Second-Order Polynomial Approximation

Size: px
Start display at page:

Download "Second-Order Polynomial Approximation"

Transcription

1 > with(plots): Warning, the name changecoords has been redefined M:8 Spring 7 J. Simon Second-Order Polynomial Approimation In Calc I or II, you studied Taylor polynomial approimations. If y=f() is some function, and the function f is smooth, we can write polynomials P() that approimate f near a given point =a with high accuracy. The idea is to find a polynomial P() such that P(a) = f(a) There is a -degree polynomial, namely P() = f(a) for all, that does this. P'(a) = f'(a) There is a st degree polynomial that has P(a)=f(a) and P'(a)=f'(a), namely P() = f(a) + f'(a)(-a) P''(a) = f''(a) There is a nd degree polynomial that has P(a)=f(a) AND P'(a)=f'(a) AND P''(a) = f''(a), namely etc. P() = f(a) + f'(a)(-a) + (/) f''(a)(-a)^. For any given n (assuming f is smooth enough around =a that all the needed derivatives eist), we can write a polynomial P_n() = f(a) + f'(a)(-a) + (/) f''(a)(-a)^ + (/3!) f'''(a) (-a)^ (/n!) f^(n)(a) (-a)^n where f^(n)(a) denotes the nth derivative of f at point =a. There are (at least) two important uses for Taylor polynomial approimations:. In computers and calculators, we need to have algorithms for computing values of functions such as ep(), sin(), log() --- how can a machine that only knows how to add, subtract, multiply, and divide numbers ever know how to calculate sin()?? The actual algorithms may be fancier, but you could write a 3rd degree polynomial approimation of the sine function, using your knowledge of sine and cosine at =, and get an estimate for sin(). > p8:=series(sin(), =, 8); p8 := O 8 ( ) > P8:=convert(p8,polynom); > subs(=,p8);evalf(%); P8 := > sin();evalf(%);

2 sin( ) In theoretical analysis of ma/min problems, you developed the "second derivative test" for deciding (in many situations) whether a critical point of a function f represents a local maimum vs. local minimum vs. saddle point. The key here is that the second-order Taylor polynomial approimation of f() near =critical point "a" will capture BOTH phenomena of having "a" be a critical point and will have the same ma vs min behavior as f. Eamples: > f:=cos(); > f:=subs(=,f); > df:=diff(f,); f := cos( ) f := cos( ) df := -sin( ) > df:=subs(=,df);df:=value(df); df := -sin( ) df := > df:=diff(df,); df := -cos( ) > df:=subs(=,df);df:=value(df); df := -cos( ) df := - > p:=f+df* + df*^/; p := - > plot({f, p}, =-4..4, thickness=, view=[-4..4, ], scaling=constrained);

3 (Remark: In the case of a saddle-point, the second derivative will be, and the quadratic Taylor polynomial will be the same as the st degree polynomial, just a line tangent to the graph of f. ########################################## There is a similar theory of Taylor polynomials for functions of several variables. Consider the following function, near the point (,y)=(,) > f:=cos()*ln(+y); f := cos( ) ln( + y) > plot3d(f, =-..3, y=..3, aes=boed, orientation=[54,75]);

4 y > :=;y:=; > f:=subs(=, y=y,f); > df:=diff(f,); > df:=subs(=,y=y,df); > dfy:=diff(f,y); := y := f := cos( ) ln( 3) df := -sin( ) ln( + y) df := -sin( ) ln( 3) dfy := cos( ) + y > dfy:=subs(=,y=y,dfy);

5 dfy := 3 cos( ) > df:=diff(df,); > df:=subs(=,y=y,df); > dfy:=diff(dfy,y); > dfy:=subs(=,y=y,dfy); df := -cos( ) ln( + y) df := -cos( ) ln( 3) dfy := - cos( ) ( + y) dfy := - 9 cos( ) > dfy:=diff(df,y); > dfy:=diff(dfy,); dfy := - sin( ) + y dfy := - sin( ) + y Notice these last two are equal, which we epect; but it is nice to have the reassuring calculation. > dfy:=subs(=,y=y,dfy); dfy := - 3 sin( ) > P:=f+df*(-)+dfy*(y-)+(/)*df*(-)^ + dfy*(-)*(y-)+(/)*dfy*(y-)^;p:=evalf(p);p:=evalf(epand(p)) ; P := cos( ) ln( 3) - sin( ) ln( 3) ( - ) + 3 cos( ) ( y - ) - cos( ) ln( 3) ( - ) - 3 sin( ) ( - ) ( y - ) - 8 cos( ) ( y - ) P := y ( -. ) ( -. ) ( y -. ) ( y -. ) P := y y y > plot3d(p, =-..3, y=..3, aes=boed, orientation=[54,75]);

6 y The function P is "just" a quadratic in and y, so the graph should be recognizable as a paraboloid or a saddle surface. To see the overall shape better, let's re-plot the graph with a larger range of values of and y. > plot3d(p, =-5..5, y=-5..5, aes=boed, orientation=[54,75], color=proc(,y) abs() end proc);

7 y So we see the graph is a saddle surface. Now let's see how the graph of P fits with the graph of f. > plot3d([f, P], =-..3, y=..3, aes=boed, orientation=[54,75], color=[blue, pink]);

8 y It is hard to see how the two surfaces relate near the point (,). So let's redraw the graphs, with ranges of and y limited to near (,). > plot3d([f, P], =.5...5, y=.5...5, aes=boed, orientation=[54,75], color=[blue, pink]);

9 y Now we can see that near the point (,), the graph z=f(,y) and the graph z=p(,y) are nearly identical. ########################################## ########################################## Here is a second eample. Consider the following function, near the point (,y)=(,) > f:=sin()+cos(+y); f := sin( ) + cos( + y)

10 > plot3d(f, =..5, y=..7, aes=boed, orientation=[8,83]); y We will select the point (, y) to be where we think the graph has a local maimum (more on this later in the chapter...) > df:=diff(f,); > dfy:=diff(f,y); df := cos( ) - sin( + y) dfy := -sin( + y) We want to find where both partial derivatives are zero; from the picture, we think there is such a "critical point" near =, y=5. The command "fsolve" tells Maple to numerically solve one or more equations, and we can tell it roughly were to look (in case there are other solutions far away from where we want to look). > fsolve({df=,dfy=}, {=,y=5}); { = , y = } Actually, we can solve these equations eactly. The second equation says sin(+y)=. But then the first equation says cos()=. For near, this says =Pi/. So sin(+y)= says "Pi/ + y = some whole multiple of Pi, i.e. y=some odd multiple of Pi/. For y near 5, this says y=3*pi/.

11 > :=Pi/;evalf(); := π > y:=3*pi/; evalf(y); y := 3 π > f:=subs(=, y=y,f); æ f := sinç è π ö ø + cos( π) > df:=diff(f,); df := cos( ) - sin( + y) > df:=subs(=,y=y,df);df:=value(df); æ df := cosç π ö - sin( π) è ø df := > dfy:=diff(f,y); dfy := -sin( + y) > dfy:=subs(=,y=y,dfy);dfy:=value(dfy); dfy := -sin( π) dfy := > df:=diff(df,); df := -sin( ) - cos( + y) > df:=subs(=,y=y,df);df:=evalf(df); æ df := -sinç π ö - cos( π) è ø df := -. > dfy:=diff(dfy,y); dfy := -cos( + y) > dfy:=subs(=,y=y,dfy);dfy:=value(dfy); dfy := -cos( π) > dfy:=diff(df,y); dfy := -

12 dfy := -cos( + y) > dfy:=diff(dfy,); dfy := -cos( + y) Notice these last two are equal, which we epect; but it is nice to have the reassuring calculation. > dfy:=subs(=,y=y,dfy);dfy:=value(dfy); dfy := -cos( π) dfy := - > P:=f+df*(-)+dfy*(y-y)+(/)*df*(-)^ + dfy*(-)*(y-y)+(/)*dfy*(y-y)^;p:=value(epand(p));p:=evalf( P); P := -. æ ç è - π ö æ - ç - ø π ö è ø æ ç è y - 3 π ö ø - æ ç è y - 3 π ö ø P := π -.5 π - y + π y - y P := y y -.5 y > plot3d(p, =..5, y=..7, aes=boed, orientation=[54,75]);

13 y The function P is "just" a quadratic in and y, so the graph should be recognizable as a paraboloid or a saddle surface. To see the overall shape better, let's re-plot the graph with a larger range of values of and y. > plot3d(p, =-5..9, y=-3.., aes=boed, orientation=[63,75], color=pink);

14 y - -4 The graph is a paraboloid, concave down. Now let's see how the two graphs "snuggle" together near the point (, y). > plot3d([f,p], =-3..+3, y=y-3..y+3, color=[blue, pink], view=[..5,..7, ], aes=boed, orientation=[,68]);

15 y > plot3d([f,p], =-..+, y=y-..y+, color=[blue, pink],orientation=[68,79] );

16 ######## End of handout #########

Examples of Linear Approximation

Examples of Linear Approximation M28Spring07 J. Simon Examples of Linear Approximation Here are several examples of using derivatives to find the "best" linear [I'd rather say "affine", but the text says "linear"] approximation to a given

More information

Graph Sketching. Review: 1) Interval Notation. Set Notation Interval Notation Set Notation Interval Notation. 2) Solving Inequalities

Graph Sketching. Review: 1) Interval Notation. Set Notation Interval Notation Set Notation Interval Notation. 2) Solving Inequalities Lesson. Graph Sketching Review: ) Interval Notation Set Notation Interval Notation Set Notation Interval Notation a) { R / < < 5} b) I (, 3) ( 3, ) c){ R} d) I (, ] (0, ) e){ R / > 5} f) I [ 3,5) ) Solving

More information

Section 4.1 Max and Min Values

Section 4.1 Max and Min Values Page 1 of 5 Section 4.1 Ma and Min Values Horizontal Tangents: We have looked at graphs and identified horizontal tangents, or places where the slope of the tangent line is zero. Q: For which values does

More information

13.4 TANGENT PLANES and DIFFERENTIALS

13.4 TANGENT PLANES and DIFFERENTIALS 3.4 Tangent Planes and Differentials Contemporar Calculus 3.4 TANGENT PLANES and DIFFERENTIALS In Section.8 we were able to use the derivative f ' of a function = f() of one variable to find the equation

More information

Sections 4.3, 4.5 & 4.6: Graphing

Sections 4.3, 4.5 & 4.6: Graphing Sections 4.3, 4.5 & 4.6: Graphing In this section, we shall see how facts about f () and f () can be used to supply useful information about the graph of f(). Since there are three sections devoted to

More information

LECTURE 18 - OPTIMIZATION

LECTURE 18 - OPTIMIZATION LECTURE 18 - OPTIMIZATION CHRIS JOHNSON Abstract. In this lecture we ll describe extend the optimization techniques you learned in your first semester calculus class to optimize functions of multiple variables.

More information

Transformations Review

Transformations Review Transformations Review 1. Plot the original figure then graph the image of Rotate 90 counterclockwise about the origin. 2. Plot the original figure then graph the image of Translate 3 units left and 4

More information

TABLE OF CONTENTS CHAPTER 1 LIMIT AND CONTINUITY... 26

TABLE OF CONTENTS CHAPTER 1 LIMIT AND CONTINUITY... 26 TABLE OF CONTENTS CHAPTER LIMIT AND CONTINUITY... LECTURE 0- BASIC ALGEBRAIC EXPRESSIONS AND SOLVING EQUATIONS... LECTURE 0- INTRODUCTION TO FUNCTIONS... 9 LECTURE 0- EXPONENTIAL AND LOGARITHMIC FUNCTIONS...

More information

4 Using The Derivative

4 Using The Derivative 4 Using The Derivative 4.1 Local Maima and Minima * Local Maima and Minima Suppose p is a point in the domain of f : f has a local minimum at p if f (p) is less than or equal to the values of f for points

More information

EXPLORING RATIONAL FUNCTIONS GRAPHICALLY

EXPLORING RATIONAL FUNCTIONS GRAPHICALLY EXPLORING RATIONAL FUNCTIONS GRAPHICALLY Precalculus Project Objectives: To find patterns in the graphs of rational functions. To construct a rational function using its properties. Required Information:

More information

Fourier Series. Period 2π over the interval [ π, π]. > > restart:with(plots): Warning, the name changecoords has been redefined

Fourier Series. Period 2π over the interval [ π, π]. > > restart:with(plots): Warning, the name changecoords has been redefined > Fourier Series Period 2 over the interval [, ]. > > restart:with(plots): Warning, the name changecoords has been redefined We begin by considering the function > f:=piecewise(x

More information

An Introduction to Maple This lab is adapted from a lab created by Bob Milnikel.

An Introduction to Maple This lab is adapted from a lab created by Bob Milnikel. Some quick tips for getting started with Maple: An Introduction to Maple This lab is adapted from a lab created by Bob Milnikel. [Even before we start, take note of the distinction between Tet mode and

More information

Lesson 3: Solving Equations; Floating-point Computation

Lesson 3: Solving Equations; Floating-point Computation Lesson 3: Solving Equations; Floating-point Computation restart; A hard equation Last time we were looking at this equation. eq := * sin() = Pi/2; (1.1) Maple didn't know the solutions. solve(eq,,allsolutions);

More information

PRACTICE FINAL - MATH 1210, Spring 2012 CHAPTER 1

PRACTICE FINAL - MATH 1210, Spring 2012 CHAPTER 1 PRACTICE FINAL - MATH 2, Spring 22 The Final will have more material from Chapter 4 than other chapters. To study for chapters -3 you should review the old practice eams IN ADDITION TO what appears here.

More information

Section 4.2 selected answers Math 131 Multivariate Calculus D Joyce, Spring 2014

Section 4.2 selected answers Math 131 Multivariate Calculus D Joyce, Spring 2014 4. Determine the nature of the critical points of Section 4. selected answers Math 11 Multivariate Calculus D Joyce, Spring 014 Exercises from section 4.: 6, 1 16.. Determine the nature of the critical

More information

Unconstrained and Constrained Optimization

Unconstrained and Constrained Optimization Unconstrained and Constrained Optimization Agenda General Ideas of Optimization Interpreting the First Derivative Interpreting the Second Derivative Unconstrained Optimization Constrained Optimization

More information

Daily WeBWorK, #1. This means the two planes normal vectors must be multiples of each other.

Daily WeBWorK, #1. This means the two planes normal vectors must be multiples of each other. Daily WeBWorK, #1 Consider the ellipsoid x 2 + 3y 2 + z 2 = 11. Find all the points where the tangent plane to this ellipsoid is parallel to the plane 2x + 3y + 2z = 0. In order for the plane tangent to

More information

MATH 1A MIDTERM 1 (8 AM VERSION) SOLUTION. (Last edited October 18, 2013 at 5:06pm.) lim

MATH 1A MIDTERM 1 (8 AM VERSION) SOLUTION. (Last edited October 18, 2013 at 5:06pm.) lim MATH A MIDTERM (8 AM VERSION) SOLUTION (Last edited October 8, 03 at 5:06pm.) Problem. (i) State the Squeeze Theorem. (ii) Prove the Squeeze Theorem. (iii) Using a carefully justified application of the

More information

Derivatives. Day 8 - Tangents and Linearizations

Derivatives. Day 8 - Tangents and Linearizations Derivatives Day 8 - Tangents and Linearizations Learning Objectives Write an equation for the tangent line to a graph Write an equation for the normal line to a graph Find the locations of horizontal and

More information

Practice with Parameterizing Curves and Surfaces. (Part 1)

Practice with Parameterizing Curves and Surfaces. (Part 1) M:8 Spring 7 J. Simon Practice with Parameterizing Curves and Surfaces (Part ) A "parameter" is a number used to measure something. In particular, if we want to describe and analyzie some curve or surface

More information

Finding local maxima and minima for functions z=f(x,y) [the cookbook]

Finding local maxima and minima for functions z=f(x,y) [the cookbook] 22M:28 Spring 7 J. Simon Finding local maxima and minima for functions z=f(x,y) [the cookbook] with(plots): I want very much for you to understand all the math that goes in to the process of finding points

More information

Lesson 24: Taylor series

Lesson 24: Taylor series Lesson 24: Taylor series restart; Finding Taylor series As we saw last time, Maple has the taylor command to find a given number of terms of a Taylor series of an epression. taylor((ep()-1-)/^2, ); But

More information

Mth Test 3 Review Stewart 8e Chapter 4. For Test #3 study these problems, the examples in your notes, and the homework.

Mth Test 3 Review Stewart 8e Chapter 4. For Test #3 study these problems, the examples in your notes, and the homework. For Test #3 study these problems, the eamples in your notes, and the homework. I. Absolute Etrema A function, continuous on a closed interval, always has an absolute maimum and absolute minimum. They occur

More information

SL1Trig.notebook April 06, 2013

SL1Trig.notebook April 06, 2013 Unit plan on website has HW assignments for these chapters. 1 Right Angle Trig - Review Geogebra Sketch to Explore 2 Lots of theories about where 360 degrees came from. The Babylonians has a base 60 number

More information

Precalculus Notes Unit 1 Day 1

Precalculus Notes Unit 1 Day 1 Precalculus Notes Unit Day Rules For Domain: When the domain is not specified, it consists of (all real numbers) for which the corresponding values in the range are also real numbers.. If is in the numerator

More information

Linear Transformations

Linear Transformations Linear Transformations The two basic vector operations are addition and scaling From this perspective, the nicest functions are those which preserve these operations: Def: A linear transformation is a

More information

Section Graphs of the Sine and Cosine Functions

Section Graphs of the Sine and Cosine Functions Section 5. - Graphs of the Sine and Cosine Functions In this section, we will graph the basic sine function and the basic cosine function and then graph other sine and cosine functions using transformations.

More information

Basic Calculator Functions

Basic Calculator Functions Algebra I Common Graphing Calculator Directions Name Date Throughout our course, we have used the graphing calculator to help us graph functions and perform a variety of calculations. The graphing calculator

More information

C1M0 Introduction to Maple Assignment Format C1M1 C1M1 Midn John Doe Section 1234 Beginning Maple Syntax any

C1M0 Introduction to Maple Assignment Format C1M1 C1M1 Midn John Doe Section 1234 Beginning Maple Syntax any CM0 Introduction to Maple Our discussion will focus on Maple 6, which was developed by Waterloo Maple Inc. in Waterloo, Ontario, Canada. Quoting from the Maple 6 Learning Guide, Maple is a Symbolic Computation

More information

Downloaded from

Downloaded from 1 Class XI: Math Chapter 13: Limits and Derivatives Chapter Notes Key-Concepts 1. The epected value of the function as dictated by the points to the left of a point defines the left hand it of the function

More information

Getting a New Perspective

Getting a New Perspective Section 6.3 Polar Coordinates Getting a New Perspective We have worked etensively in the Cartesian coordinate system, plotting points, graphing equations, and using the properties of the Cartesian plane

More information

MATH STUDENT BOOK. 12th Grade Unit 7

MATH STUDENT BOOK. 12th Grade Unit 7 MATH STUDENT BOOK 1th Grade Unit 7 Unit 7 POLAR COORDINATES MATH 107 POLAR COORDINATES INTRODUCTION 1. POLAR EQUATIONS 5 INTRODUCTION TO POLAR COORDINATES 5 POLAR EQUATIONS 1 POLAR CURVES 19 POLAR FORMS

More information

Introduction to Classic Maple by David Maslanka

Introduction to Classic Maple by David Maslanka Introduction to Classic Maple by David Maslanka Maple is a computer algebra system designed to do mathematics. Symbolic, numerical and graphical computations can all be done with Maple. Maple's treatment

More information

MCS 118 Quiz 1. Fall (5pts) Solve the following equations for x. 7x 2 = 4x x 2 5x = 2

MCS 118 Quiz 1. Fall (5pts) Solve the following equations for x. 7x 2 = 4x x 2 5x = 2 MCS 8 Quiz Fall 6. (5pts) Solve the following equations for. 7 = 4 + 3. (5pts) Solve the following equations for. 3 5 = 3. (5pts) Factor 3 + 35 as much as possible. 4. (5pts) Simplify +. 5. (5pts) Solve

More information

Calculus I (part 1): Limits and Continuity (by Evan Dummit, 2016, v. 2.01)

Calculus I (part 1): Limits and Continuity (by Evan Dummit, 2016, v. 2.01) Calculus I (part ): Limits and Continuity (by Evan Dummit, 206, v. 2.0) Contents Limits and Continuity. Limits (Informally)...............................................2 Limits and the Limit Laws..........................................

More information

This handout will discuss three kinds of asymptotes: vertical, horizontal, and slant.

This handout will discuss three kinds of asymptotes: vertical, horizontal, and slant. CURVE SKETCHING This is a handout that will help you systematically sketch functions on a coordinate plane. This handout also contains definitions of relevant terms needed for curve sketching. ASYMPTOTES:

More information

Learning Packet. Lesson 6 Exponents and Rational Functions THIS BOX FOR INSTRUCTOR GRADING USE ONLY

Learning Packet. Lesson 6 Exponents and Rational Functions THIS BOX FOR INSTRUCTOR GRADING USE ONLY Learning Packet Student Name Due Date Class Time/Day Submission Date THIS BOX FOR INSTRUCTOR GRADING USE ONLY Mini-Lesson is complete and information presented is as found on media links (0 5 pts) Comments:

More information

Answers to Worksheet 5, Math 272

Answers to Worksheet 5, Math 272 Answers to Worksheet 5, Math 7 1. Calculate the directional derivative of the function f(, y, z) = cos y sin z at the point a = (1, π/, 5π/6) in the direction u = (3, 0, 1). The gradient of f at a is (

More information

ABSOLUTE EXTREMA AND THE MEAN VALUE THEOREM

ABSOLUTE EXTREMA AND THE MEAN VALUE THEOREM 61 LESSON 4-1 ABSOLUTE EXTREMA AND THE MEAN VALUE THEOREM Definitions (informal) The absolute maimum (global maimum) of a function is the -value that is greater than or equal to all other -values in the

More information

The directional derivative of f x, y in the direction of at x, y u. f x sa y sb f x y (, ) (, ) 0 0 y 0 0

The directional derivative of f x, y in the direction of at x, y u. f x sa y sb f x y (, ) (, ) 0 0 y 0 0 Review: 0, lim D f u 0 0 0 0 u The directional derivative of f, in the direction of at, is denoted b D f, : u a, b must a unit vector u f sa sb f s 0 (, ) (, ) s f (, ) a f (, ) b 0 0 0 0 0 0 D f, f u

More information

Limits. f(x) and lim. g(x) g(x)

Limits. f(x) and lim. g(x) g(x) Limits Limit Laws Suppose c is constant, n is a positive integer, and f() and g() both eist. Then,. [f() + g()] = f() + g() 2. [f() g()] = f() g() [ ] 3. [c f()] = c f() [ ] [ ] 4. [f() g()] = f() g()

More information

The Sine and Cosine Functions

The Sine and Cosine Functions Lesson -5 Lesson -5 The Sine and Cosine Functions Vocabular BIG IDEA The values of cos and sin determine functions with equations = sin and = cos whose domain is the set of all real numbers. From the eact

More information

10 Academic Date: Enter this equation into in DESMOS. Adjust your screen to show the scales like they are shown in the grid below.

10 Academic Date: Enter this equation into in DESMOS. Adjust your screen to show the scales like they are shown in the grid below. Academic Date: Open: DESMOS Graphing Calculator Task : Let s Review Linear Relationships Bill Bob s dog is out for a walk. The equation to model its distance awa from the house, d metres, after t seconds

More information

2.2 Limit of a Function and Limit Laws

2.2 Limit of a Function and Limit Laws Limit of a Function and Limit Laws Section Notes Page Let s look at the graph y What is y()? That s right, its undefined, but what if we wanted to find the y value the graph is approaching as we get close

More information

Animation Curves and Splines 2

Animation Curves and Splines 2 Animation Curves and Splines 2 Animation Homework Set up Thursday a simple avatar E.g. cube/sphere (or square/circle if 2D) Specify some key frames (positions/orientations) Associate Animation a time with

More information

Welcome. Please Sign-In

Welcome. Please Sign-In Welcome Please Sign-In Day 1 Session 1 Self-Evaluation Topics to be covered: Equations Systems of Equations Solving Inequalities Absolute Value Equations Equations Equations An equation says two things

More information

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives In general, if f is a function of two variables x and y, suppose we let only x vary while keeping y fixed, say y = b, where b is a constant. By the definition of a derivative, we have Then we are really

More information

Topic 2.3: Tangent Planes, Differentiability, and Linear Approximations. Textbook: Section 14.4

Topic 2.3: Tangent Planes, Differentiability, and Linear Approximations. Textbook: Section 14.4 Topic 2.3: Tangent Planes, Differentiability, and Linear Approximations Textbook: Section 14.4 Warm-Up: Graph the Cone & the Paraboloid paraboloid f (x, y) = x 2 + y 2 cone g(x, y) = x 2 + y 2 Do you notice

More information

Worksheet 2.7: Critical Points, Local Extrema, and the Second Derivative Test

Worksheet 2.7: Critical Points, Local Extrema, and the Second Derivative Test Boise State Math 275 (Ultman) Worksheet 2.7: Critical Points, Local Extrema, and the Second Derivative Test From the Toolbox (what you need from previous classes) Algebra: Solving systems of two equations

More information

The Quadratic function f(x) = x 2 2x 3. y y = x 2 2x 3. We will now begin to study the graphs of the trig functions, y = sinx, y = cosx and y = tanx.

The Quadratic function f(x) = x 2 2x 3. y y = x 2 2x 3. We will now begin to study the graphs of the trig functions, y = sinx, y = cosx and y = tanx. Chapter 7 Trigonometric Graphs Introduction We have alread looked at the graphs of various functions : The Linear function f() = The Quadratic function f() = The Hperbolic function f() = = = = We will

More information

Section 2.5: Continuity

Section 2.5: Continuity Section 2.5: Continuity 1. The Definition of Continuity We start with a naive definition of continuity. Definition 1.1. We say a function f() is continuous if we can draw its graph without lifting out

More information

Math 2A Vector Calculus Chapter 11 Test Fall 07 Name Show your work. Don t use a calculator. Write responses on separate paper.

Math 2A Vector Calculus Chapter 11 Test Fall 07 Name Show your work. Don t use a calculator. Write responses on separate paper. Math A Vector Calculus Chapter Test Fall 7 Name Show our work. Don t use a calculator. Write responses on separate paper.. Consider the nice, smooth unction z, whose contour map is shown at right. a. Estimate

More information

3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers

3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers 3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers Prof. Tesler Math 20C Fall 2018 Prof. Tesler 3.3 3.4 Optimization Math 20C / Fall 2018 1 / 56 Optimizing y = f (x) In Math 20A, we

More information

13.6 Directional derivatives,

13.6 Directional derivatives, 13.5 The chain rule Theorem [Chain Rule for Functions of Two Variables] If w = f ( x, y ) is differentiable and x and y are differentiable functions of t, then w is a differentiable function of t and dw

More information

TI-89 Clinic. Let s first set up our calculators so that we re all working in the same mode.

TI-89 Clinic. Let s first set up our calculators so that we re all working in the same mode. TI-89 Clinic Preliminaries Let s first set up our calculators so that we re all working in the same mode. From the home screen, select F6 new problem. Hit enter to eecute that command. This erases previous

More information

Math12 Pre-Calc Review - Trig

Math12 Pre-Calc Review - Trig Math1 Pre-Calc Review - Trig Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following angles, in degrees, is coterminal with, but not equal

More information

MATH STUDENT BOOK. 12th Grade Unit 4

MATH STUDENT BOOK. 12th Grade Unit 4 MATH STUDENT BOOK th Grade Unit Unit GRAPHING AND INVERSE FUNCTIONS MATH 0 GRAPHING AND INVERSE FUNCTIONS INTRODUCTION. GRAPHING 5 GRAPHING AND AMPLITUDE 5 PERIOD AND FREQUENCY VERTICAL AND HORIZONTAL

More information

NOTES: ALGEBRA FUNCTION NOTATION

NOTES: ALGEBRA FUNCTION NOTATION STARTER: 1. Graph f by completing the table. f, y -1 0 1 4 5 NOTES: ALGEBRA 4.1 FUNCTION NOTATION y. Graph f 4 4 f 4 4, y --5-4 - - -1 0 1 y A Brief Review of Function Notation We will be using function

More information

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is 1. Let f(x, y) = 5 + 3x 2 + 3y 2 + 2y 3 + x 3. (a) Final all critical points of f. (b) Use the second derivatives test to classify the critical points you found in (a) as a local maximum, local minimum,

More information

Derivatives 3: The Derivative as a Function

Derivatives 3: The Derivative as a Function Derivatives : The Derivative as a Function 77 Derivatives : The Derivative as a Function Model : Graph of a Function 9 8 7 6 5 g() - - - 5 6 7 8 9 0 5 6 7 8 9 0 5 - - -5-6 -7 Construct Your Understanding

More information

Assignment 1, MACM 204, Fall Question 1. Solution 1. Question 2. Solution 2. Question 3

Assignment 1, MACM 204, Fall Question 1. Solution 1. Question 2. Solution 2. Question 3 Assignment 1, MACM 204, Fall 2013 Due Tuesday September 17th at 4:30pm at the beginning of class. Late penalty: -20% for up to 24 hours late. 0 after that. Michael Monagan. There are 9 questions. Please

More information

THS Step By Step Calculus Chapter 3

THS Step By Step Calculus Chapter 3 Name: Class Period: Throughout this packet there will be blanks you are expected to fill in prior to coming to class. This packet follows your Larson Textbook. Do NOT throw away! Keep in 3 ring-binder

More information

The Bisection Method versus Newton s Method in Maple (Classic Version for Windows)

The Bisection Method versus Newton s Method in Maple (Classic Version for Windows) The Bisection Method versus (Classic Version for Windows) Author: Barbara Forrest Contact: baforres@uwaterloo.ca Copyrighted/NOT FOR RESALE version 1.1 Contents 1 Objectives for this Lab i 2 Approximate

More information

IB SL REVIEW and PRACTICE

IB SL REVIEW and PRACTICE IB SL REVIEW and PRACTICE Topic: CALCULUS Here are sample problems that deal with calculus. You ma use the formula sheet for all problems. Chapters 16 in our Tet can help ou review. NO CALCULATOR Problems

More information

Parametric Curves, Polar Plots and 2D Graphics

Parametric Curves, Polar Plots and 2D Graphics Parametric Curves, Polar Plots and 2D Graphics Fall 2016 In[213]:= Clear "Global`*" 2 2450notes2_fall2016.nb Parametric Equations In chapter 9, we introduced parametric equations so that we could easily

More information

3.5 - Concavity. a concave up. a concave down

3.5 - Concavity. a concave up. a concave down . - Concavity 1. Concave up and concave down For a function f that is differentiable on an interval I, the graph of f is If f is concave up on a, b, then the secant line passing through points 1, f 1 and,

More information

Repetitive Change: Cycles and Trigonometry & 8.1 Functions on Angles: Sines and Cosines

Repetitive Change: Cycles and Trigonometry & 8.1 Functions on Angles: Sines and Cosines Chapter Repetitive Change: Cycles and Trigonometry &.1 Functions on Angles: Sines and Cosines Before you begin this chapter, go back to the first page of this Guide and check the basic setup, the statistical

More information

Section 7.6 Graphs of the Sine and Cosine Functions

Section 7.6 Graphs of the Sine and Cosine Functions Section 7.6 Graphs of the Sine and Cosine Functions We are going to learn how to graph the sine and cosine functions on the xy-plane. Just like with any other function, it is easy to do by plotting points.

More information

dt Acceleration is the derivative of velocity with respect to time. If a body's position at time t is S = f(t), the body's acceleration at time t is

dt Acceleration is the derivative of velocity with respect to time. If a body's position at time t is S = f(t), the body's acceleration at time t is APPLICATIN F DERIVATIVE INTRDUCTIN In this section we eamine some applications in which derivatives are used to represent and interpret the rates at which things change in the world around us. Let S be

More information

Use the indicated strategy from your notes to simplify each expression. Each section may use the indicated strategy AND those strategies before.

Use the indicated strategy from your notes to simplify each expression. Each section may use the indicated strategy AND those strategies before. Pre Calculus Worksheet: Fundamental Identities Day 1 Use the indicated strategy from your notes to simplify each expression. Each section may use the indicated strategy AND those strategies before. Strategy

More information

The Sine and Cosine Functions

The Sine and Cosine Functions Concepts: Graphs of Tangent, Cotangent, Secant, and Cosecant. We obtain the graphs of the other trig functions by thinking about how they relate to the sin x and cos x. The Sine and Cosine Functions Page

More information

We begin this section with a question. What do the roots of a polynomial have to do with its graph?

We begin this section with a question. What do the roots of a polynomial have to do with its graph? Section I: Polynomials Chapter 5 Graphing We begin this section with a question. What do the roots of a polynomial have to do with its graph? The graph package on the TI-85 is accessed via GRAPH from the

More information

Principles of Linear Algebra With Maple TM The Newton Raphson Method

Principles of Linear Algebra With Maple TM The Newton Raphson Method Principles of Linear Algebra With Maple TM The Newton Raphson Method Kenneth Shiskowski and Karl Frinkle c Draft date July 26, 2010 Contents 1 The Newton-Raphson Method for a Single Equation 1 1.1 The

More information

Graphing Techniques and Transformations. Learning Objectives. Remarks

Graphing Techniques and Transformations. Learning Objectives. Remarks Graphing Techniques and Transformations Learning Objectives 1. Graph functions using vertical and horizontal shifts 2. Graph functions using compressions and stretches. Graph functions using reflections

More information

u u 1 u (c) Distributive property of multiplication over subtraction

u u 1 u (c) Distributive property of multiplication over subtraction ADDITIONAL ANSWERS 89 Additional Answers Eercises P.. ; All real numbers less than or equal to 4 0 4 6. ; All real numbers greater than or equal to and less than 4 0 4 6 7. ; All real numbers less than

More information

Graphing Functions. 0, < x < 0 1, 0 x < is defined everywhere on R but has a jump discontinuity at x = 0. h(x) =

Graphing Functions. 0, < x < 0 1, 0 x < is defined everywhere on R but has a jump discontinuity at x = 0. h(x) = Graphing Functions Section. of your tetbook is devoted to reviewing a series of steps that you can use to develop a reasonable graph of a function. Here is my version of a list of things to check. You

More information

UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas

UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas a t e a t i c a s PROBLEMS, CALCULUS I, st COURSE. FUNCTIONS OF A REAL VARIABLE BACHELOR IN: Audiovisual System

More information

Lesson 8.1 Exercises, pages

Lesson 8.1 Exercises, pages Lesson 8.1 Eercises, pages 1 9 A. Complete each table of values. a) -3 - -1 1 3 3 11 8 5-1 - -7 3 11 8 5 1 7 To complete the table for 3, take the absolute value of each value of 3. b) - -3 - -1 1 3 3

More information

22. LECTURE 22. I can define critical points. I know the difference between local and absolute minimums/maximums.

22. LECTURE 22. I can define critical points. I know the difference between local and absolute minimums/maximums. . LECTURE Objectives I can define critical points. I know the difference between local and absolute minimums/maximums. In many physical problems, we re interested in finding the values (x, y) that maximize

More information

1 extrema notebook. November 25, 2012

1 extrema notebook. November 25, 2012 Do now as a warm up: Suppose this graph is a function f, defined on [a,b]. What would you say about the value of f at each of these x values: a, x 1, x 2, x 3, x 4, x 5, x 6, and b? What would you say

More information

Solving Quadratics Algebraically Investigation

Solving Quadratics Algebraically Investigation Unit NOTES Honors Common Core Math 1 Day 1: Factoring Review and Solving For Zeroes Algebraically Warm-Up: 1. Write an equivalent epression for each of the problems below: a. ( + )( + 4) b. ( 5)( + 8)

More information

= w. w u. u ; u + w. x x. z z. y y. v + w. . Remark. The formula stated above is very important in the theory of. surface integral.

= w. w u. u ; u + w. x x. z z. y y. v + w. . Remark. The formula stated above is very important in the theory of. surface integral. 1 Chain rules 2 Directional derivative 3 Gradient Vector Field 4 Most Rapid Increase 5 Implicit Function Theorem, Implicit Differentiation 6 Lagrange Multiplier 7 Second Derivative Test Theorem Suppose

More information

Math 144 Activity #7 Trigonometric Identities

Math 144 Activity #7 Trigonometric Identities 44 p Math 44 Activity #7 Trigonometric Identities What is a trigonometric identity? Trigonometric identities are equalities that involve trigonometric functions that are true for every single value of

More information

Math-3. Lesson 6-8. Graphs of the sine and cosine functions; and Periodic Behavior

Math-3. Lesson 6-8. Graphs of the sine and cosine functions; and Periodic Behavior Math-3 Lesson 6-8 Graphs o the sine and cosine unctions; and Periodic Behavior What is a unction? () Function: a rule that matches each input to eactly one output. What is the domain o a unction? Domain:

More information

Math 26: Fall (part 1) The Unit Circle: Cosine and Sine (Evaluating Cosine and Sine, and The Pythagorean Identity)

Math 26: Fall (part 1) The Unit Circle: Cosine and Sine (Evaluating Cosine and Sine, and The Pythagorean Identity) Math : Fall 0 0. (part ) The Unit Circle: Cosine and Sine (Evaluating Cosine and Sine, and The Pthagorean Identit) Cosine and Sine Angle θ standard position, P denotes point where the terminal side of

More information

Purchasing a Used Car Algebra 2

Purchasing a Used Car Algebra 2 Purchasing a Used Car Algebra 2 (This lesson was developed by Pam Hayes of J.M. Robinson High, Betty Anne Shearin of Columbia High, and Elizabeth Shepard of Hiedi Trask Senior High during the Leading to

More information

Problem #3 Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page Mark Sparks 2012

Problem #3 Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page Mark Sparks 2012 Problem # Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 490 Mark Sparks 01 Finding Anti-derivatives of Polynomial-Type Functions If you had to explain to someone how to find

More information

Practice problems. 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b.

Practice problems. 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b. Practice problems 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b. 1, 1 = c 1 3, 2 + c 2 2, 1. Solve c 1, c 2. 2. Suppose a is a vector in the plane. If the component of the a in

More information

Math Lab 6: Powerful Fun with Power Series Representations of Functions Due noon Thu. Jan. 11 in class *note new due time, location for winter quarter

Math Lab 6: Powerful Fun with Power Series Representations of Functions Due noon Thu. Jan. 11 in class *note new due time, location for winter quarter Matter & Motion Winter 2017 18 Name: Math Lab 6: Powerful Fun with Power Series Representations of Functions Due noon Thu. Jan. 11 in class *note new due time, location for winter quarter Goals: 1. Practice

More information

MA 220 Lesson 28 Notes Section 3.3 (p. 191, 2 nd half of text)

MA 220 Lesson 28 Notes Section 3.3 (p. 191, 2 nd half of text) MA 220 Lesson 28 Notes Section 3.3 (p. 191, 2 nd half of tet) The property of the graph of a function curving upward or downward is defined as the concavity of the graph of a function. Concavity if how

More information

Homework set 4 - Solutions

Homework set 4 - Solutions Homework set 4 - Solutions Math 3200 Renato Feres 1. (Eercise 4.12, page 153) This requires importing the data set for Eercise 4.12. You may, if you wish, type the data points into a vector. (a) Calculate

More information

4.4. Concavity and Curve Sketching. Concavity

4.4. Concavity and Curve Sketching. Concavity 4.4 Concavit and Curve Sketching 267 4.4 Concavit and Curve Sketching f' decreases CONCAVE DOWN 3 f' increases 0 CONCAVE UP FIGURE 4.25 The graph of ƒsd = 3 is concave down on s - q, 0d and concave up

More information

Ocean City High School HONORS PHYSICS Summer Enrichment Assignment 2015

Ocean City High School HONORS PHYSICS Summer Enrichment Assignment 2015 Ocean City High School HONORS PHYSICS Summer Enrichment Assignment 2015 Course: Honors Physics (11 th / th ) Teachers: Email: duhrich@ocsdnj.org, dweaver@ocsdnj.org, Due Date: Mr. Uhrich Mr. Weaver First

More information

Answers. Chapter 4. Cumulative Review Chapters 1 3, pp Chapter Self-Test, p Getting Started, p a) 49 c) e)

Answers. Chapter 4. Cumulative Review Chapters 1 3, pp Chapter Self-Test, p Getting Started, p a) 49 c) e) . 7" " " 7 "7.. "66 ( ") cm. a, (, ), b... m b.7 m., because t t has b ac 6., so there are two roots. Because parabola opens down and is above t-ais for small positive t, at least one of these roots is

More information

Relation: Pairs of items that are related in a predictable way.

Relation: Pairs of items that are related in a predictable way. We begin this unit on a Friday, after a quiz. We may or may not go through these ideas in class. Note that there are links to Kahn Academy lessons on my website. Objective 1. Recognize a relation vs. a

More information

8.4 Graphs of Sine and Cosine Functions Additional Material to Assist in Graphing Trig Functions

8.4 Graphs of Sine and Cosine Functions Additional Material to Assist in Graphing Trig Functions 8.4 Graphs of Sine and Cosine Functions Additional Material to Assist in Graphing Trig Functions One of the things that will help a great deal in learning to graph the trig functions is an understanding

More information

Review Sheet for Second Midterm Mathematics 1300, Calculus 1

Review Sheet for Second Midterm Mathematics 1300, Calculus 1 Review Sheet for Second Midterm Mathematics 300, Calculus. For what values of is the graph of y = 5 5 both increasing and concave up? 2. Where does the tangent line to y = 2 through (0, ) intersect the

More information

MA 131 Lecture Notes Chapter 4 Calculus by Stewart

MA 131 Lecture Notes Chapter 4 Calculus by Stewart MA 131 Lecture Notes Chapter 4 Calculus by Stewart 4.1) Maimum and Minimum Values 4.3) How Derivatives Affect the Shape of a Graph A function is increasing if its graph moves up as moves to the right and

More information

Lesson 2.1 Exercises, pages 90 96

Lesson 2.1 Exercises, pages 90 96 Lesson.1 Eercises, pages 9 96 A. a) Complete the table of values. 1 1 1 1 1. 1 b) For each function in part a, sketch its graph then state its domain and range. For : the domain is ; and the range is.

More information

Preparing for AS Level Further Mathematics

Preparing for AS Level Further Mathematics Preparing for AS Level Further Mathematics Algebraic skills are incredibly important in the study of further mathematics at AS and A level. You should therefore make sure you are confident with all of

More information