02157 Functional Programming Finite Trees (I)

Size: px
Start display at page:

Download "02157 Functional Programming Finite Trees (I)"

Transcription

1 Finite Trees (I) nsen 1 DTU Informatics, Technical University of Denmark Finite Trees (I) MRH 11/10/2012

2 Overview Finite Trees Algebraic Datatypes. Non-recursive type declarations: Disjoint union (Lecture 4) Recursive type declarations: Finite trees Recursions following the structure of trees Illustrative examples: Search trees Expression trees File systems... Mutual recursion, layered pattern, polymorphic type declarations 2 DTU Informatics, Technical University of Denmark Finite Trees (I) MRH 11/10/2012

3 Finite trees A finite tree is a value which may contain a subcomponent of the same type. Example: A binary search tree Br Br 9 Br Br 7 Lf Br 21 Br Lf 2 Lf Lf 13 Lf Lf 25 Lf Condition: for every node containing the value x: every value in the left subtree is smaller then x, and every value in the right subtree is greater than x. 3 DTU Informatics, Technical University of Denmark Finite Trees (I) MRH 11/10/2012

4 Example: Binary Trees A recursive datatype is used to represent values which are trees. type Tree = Lf Br of Tree*int*Tree;; Lf;; val it : Tree = Lf Br;; val it : Tree * int * Tree -> Tree = <fun:clo@4> The two parts in the declaration are rules for generating trees: Lf is a tree if t 1, t 2 are trees, n is an integer, then Br(t 1, n, t 2 ) is a tree. The tree from the previous slide is denoted by: Br(Br(Br(Lf,2,Lf),7,Lf), 9, Br(Br(Lf,13,Lf),21,Br(Lf,25,Lf))) 4 DTU Informatics, Technical University of Denmark Finite Trees (I) MRH 11/10/2012

5 Binary search trees: Insertion Recursion on the structure of trees Constructors Lf and Br are used in patterns The search tree condition is an invariant for insert let rec insert i = function Lf -> Br(Lf,i,Lf) Br(t1,j,t2) as tr -> match compare i j with 0 -> tr n when n<0 -> Br(insert i t1, j, t2) _ -> Br(t1,j, insert i t2);; val insert : int -> Tree -> Tree Example: let t1 = Br(Lf, 3, Br(Lf, 5, Lf));; let t2 = insert 4 t1;; val t2 : Tree = Br (Lf,3,Br (Br (Lf,4,Lf),5,Lf)) 5 DTU Informatics, Technical University of Denmark Finite Trees (I) MRH 11/10/2012

6 Binary search trees: member and inorder traversal let rec memberof i = function Lf -> false Br(t1,j,t2) -> match compare i j with 0 -> true n when n<0 -> memberof i t1 _ -> memberof i t2;; val memberof : int -> Tree -> bool In-order traversal let rec inorder = function Lf -> [] Br(t1,j,t2) -> inorder inorder t2;; val tolist : Tree -> int list gives a sorted list inorder(br(br(lf,1,lf), 3, Br(Br(Lf,4,Lf), 5, Lf)));; val it : int list = [1; 3; 4; 5] 6 DTU Informatics, Technical University of Denmark Finite Trees (I) MRH 11/10/2012

7 Deletions in search trees Delete minimal element in a search tree: Tree -> int * Tree let rec delmin = function Br(Lf,i,t2) -> (i,t2) Br(t1,i,t2) -> let (m,t1 ) = delmin t1 (m, Br(t1,i,t2));; Delete element in a search tree: int -> Tree -> Tree let rec delete j = function Lf -> Lf Br(t1,i,t2) -> match compare i j with n when n<0 -> Br(t1,i,delete j t2) n when n>0 -> Br(delete j t1,i,t2) _ -> match t2 with Lf -> t1 _ -> let (m,t2 ) = delmin t2 Br(t1,m,t2 );; 7 DTU Informatics, Technical University of Denmark Finite Trees (I) MRH 11/10/2012

8 Parameterize type declarations The programs on search trees just requires an ordering on elements they no not need to be integers. A polymorphic tree type is declared as follows: type Tree< a> = Lf Br of Tree< a> * a * Tree< a>;; Program texts are unchanged (though polymorphic now), for example let rec insert i = function... Br(t1,j,t2) as tr -> match compare i j with... ;; val insert: a -> Tree< a> -> Tree< a> when a: comparison let ti = insert 4 (Br(Lf, 3, Br(Lf, 5, Lf)));; val ti : Tree<int> = Br (Lf,3,Br (Br (Lf,4,Lf),5,Lf)) let ts = insert "4" (Br(Lf, "3", Br(Lf, "5", Lf)));; val ts : Tree<string> = Br (Lf,"3",Br (Br (Lf,"4",Lf),"5",Lf)) 8 DTU Informatics, Technical University of Denmark Finite Trees (I) MRH 11/10/2012

9 Higher-order functions for tree traversals For example satisfies let rec infoldback f t e = match t with Lf -> e Br(t1,x,t2) -> let er = infoldback f t2 e infoldback f t1 (f x er);; val infoldback: ( a -> b -> b) -> Tree< a> -> b -> b infoldback f t e = List.foldBack f (inorder t) e It traverses the tree without building the list- For example: let ta = Br(Br(Br(Lf,-3,Lf),0,Br(Lf,2,Lf)),5,Br(Lf,7,Lf));; inorder ta;; val it : int list = [-3; 0; 2; 5; 7] infoldback (-) ta 0;; val it : int = 1 9 DTU Informatics, Technical University of Denmark Finite Trees (I) MRH 11/10/2012

10 Example: Expression Trees type Fexpr = Const of float X Add of Fexpr * Fexpr Sub of Fexpr * Fexpr Mul of Fexpr * Fexpr Div of Fexpr * Fexpr;; Defines 6 constructors: Const: float -> Fexpr X : Fexpr Add: Fexpr * Fexpr -> Fexpr Sub: Fexpr * Fexpr -> Fexpr Mul: Fexpr * Fexpr -> Fexpr Div: Fexpr * Fexpr -> Fexpr 10 DTU Informatics, Technical University of Denmark Finite Trees (I) MRH 11/10/2012

11 Symbolic Differentiation D: Fexpr -> Fexpr A classic example in functional programming: let rec D = function Const _ -> Const 0.0 X -> Const 1.0 Add(fe1,fe2) -> Add(D fe1,d fe2) Sub(fe1,fe2) -> Sub(D fe1,d fe2) Mul(fe1,fe2) -> Add(Mul(D fe1,fe2),mul(fe1,d fe2)) Div(fe1,fe2) -> Div( Sub(Mul(D fe1,fe2),mul(fe1,d fe2)), Mul(fe2,fe2));; Notice the direct correspondence with the rules of differentiation. Can be tried out directly, as tree are just values, for example: D(Add(Mul(Const 3.0, X), Mul(X, X)));; val it : Fexpr = Add (Add (Mul (Const 0.0,X),Mul (Const 3.0,Const 1.0)), Add (Mul (Const 1.0,X),Mul (X,Const 1.0))) 11 DTU Informatics, Technical University of Denmark Finite Trees (I) MRH 11/10/2012

12 Expressions: Computation of values Given a value (a float) for X, then every expression denote a float. compute : float -> Fexpr -> float let rec compute x = function Const r -> r X -> x Add(fe1,fe2) -> compute x fe1 + compute x fe2 Sub(fe1,fe2) -> compute x fe1 - compute x fe2 Mul(fe1,fe2) -> compute x fe1 * compute x fe2 Div(fe1,fe2) -> compute x fe1 / compute x fe2;; Example: compute 4.0 (Mul(X, Add(Const 2.0, X)));; val it : float = DTU Informatics, Technical University of Denmark Finite Trees (I) MRH 11/10/2012

13 Mutual recursion. Example: File system d 1 a 1 d 2 a 4 d 3 a 2 d 3 a 5 a 3 A file system is a list of elements an element is a file or a directory, which is a named file system 13 DTU Informatics, Technical University of Denmark Finite Trees (I) MRH 11/10/2012

14 Mutually recursive type declarations are combined using and type FileSys = Element list and Element = File of string Dir of string * FileSys let d1 = Dir("d1",[File "a1"; Dir("d2", [File "a2"; Dir("d3", [File "a3"])]); File "a4"; Dir("d3", [File "a5"]) ]) The type of d1 is? 14 DTU Informatics, Technical University of Denmark Finite Trees (I) MRH 11/10/2012

15 Mutually recursive function declarations are combined using and Example: extract the names occurring in file systems and elements. let rec namesfilesys = function [] -> [] e::es -> (nameselement (namesfilesys es) and nameselement = function File s -> [s] Dir(s,fs) -> s :: (namesfilesys fs) ;; val namesfilesys : Element list -> string list val nameselement : Element -> string list nameselement d1 ;; val it : string list = ["d1"; "a1"; "d2"; "a2"; "d3"; "a3"; "a4"; "d3"; "a5"] 15 DTU Informatics, Technical University of Denmark Finite Trees (I) MRH 11/10/2012

16 Summary Finite Trees concepts illustrative examples Notice the strength of having trees as values. Notice that polymorphic types and mutual recursion are NOT biased to trees. 16 DTU Informatics, Technical University of Denmark Finite Trees (I) MRH 11/10/2012

02157 Functional Programming. Michael R. Ha. Finite Trees (I) Michael R. Hansen

02157 Functional Programming. Michael R. Ha. Finite Trees (I) Michael R. Hansen Finite Trees (I) nsen 1 DTU Compute, Technical University of Denmark Finite Trees (I) MRH 08/10/2018 Overview Finite Trees recursive declarations of algebraic types meaning of type declarations: rules

More information

Introduction to SML Basic Types, Tuples, Lists, Trees and Higher-Order Functions

Introduction to SML Basic Types, Tuples, Lists, Trees and Higher-Order Functions Introduction to SML Basic Types, Tuples, Lists, Trees and Higher-Order Functions Michael R. Hansen mrh@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark c Michael R. Hansen,

More information

02157 Functional Programming Tagged values and Higher-order list functions

02157 Functional Programming Tagged values and Higher-order list functions Tagged values and Higher-order list functions nsen 1 DTU Informatics, Technical University of Denmark Tagged values and Higher-order list functions MRH 27/09/2012 Part I: Disjoint Sets An Example A shape

More information

02157 Functional Programming. Michael R. Ha. Disjoint Unions and Higher-order list functions. Michael R. Hansen

02157 Functional Programming. Michael R. Ha. Disjoint Unions and Higher-order list functions. Michael R. Hansen Disjoint Unions and Higher-order list functions nsen 1 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 27/09/2018 Overview Recap Disjoint union (or Tagged

More information

02157 Functional Programming. Michael R. Ha. Tagged values and Higher-order list functions. Michael R. Hansen

02157 Functional Programming. Michael R. Ha. Tagged values and Higher-order list functions. Michael R. Hansen Tagged values and Higher-order list functions nsen 1 DTU Compute, Technical University of Denmark Tagged values and Higher-order list functions MRH 3/10/2017 Overview Disjoint union (or Tagged Values)

More information

02157 Functional Programming Lecture 2: Functions, Basic Types and Tuples

02157 Functional Programming Lecture 2: Functions, Basic Types and Tuples Lecture 2: Functions, Basic Types and Tuples nsen 1 DTU Informatics, Technical University of Denmark Lecture 2: Functions, Basic Types and Tuples MRH 13/09/2012 Outline A further look at functions, including

More information

02157 Functional Programming. Michael R. Ha. Lecture 2: Functions, Types and Lists. Michael R. Hansen

02157 Functional Programming. Michael R. Ha. Lecture 2: Functions, Types and Lists. Michael R. Hansen Lecture 2: Functions, Types and Lists nsen 1 DTU Compute, Technical University of Denmark Lecture 2: Functions, Types and Lists MRH 13/09/2018 Outline Functions as first-class citizens Types, polymorphism

More information

CSC/MAT-220: Lab 6. Due: 11/26/2018

CSC/MAT-220: Lab 6. Due: 11/26/2018 CSC/MAT-220: Lab 6 Due: 11/26/2018 In Lab 2 we discussed value and type bindings. Recall, value bindings bind a value to a variable and are intended to be static for the life of a program. Type bindings

More information

Standard ML. Data types. ML Datatypes.1

Standard ML. Data types. ML Datatypes.1 Standard ML Data types ML Datatypes.1 Concrete Datatypes The datatype declaration creates new types These are concrete data types, not abstract Concrete datatypes can be inspected - constructed and taken

More information

02157 Functional Programming. Michael R. Ha. Sequences and Sequence Expressions. Michael R. Hansen

02157 Functional Programming. Michael R. Ha. Sequences and Sequence Expressions. Michael R. Hansen Sequences and Sequence Expressions nsen 1 DTU Compute, Technical University of Denmark Sequences and Sequence Expressions MRH 14/11/2018 Sequence: a possibly infinite, ordered collection of elements, where

More information

Topic 7: Algebraic Data Types

Topic 7: Algebraic Data Types Topic 7: Algebraic Data Types 1 Recommended Exercises and Readings From Haskell: The craft of functional programming (3 rd Ed.) Exercises: 5.5, 5.7, 5.8, 5.10, 5.11, 5.12, 5.14 14.4, 14.5, 14.6 14.9, 14.11,

More information

02157 Functional Programming Interpreters for two simple languages including exercises

02157 Functional Programming Interpreters for two simple languages including exercises Interpreters for two simple languages including exercises nsen 1 DTU Informatics, Technical University of Denmark Purpose To show the power of a functional programming language, we present a prototype

More information

Programming language seminar The F# language. Peter Sestoft Wednesday Course plan

Programming language seminar The F# language. Peter Sestoft Wednesday Course plan Programming language seminar 2011 The F# language Peter Sestoft Wednesday 2011-08-31 www.itu.dk 1 Course plan Four cycles, each containing a mini-project: F# Types and type inference Scala and Scala actors

More information

02157 Functional Programming Lecture 1: Introduction and Getting Started

02157 Functional Programming Lecture 1: Introduction and Getting Started Lecture 1: Introduction and Getting Started nsen 1 DTU Informatics, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 6/09/2012 WELCOME to Teacher: nsen DTU Informatics, mrh@imm.dtu.dk

More information

02157 Functional Programming Lecture 3: Lists

02157 Functional Programming Lecture 3: Lists Lecture 3: Lists nsen 1 DTU Informatics, Technical University of Denmark Lecture 3: Lists MRH 17/09/2012 Overview Generation of lists Useful functions on lists Typical recursions on lists as a modelling

More information

Programming Languages and Techniques (CIS120)

Programming Languages and Techniques (CIS120) Programming Languages and Techniques () Lecture 6 January 24, 2018 Binary Search Trees (Lecture notes Chapter 7) Announcements Homework 2: Computing Human Evolution due Tuesday, September 19 th Reading:

More information

These notes are intended exclusively for the personal usage of the students of CS352 at Cal Poly Pomona. Any other usage is prohibited without

These notes are intended exclusively for the personal usage of the students of CS352 at Cal Poly Pomona. Any other usage is prohibited without These notes are intended exclusively for the personal usage of the students of CS352 at Cal Poly Pomona. Any other usage is prohibited without previous written authorization. 1 2 The simplest way to create

More information

Inductive Data Types

Inductive Data Types Inductive Data Types Lars-Henrik Eriksson Functional Programming 1 Original slides by Tjark Weber Lars-Henrik Eriksson (UU) Inductive Data Types 1 / 42 Inductive Data Types Today Today New names for old

More information

List Functions, and Higher-Order Functions

List Functions, and Higher-Order Functions List Functions, and Higher-Order Functions Björn Lisper Dept. of Computer Science and Engineering Mälardalen University bjorn.lisper@mdh.se http://www.idt.mdh.se/ blr/ List Functions, and Higher-Order

More information

02157 Functional Programming. Michael R. Ha. Lecture 1: Introduction and Getting Started. Michael R. Hansen

02157 Functional Programming. Michael R. Ha. Lecture 1: Introduction and Getting Started. Michael R. Hansen Lecture 1: Introduction and Getting Started nsen 1 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 06/09/2018 WELCOME to Teacher: nsen, DTU Compute mire@dtu.dk

More information

Programming with Universes, Generically

Programming with Universes, Generically Programming with Universes, Generically Andres Löh Well-Typed LLP 24 January 2012 An introduction to Agda Agda Functional programming language Static types Dependent types Pure (explicit effects) Total

More information

ITT8060: Advanced Programming (in F#)

ITT8060: Advanced Programming (in F#) based on slides by Michael R. Hansen ITT8060: Advanced Programming (in F#) Lecture 2: Identifiers, values, expressions, functions and types Juhan Ernits Department of Software Science, Tallinn University

More information

CSCE 314 Programming Languages

CSCE 314 Programming Languages CSCE 314 Programming Languages Haskell: Declaring Types and Classes Dr. Hyunyoung Lee 1 Outline Declaring Data Types Class and Instance Declarations 2 Defining New Types Three constructs for defining types:

More information

Programming Languages ML Programming Project Due 9/28/2001, 5:00 p.m.

Programming Languages ML Programming Project Due 9/28/2001, 5:00 p.m. Programming Languages ML Programming Project Due 9/28/2001, 5:00 p.m. Functional Suite Instead of writing a single ML program, you are going to write a suite of ML functions to complete various tasks.

More information

Recognizing regular tree languages with static information

Recognizing regular tree languages with static information Recognizing regular tree languages with static information Alain Frisch (ENS Paris) PLAN-X 2004 p.1/22 Motivation Efficient compilation of patterns in XDuce/CDuce/... E.g.: type A = [ A* ] type B =

More information

CS302 - Data Structures using C++

CS302 - Data Structures using C++ CS302 - Data Structures using C++ Topic: Trees Kostas Alexis Trees List, stacks, and queues are linear in their organization of data. Items are one after another In this section, we organize data in a

More information

Programming Languages and Techniques (CIS120)

Programming Languages and Techniques (CIS120) Programming Languages and Techniques (CIS120) Lecture 10 February 5 th, 2016 Abstract types: sets Lecture notes: Chapter 10 What is the value of this expresssion? let f (x:bool) (y:int) : int = if x then

More information

Problem Set CVO 103, Spring 2018

Problem Set CVO 103, Spring 2018 Problem Set CVO 103, Spring 2018 Hakjoo Oh Due: 06/12 (in class) Problem 1 The Fibonacci numbers can be defined as follows: 0 if n = 0 fib(n) = 1 if n = 1 fib(n 1) + fib(n 2) otherwise Write in OCaml the

More information

CSC324- TUTORIAL 5. Shems Saleh* *Some slides inspired by/based on Afsaneh Fazly s slides

CSC324- TUTORIAL 5. Shems Saleh* *Some slides inspired by/based on Afsaneh Fazly s slides CSC324- TUTORIAL 5 ML Shems Saleh* *Some slides inspired by/based on Afsaneh Fazly s slides Assignment 1 2 More questions were added Questions regarding the assignment? Starting ML Who am I? Shems Saleh

More information

Haskell 98 in short! CPSC 449 Principles of Programming Languages

Haskell 98 in short! CPSC 449 Principles of Programming Languages Haskell 98 in short! n Syntax and type inferencing similar to ML! n Strongly typed! n Allows for pattern matching in definitions! n Uses lazy evaluation" F definition of infinite lists possible! n Has

More information

Tree Equality: The Problem

Tree Equality: The Problem Recall the tree data type we defined: Tree Equality: The Problem data LTree a = LLeaf a LBranch (LTree a) (LTree a) Suppose we want to write a function that determines if two trees are equal: treeeq (LLeaf

More information

The type checker will complain that the two branches have different types, one is string and the other is int

The type checker will complain that the two branches have different types, one is string and the other is int 1 Intro to ML 1.1 Basic types Need ; after expression - 42 = ; val it = 42 : int - 7+1; val it = 8 : int Can reference it - it+2; val it = 10 : int - if it > 100 then "big" else "small"; val it = "small"

More information

Tree Travsersals and BST Iterators

Tree Travsersals and BST Iterators Tree Travsersals and BST Iterators PIC 10B May 25, 2016 PIC 10B Tree Travsersals and BST Iterators May 25, 2016 1 / 17 Overview of Lecture 1 Sorting a BST 2 In-Order Travsersal 3 Pre-Order Traversal 4

More information

Chapter 20: Binary Trees

Chapter 20: Binary Trees Chapter 20: Binary Trees 20.1 Definition and Application of Binary Trees Definition and Application of Binary Trees Binary tree: a nonlinear linked list in which each node may point to 0, 1, or two other

More information

CSC148-Section:L0301

CSC148-Section:L0301 Slides adapted from Professor Danny Heap course material winter17 CSC148-Section:L0301 Week#8-Friday Instructed by AbdulAziz Al-Helali a.alhelali@mail.utoronto.ca Office hours: Wednesday 11-1, BA2230.

More information

Spring 2018 Lecture 8. Sorting Integer Trees

Spring 2018 Lecture 8. Sorting Integer Trees 15-150 Spring 2018 Lecture 8 Sorting Integer Trees assessment msort(l) has O(n log n) work, where n is the length of L msort(l) has O(n) span So the speed-up factor obtainable by exploiting parallelism

More information

Index. Cambridge University Press Functional Programming Using F# Michael R. Hansen and Hans Rischel. Index.

Index. Cambridge University Press Functional Programming Using F# Michael R. Hansen and Hans Rischel. Index. (),23 (*,3 ->,3,32 *,11 *),3.[...], 27, 186 //,3 ///,3 ::, 71, 80 :=, 182 ;, 179 ;;,1 @, 79, 80 @"...",26 >,38,35

More information

Homework 3 COSE212, Fall 2018

Homework 3 COSE212, Fall 2018 Homework 3 COSE212, Fall 2018 Hakjoo Oh Due: 10/28, 24:00 Problem 1 (100pts) Let us design and implement a programming language called ML. ML is a small yet Turing-complete functional language that supports

More information

Introduction to Functional Programming in OCaml

Introduction to Functional Programming in OCaml Introduction to Functional Programming in OCaml Roberto Di Cosmo, Yann Régis-Gianas, Ralf Treinen Week 3 - Sequence 0: Tagged values Overview of Week 3 1. Tagged values 2. Recursive types 3. Tree-like

More information

Type checking. Jianguo Lu. November 27, slides adapted from Sean Treichler and Alex Aiken s. Jianguo Lu November 27, / 39

Type checking. Jianguo Lu. November 27, slides adapted from Sean Treichler and Alex Aiken s. Jianguo Lu November 27, / 39 Type checking Jianguo Lu November 27, 2014 slides adapted from Sean Treichler and Alex Aiken s Jianguo Lu November 27, 2014 1 / 39 Outline 1 Language translation 2 Type checking 3 optimization Jianguo

More information

First Semester - Question Bank Department of Computer Science Advanced Data Structures and Algorithms...

First Semester - Question Bank Department of Computer Science Advanced Data Structures and Algorithms... First Semester - Question Bank Department of Computer Science Advanced Data Structures and Algorithms.... Q1) What are some of the applications for the tree data structure? Q2) There are 8, 15, 13, and

More information

Typed Racket: Racket with Static Types

Typed Racket: Racket with Static Types Typed Racket: Racket with Static Types Version 5.0.2 Sam Tobin-Hochstadt November 6, 2010 Typed Racket is a family of languages, each of which enforce that programs written in the language obey a type

More information

Name CPTR246 Spring '17 (100 total points) Exam 3

Name CPTR246 Spring '17 (100 total points) Exam 3 Name CPTR246 Spring '17 (100 total points) Exam 3 1. Linked Lists Consider the following linked list of integers (sorted from lowest to highest) and the changes described. Make the necessary changes in

More information

Lecture 15 CIS 341: COMPILERS

Lecture 15 CIS 341: COMPILERS Lecture 15 CIS 341: COMPILERS Announcements HW4: OAT v. 1.0 Parsing & basic code generation Due: March 28 th No lecture on Thursday, March 22 Dr. Z will be away Zdancewic CIS 341: Compilers 2 Adding Integers

More information

CMSC 330, Fall 2013, Practice Problems 3

CMSC 330, Fall 2013, Practice Problems 3 CMSC 330, Fall 2013, Practice Problems 3 1. OCaml and Functional Programming a. Define functional programming b. Define imperative programming c. Define higher-order functions d. Describe the relationship

More information

MULTIMEDIA COLLEGE JALAN GURNEY KIRI KUALA LUMPUR

MULTIMEDIA COLLEGE JALAN GURNEY KIRI KUALA LUMPUR STUDENT IDENTIFICATION NO MULTIMEDIA COLLEGE JALAN GURNEY KIRI 54100 KUALA LUMPUR FIFTH SEMESTER FINAL EXAMINATION, 2014/2015 SESSION PSD2023 ALGORITHM & DATA STRUCTURE DSEW-E-F-2/13 25 MAY 2015 9.00 AM

More information

Sample Exam; Solutions

Sample Exam; Solutions Sample Exam; Solutions Michael P. Fourman February 2, 2010 1 Introduction This document contains solutions to the sample questions given in Lecture Note 10 Short Question 5 marks Give the responses of

More information

Exercise 1 (2+2+2 points)

Exercise 1 (2+2+2 points) 1 Exercise 1 (2+2+2 points) The following data structure represents binary trees only containing values in the inner nodes: data Tree a = Leaf Node (Tree a) a (Tree a) 1 Consider the tree t of integers

More information

Functional Programming. Overview. Topics. Definition n-th Fibonacci Number. Graph

Functional Programming. Overview. Topics. Definition n-th Fibonacci Number. Graph Topics Functional Programming Christian Sternagel Harald Zankl Evgeny Zuenko Department of Computer Science University of Innsbruck WS 2017/2018 abstract data types, algebraic data types, binary search

More information

COSE212: Programming Languages. Lecture 3 Functional Programming in OCaml

COSE212: Programming Languages. Lecture 3 Functional Programming in OCaml COSE212: Programming Languages Lecture 3 Functional Programming in OCaml Hakjoo Oh 2017 Fall Hakjoo Oh COSE212 2017 Fall, Lecture 3 September 18, 2017 1 / 44 Why learn ML? Learning ML is a good way of

More information

Principles of Functional Programming

Principles of Functional Programming 15-150 Principles of Functional Programming Some Slides for Lecture 16 Modules March 20, 2018 Michael Erdmann Signatures & Structures A signature specifies an interface. A structure provides an implementation.

More information

Programming Languages and Techniques (CIS120)

Programming Languages and Techniques (CIS120) Programming Languages and Techniques (CIS120) Lecture 7 January 29 th, 2016 Binary Search Trees (Lecture notes Chapter 7) let rec height (t:tree) : int = begin match t with Empty -> 0 Node (left, _, right)

More information

CSCI-GA Scripting Languages

CSCI-GA Scripting Languages CSCI-GA.3033.003 Scripting Languages 12/02/2013 OCaml 1 Acknowledgement The material on these slides is based on notes provided by Dexter Kozen. 2 About OCaml A functional programming language All computation

More information

Lecture 19: Functions, Types and Data Structures in Haskell

Lecture 19: Functions, Types and Data Structures in Haskell The University of North Carolina at Chapel Hill Spring 2002 Lecture 19: Functions, Types and Data Structures in Haskell Feb 25 1 Functions Functions are the most important kind of value in functional programming

More information

02157 Functional Programming. Michael R. Ha. Lecture 3: Programming as a model-based activity. Michael R. Hansen

02157 Functional Programming. Michael R. Ha. Lecture 3: Programming as a model-based activity. Michael R. Hansen Lecture 3: as a model-based activity nsen 1 DTU Compute, Technical University of Denmark Lecture 3: as a model-based activity MRH 20/09/2018 Overview RECAP Higher-order functions (lists) Type inference

More information

CSE 307: Principles of Programming Languages

CSE 307: Principles of Programming Languages 1 / 63 CSE 307: Principles of Programming Languages Syntax R. Sekar Topics 1. Introduction 2. Basics 3. Functions 4. Data Structures 5. Overview 6. OCAML Performance 2 / 63 3 / 63 Section 1 Introduction

More information

Functors signature Order = sig functor name type elem (structname:signature) = structure definition; val le : elem*elem -> bool end; elem

Functors signature Order = sig functor name type elem (structname:signature) = structure definition; val le : elem*elem -> bool end; elem Functors The general form of a functor is functor name (structname:signature) = structure definition; This functor will create a specific version of the structure definition using the structure parameter

More information

CSE 307: Principles of Programming Languages

CSE 307: Principles of Programming Languages CSE 307: Principles of Programming Languages Syntax R. Sekar 1 / 63 Topics 1. Introduction 2. Basics 3. Functions 4. Data Structures 5. Overview 6. OCAML Performance 2 / 63 Section 1 Introduction 3 / 63

More information

CSE 341 Section 5. Winter 2018

CSE 341 Section 5. Winter 2018 CSE 341 Section 5 Winter 2018 Midterm Review! Variable Bindings, Shadowing, Let Expressions Boolean, Comparison and Arithmetic Operations Equality Types Types, Datatypes, Type synonyms Tuples, Records

More information

Introduction to Programming, Aug-Dec 2006

Introduction to Programming, Aug-Dec 2006 Introduction to Programming, Aug-Dec 2006 Lecture 3, Friday 11 Aug 2006 Lists... We can implicitly decompose a list into its head and tail by providing a pattern with two variables to denote the two components

More information

Object Oriented Programming. Assistant Lecture Omar Al Khayat 2 nd Year

Object Oriented Programming. Assistant Lecture Omar Al Khayat 2 nd Year Object Oriented Programming Assistant Lecture Omar Al Khayat 2 nd Year Syllabus Overview of C++ Program Principles of object oriented programming including classes Introduction to Object-Oriented Paradigm:Structures

More information

Haskell Overloading (1) LiU-FP2016: Lecture 8 Type Classes. Haskell Overloading (3) Haskell Overloading (2)

Haskell Overloading (1) LiU-FP2016: Lecture 8 Type Classes. Haskell Overloading (3) Haskell Overloading (2) Haskell Overloading (1) LiU-FP2016: Lecture 8 Type Classes Henrik Nilsson University of Nottingham, UK What is the type of (==)? E.g. the following both work: 1 == 2 a == b I.e., (==) can be used to compare

More information

Advanced features of Functional Programming (Haskell)

Advanced features of Functional Programming (Haskell) Advanced features of Functional Programming (Haskell) Polymorphism and overloading January 10, 2017 Monomorphic and polymorphic types A (data) type specifies a set of values. Examples: Bool: the type of

More information

Datatype declarations

Datatype declarations Datatype declarations datatype suit = HEARTS DIAMONDS CLUBS SPADES datatype a list = nil (* copy me NOT! *) op :: of a * a list datatype a heap = EHEAP HEAP of a * a heap * a heap type suit val HEARTS

More information

Recap from last time. Programming Languages. CSE 130 : Fall Lecture 3: Data Types. Put it together: a filter function

Recap from last time. Programming Languages. CSE 130 : Fall Lecture 3: Data Types. Put it together: a filter function CSE 130 : Fall 2011 Recap from last time Programming Languages Lecture 3: Data Types Ranjit Jhala UC San Diego 1 2 A shorthand for function binding Put it together: a filter function # let neg = fun f

More information

Algebraic Types. Chapter 14 of Thompson

Algebraic Types. Chapter 14 of Thompson Algebraic Types Chapter 14 of Thompson Types so far Base types Int, Integer, Float, Bool, Char Composite types: tuples (t 1,t 2,,t n ) lists [t 1 ] functions (t 1 -> t 2 ) Algebraic types enumerated, product

More information

Introduction to OCaml

Introduction to OCaml Introduction to OCaml Jed Liu Department of Computer Science Cornell University CS 6110 Lecture 26 January 2009 Based on CS 3110 course notes and an SML tutorial by Mike George Jed Liu Introduction to

More information

Typed Scheme: Scheme with Static Types

Typed Scheme: Scheme with Static Types Typed Scheme: Scheme with Static Types Version 4.1.1 Sam Tobin-Hochstadt October 5, 2008 Typed Scheme is a Scheme-like language, with a type system that supports common Scheme programming idioms. Explicit

More information

The Typed Racket Guide

The Typed Racket Guide The Typed Racket Guide Version 5.3.6 Sam Tobin-Hochstadt and Vincent St-Amour August 9, 2013 Typed Racket is a family of languages, each of which enforce

More information

CMSC 341 Lecture 10 Binary Search Trees

CMSC 341 Lecture 10 Binary Search Trees CMSC 341 Lecture 10 Binary Search Trees John Park Based on slides from previous iterations of this course Review: Tree Traversals 2 Traversal Preorder, Inorder, Postorder H X M A K B E N Y L G W UMBC CMSC

More information

Programming Languages and Compilers (CS 421)

Programming Languages and Compilers (CS 421) Programming Languages and Compilers (CS 421) #3: Closures, evaluation of function applications, order of evaluation #4: Evaluation and Application rules using symbolic rewriting Madhusudan Parthasarathy

More information

A6-R3: DATA STRUCTURE THROUGH C LANGUAGE

A6-R3: DATA STRUCTURE THROUGH C LANGUAGE A6-R3: DATA STRUCTURE THROUGH C LANGUAGE NOTE: 1. There are TWO PARTS in this Module/Paper. PART ONE contains FOUR questions and PART TWO contains FIVE questions. 2. PART ONE is to be answered in the TEAR-OFF

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R05010106 Set No. 1 1. (a) Draw a Flowchart for the following The average score for 3 tests has to be greater than 80 for a candidate to qualify for the interview. Representing the conditional

More information

Introduction to Objective Caml

Introduction to Objective Caml Introduction to Objective Caml Stefan Wehr University of Freiburg. October 30, 2006 Motivation Simple Expressions and Types Functions Simple Pattern Matching Compound Datatypes I/O and Compilation Resources

More information

CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages CMSC 330: Organization of Programming Languages CMSC330 Fall 2017 OCaml Data Types CMSC330 Fall 2017 1 OCaml Data So far, we ve seen the following kinds of data Basic types (int, float, char, string) Lists

More information

F28PL1 Programming Languages. Lecture 14: Standard ML 4

F28PL1 Programming Languages. Lecture 14: Standard ML 4 F28PL1 Programming Languages Lecture 14: Standard ML 4 Polymorphic list operations length of list base case: [] ==> 0 recursion case: (h::t) => 1 more than length of t - fun length [] = 0 length (_::t)

More information

Why OCaml? Introduction to Objective Caml. Features of OCaml. Applications written in OCaml. Stefan Wehr

Why OCaml? Introduction to Objective Caml. Features of OCaml. Applications written in OCaml. Stefan Wehr Motivation Introduction to Objective Caml Why OCaml? Stefan Wehr University of Freiburg. October 30, 2006 Motivation Simple Expressions and Types I/O and Compilation Resources Convenient encoding of tree

More information

Lecture: Functional Programming

Lecture: Functional Programming Lecture: Functional Programming This course is an introduction to the mathematical foundations of programming languages and the implementation of programming languages and language-based tools. We use

More information

CS 231 Data Structures and Algorithms Fall Binary Search Trees Lecture 23 October 29, Prof. Zadia Codabux

CS 231 Data Structures and Algorithms Fall Binary Search Trees Lecture 23 October 29, Prof. Zadia Codabux CS 231 Data Structures and Algorithms Fall 2018 Binary Search Trees Lecture 23 October 29, 2018 Prof. Zadia Codabux 1 Agenda Ternary Operator Binary Search Tree Node based implementation Complexity 2 Administrative

More information

Denotational Semantics. Domain Theory

Denotational Semantics. Domain Theory Denotational Semantics and Domain Theory 1 / 51 Outline Denotational Semantics Basic Domain Theory Introduction and history Primitive and lifted domains Sum and product domains Function domains Meaning

More information

Fall 2018 Stephen Brookes. LECTURE 2 Thursday, August 30

Fall 2018 Stephen Brookes. LECTURE 2 Thursday, August 30 15-150 Fall 2018 Stephen Brookes LECTURE 2 Thursday, August 30 Announcements HOMEWORK 1 is out Read course policy Must be your OWN work Integrity No collaboration (only limited discussion) Rules will be

More information

Data Structures - Binary Trees and Operations on Binary Trees

Data Structures - Binary Trees and Operations on Binary Trees ata Structures - inary Trees and Operations on inary Trees MS 275 anko drovic (UI) MS 275 October 15, 2018 1 / 25 inary Trees binary tree is a finite set of elements. It can be empty partitioned into three

More information

Softwaretechnik. Program verification. Software Engineering Albert-Ludwigs-University Freiburg. June 30, 2011

Softwaretechnik. Program verification. Software Engineering Albert-Ludwigs-University Freiburg. June 30, 2011 Softwaretechnik Program verification Software Engineering Albert-Ludwigs-University Freiburg June 30, 2011 (Software Engineering) Softwaretechnik June 30, 2011 1 / 28 Road Map Program verification Automatic

More information

CS302 - Data Structures using C++

CS302 - Data Structures using C++ CS302 - Data Structures using C++ Topic: Heaps Kostas Alexis The ADT Heap A heap is a complete binary tree that is either: Empty or Whose root contains a value >= each of its children and has heaps as

More information

Balanced Search Trees. CS 3110 Fall 2010

Balanced Search Trees. CS 3110 Fall 2010 Balanced Search Trees CS 3110 Fall 2010 Some Search Structures Sorted Arrays Advantages Search in O(log n) time (binary search) Disadvantages Need to know size in advance Insertion, deletion O(n) need

More information

CVO103: Programming Languages. Lecture 5 Design and Implementation of PLs (1) Expressions

CVO103: Programming Languages. Lecture 5 Design and Implementation of PLs (1) Expressions CVO103: Programming Languages Lecture 5 Design and Implementation of PLs (1) Expressions Hakjoo Oh 2018 Spring Hakjoo Oh CVO103 2018 Spring, Lecture 5 April 3, 2018 1 / 23 Plan Part 1 (Preliminaries):

More information

3.Constructors and Destructors. Develop cpp program to implement constructor and destructor.

3.Constructors and Destructors. Develop cpp program to implement constructor and destructor. 3.Constructors and Destructors Develop cpp program to implement constructor and destructor. Constructors A constructor is a special member function whose task is to initialize the objects of its class.

More information

CMSC 330, Fall 2013, Practice Problem 3 Solutions

CMSC 330, Fall 2013, Practice Problem 3 Solutions CMSC 330, Fall 2013, Practice Problem 3 Solutions 1. OCaml and Functional Programming a. Define functional programming Programs are expression evaluations b. Define imperative programming Programs change

More information

Currying fun f x y = expression;

Currying fun f x y = expression; Currying ML chooses the most general (least-restrictive) type possible for user-defined functions. Functions are first-class objects, as in Scheme. The function definition fun f x y = expression; defines

More information

Lecture 4: Higher Order Functions

Lecture 4: Higher Order Functions Lecture 4: Higher Order Functions Søren Haagerup Department of Mathematics and Computer Science University of Southern Denmark, Odense September 26, 2017 HIGHER ORDER FUNCTIONS The order of a function

More information

Programming in Standard ML: Continued

Programming in Standard ML: Continued Programming in Standard ML: Continued Specification and Verification with Higher-Order Logic Arnd Poetzsch-Heffter (Slides by Jens Brandt) Software Technology Group Fachbereich Informatik Technische Universität

More information

! Tree: set of nodes and directed edges. ! Parent: source node of directed edge. ! Child: terminal node of directed edge

! Tree: set of nodes and directed edges. ! Parent: source node of directed edge. ! Child: terminal node of directed edge Trees & Heaps Week 12 Gaddis: 20 Weiss: 21.1-3 CS 5301 Fall 2018 Jill Seaman!1 Tree: non-recursive definition! Tree: set of nodes and directed edges - root: one node is distinguished as the root - Every

More information

Chapter 3 Linear Structures: Lists

Chapter 3 Linear Structures: Lists Plan Chapter 3 Linear Structures: Lists 1. Two constructors for lists... 3.2 2. Lists... 3.3 3. Basic operations... 3.5 4. Constructors and pattern matching... 3.6 5. Simple operations on lists... 3.9

More information

Higher-Order Functions

Higher-Order Functions Higher-Order Functions Tjark Weber Functional Programming 1 Based on notes by Pierre Flener, Jean-Noël Monette, Sven-Olof Nyström Tjark Weber (UU) Higher-Order Functions 1 / 1 Tail Recursion http://xkcd.com/1270/

More information

M.Sc. (Previous) DEGREE EXAMINATION, MAY First Year Information Technology. Time : 03 Hours Maximum Marks : 75

M.Sc. (Previous) DEGREE EXAMINATION, MAY First Year Information Technology. Time : 03 Hours Maximum Marks : 75 M.Sc. (Previous) DEGREE EXAMINATION, MAY - 2013 First Year Information Technology Paper - I : BASICS OF INFORMATION TECHNOLOGY (DMSIT01) Time : 03 Hours Maximum Marks : 75 Section - A (3 15 = 45) Answer

More information

CS302 - Data Structures using C++

CS302 - Data Structures using C++ CS302 - Data Structures using C++ Topic: Implementation Kostas Alexis s Definition: A (BST) is a binary tree where each node has a Comparable key (and an associated value) and satisfies the restriction

More information

Chapter 5. Binary Trees

Chapter 5. Binary Trees Chapter 5 Binary Trees Definitions and Properties A binary tree is made up of a finite set of elements called nodes It consists of a root and two subtrees There is an edge from the root to its children

More information

CS 11 Ocaml track: lecture 2

CS 11 Ocaml track: lecture 2 Today: CS 11 Ocaml track: lecture 2 comments algebraic data types more pattern matching records polymorphic types ocaml libraries exception handling Previously... ocaml interactive interpreter compiling

More information

A CRASH COURSE IN SEMANTICS

A CRASH COURSE IN SEMANTICS LAST TIME Recdef More induction NICTA Advanced Course Well founded orders Slide 1 Theorem Proving Principles, Techniques, Applications Slide 3 Well founded recursion Calculations: also/finally {P}... {Q}

More information

Sum-of-Product Data Types

Sum-of-Product Data Types CS251 Programming Languages Handout # 22 Prof. Lyn Turbak February 2, 2005 Wellesley College 1 Introduction Sum-of-Product Data Types Every general-purpose programming language must allow the processing

More information