/21 Overview About covert channels Example channel: TCP timestamps Problems with the example channel Directions

More information

Port-Scanning Resistance in Tor Anonymity Network. Presented By: Shane Pope Dec 04, 2009

Port-Scanning Resistance in Tor Anonymity Network. Presented By: Shane Pope Dec 04, 2009 Port-Scanning Resistance in Tor Anonymity Network Presented By: Shane Pope (Shane.M.Pope@gmail.com) Dec 04, 2009 In partial fulfillment of the requirements for graduation with the Dean's Scholars Honors

More information

Detecting Insider Attacks on Databases using Blockchains

Detecting Insider Attacks on Databases using Blockchains Detecting Insider Attacks on Databases using Blockchains Shubham Sharma, Rahul Gupta, Shubham Sahai Srivastava and Sandeep K. Shukla Department of Computer Science and Engineering Indian Institute of Technology,

More information

Securing Distributed Computation via Trusted Quorums. Yan Michalevsky, Valeria Nikolaenko, Dan Boneh

Securing Distributed Computation via Trusted Quorums. Yan Michalevsky, Valeria Nikolaenko, Dan Boneh Securing Distributed Computation via Trusted Quorums Yan Michalevsky, Valeria Nikolaenko, Dan Boneh Setting Distributed computation over data contributed by users Communication through a central party

More information

Detecting Denial of Service Attacks in Tor

Detecting Denial of Service Attacks in Tor Norman Danner Danny Krizanc Marc Liberatore Department of Mathematics and Computer Science Wesleyan University Middletown, CT 06459 USA Financial Cryptography and Data Security 2009 Outline 1 Background

More information

Chapter 13. Digital Cash. Information Security/System Security p. 570/626

Chapter 13. Digital Cash. Information Security/System Security p. 570/626 Chapter 13 Digital Cash Information Security/System Security p. 570/626 Introduction While cash is used in illegal activities such as bribing money laundering tax evasion it also protects privacy: not

More information

Exploring Timing Side-channel Attacks on Path-ORAMs

Exploring Timing Side-channel Attacks on Path-ORAMs Exploring Timing Side-channel Attacks on Path-ORAMs Chongxi Bao, and Ankur Srivastava Dept. of ECE, University of Maryland, College Park Email: {borisbcx, ankurs}@umd.edu Abstract In recent research, it

More information

Outline Key Management CS 239 Computer Security February 9, 2004

Outline Key Management CS 239 Computer Security February 9, 2004 Outline Key Management CS 239 Computer Security February 9, 2004 Properties of keys Key management Key servers Certificates Page 1 Page 2 Introduction Properties of Keys It doesn t matter how strong your

More information

Anonymity C S A D VA N C E D S E C U R I T Y TO P I C S P R E S E N TAT I O N BY: PA N AY I OTO U M A R KO S 4 T H O F A P R I L

Anonymity C S A D VA N C E D S E C U R I T Y TO P I C S P R E S E N TAT I O N BY: PA N AY I OTO U M A R KO S 4 T H O F A P R I L Anonymity C S 6 8 2 A D VA N C E D S E C U R I T Y TO P I C S P R E S E N TAT I O N BY: PA N AY I OTO U M A R KO S 4 T H O F A P R I L 2 0 1 9 Tor: The Second- Generation Onion Router R. DINGLEDINE N.

More information

Safely Measuring Tor. Rob Jansen U.S. Naval Research Laboratory Center for High Assurance Computer Systems

Safely Measuring Tor. Rob Jansen U.S. Naval Research Laboratory Center for High Assurance Computer Systems Safely Measuring Tor Safely Measuring Tor, Rob Jansen and Aaron Johnson, In the Proceedings of the 23rd ACM Conference on Computer and Communication Security (CCS 2016). Rob Jansen Center for High Assurance

More information

Towards Efficient Traffic-analysis Resistant Anonymity Networks

Towards Efficient Traffic-analysis Resistant Anonymity Networks Towards Efficient Traffic-analysis Resistant Anonymity Networks Stevens Le Blond 1 David Choffnes 2 Wenxuan Zhou 3 Peter Druschel 1 Hitesh Ballani 4 Paul Francis 1 1 MPI-SWS 2 Univ. of Washington/ 3 UIUC

More information

CSCI 5440: Cryptography Lecture 5 The Chinese University of Hong Kong, Spring and 6 February 2018

CSCI 5440: Cryptography Lecture 5 The Chinese University of Hong Kong, Spring and 6 February 2018 CSCI 5440: Cryptography Lecture 5 The Chinese University of Hong Kong, Spring 2018 5 and 6 February 2018 Identification schemes are mechanisms for Alice to prove her identity to Bob They comprise a setup

More information

Maintaining the Anonymity of Direct Anonymous Attestation with Subverted Platforms MIT PRIMES Computer Science Conference October 13, 2018

Maintaining the Anonymity of Direct Anonymous Attestation with Subverted Platforms MIT PRIMES Computer Science Conference October 13, 2018 Maintaining the Anonymity of Direct Anonymous Attestation with Subverted Platforms MIT PRIMES Computer Science Conference October 13, 2018 By: Ethan Mendes and Patrick Zhang Mentor: Kyle Hogan What is

More information

Secure Multiparty Computation

Secure Multiparty Computation CS573 Data Privacy and Security Secure Multiparty Computation Problem and security definitions Li Xiong Outline Cryptographic primitives Symmetric Encryption Public Key Encryption Secure Multiparty Computation

More information

The SD-WAN security guide

The SD-WAN security guide The SD-WAN security guide How a flexible, software-defined WAN can help protect your network, people and data SD-WAN security: Separating fact from fiction For many companies, the benefits of SD-WAN are

More information

Cryptography. Andreas Hülsing. 6 September 2016

Cryptography. Andreas Hülsing. 6 September 2016 Cryptography Andreas Hülsing 6 September 2016 1 / 21 Announcements Homepage: http: //www.hyperelliptic.org/tanja/teaching/crypto16/ Lecture is recorded First row might be on recordings. Anything organizational:

More information

Practical Anonymity for the Masses with MorphMix

Practical Anonymity for the Masses with MorphMix Practical Anonymity for the Masses with MorphMix Marc Rennhard, Bernhard Plattner () Financial Cryptography 2004 12 th February 2004 http://www.tik.ee.ethz.ch/~morphmix Overview Circuit-based mix networks

More information

Security from the Inside

Security from the Inside Security from the Inside Detect, Record, and Eliminate Malicious User Behavior 24/7 live screen recording & playback Automatically allow or block any activity Real-time user activity tracking Rule-based

More information

Crowds Anonymous Web Transactions. Why anonymity?

Crowds Anonymous Web Transactions. Why anonymity? Why anonymity? The web contains a wealth of information on topics that you might want to explore privately Support groups victims of crime private health concerns Job search don t want to inform current

More information

UnLinked: Private Proximity-Based Offline OSN Interaction

UnLinked: Private Proximity-Based Offline OSN Interaction UnLinked: Private Proximity-Based Offline OSN Interaction G. Tsudik (CS@UCI) Joint work with R. Petrlic (Saarbruecken) and S. Faber (UCI) 1 Privacy in Social Networks Stylometry Cryptographic techniques

More information

CONIKS: Bringing Key Transparency to End Users

CONIKS: Bringing Key Transparency to End Users CONIKS: Bringing Key Transparency to End Users Morris Yau 1 Introduction Public keys must be distributed securely even in the presence of attackers. This is known as the Public Key Infrastructure problem

More information

CRYPTOGRAPHIC PROTOCOLS: PRACTICAL REVOCATION AND KEY ROTATION

CRYPTOGRAPHIC PROTOCOLS: PRACTICAL REVOCATION AND KEY ROTATION #RSAC SESSION ID: CRYP-W04 CRYPTOGRAPHIC PROTOCOLS: PRACTICAL REVOCATION AND KEY ROTATION Adam Shull Recent Ph.D. Graduate Indiana University Access revocation on the cloud #RSAC sk sk Enc Pub Sym pk k

More information

Mixminion: Design of a Type III Anonymous R er Protocol

Mixminion: Design of a Type III Anonymous R er Protocol Mixminion: Design of a Type III Anonymous Remailer Protocol George Danezis University of Cambridge george.danezis@cl.cam.ac.uk Roger Dingledine and Nick Mathewson The Free Haven Project farma,nickmg@freehaven.net

More information

Failure models. Byzantine Fault Tolerance. What can go wrong? Paxos is fail-stop tolerant. BFT model. BFT replication 5/25/18

Failure models. Byzantine Fault Tolerance. What can go wrong? Paxos is fail-stop tolerant. BFT model. BFT replication 5/25/18 Failure models Byzantine Fault Tolerance Fail-stop: nodes either execute the protocol correctly or just stop Byzantine failures: nodes can behave in any arbitrary way Send illegal messages, try to trick

More information

Activity Guide - Public Key Cryptography

Activity Guide - Public Key Cryptography Unit 2 Lesson 19 Name(s) Period Date Activity Guide - Public Key Cryptography Introduction This activity is similar to the cups and beans encryption we did in a previous lesson. However, instead of using

More information

Tor: Online anonymity, privacy, and security.

Tor: Online anonymity, privacy, and security. Tor: Online anonymity, privacy, and security. Runa A. Sandvik runa@torproject.org 12 September 2011 Runa A. Sandvik runa@torproject.org () Tor: Online anonymity, privacy, and security. 12 September 2011

More information

Anonymity and censorship circumvention with Tor

Anonymity and censorship circumvention with Tor Anonymity and censorship circumvention with Tor Lunar July 8th, 2013 LSM2013, Brussels What is this Tor thing? Tor helps people Estimated 500,000 daily Tor users cf. https://metrics.torproject.org/users.html

More information

Tor Hidden Services. Roger Dingledine Free Haven Project Electronic Frontier Foundation.

Tor Hidden Services. Roger Dingledine Free Haven Project Electronic Frontier Foundation. Tor Hidden Services Roger Dingledine Free Haven Project Electronic Frontier Foundation http://tor.eff.org/ 31 July 2005 Talk Outline Tor overview Circuit-building in Tor Hidden services in Tor Demo Anonymity

More information

Onion Routing. Varun Pandey Dept. of Computer Science, Virginia Tech. CS 6204, Spring

Onion Routing. Varun Pandey Dept. of Computer Science, Virginia Tech. CS 6204, Spring Onion Routing Varun Pandey Dept. of Computer Science, Virginia Tech 1 What is Onion Routing? a distributed overlay network to anonymize TCP based routing Circuit based (clients choose the circuit) Each

More information

Blum-Blum-Shub cryptosystem and generator. Blum-Blum-Shub cryptosystem and generator

Blum-Blum-Shub cryptosystem and generator. Blum-Blum-Shub cryptosystem and generator BBS encryption scheme A prime p is called a Blum prime if p mod 4 = 3. ALGORITHM Alice, the recipient, makes her BBS key as follows: BBS encryption scheme A prime p is called a Blum prime if p mod 4 =

More information